JPH11237569A - Aligner - Google Patents
AlignerInfo
- Publication number
- JPH11237569A JPH11237569A JP4082598A JP4082598A JPH11237569A JP H11237569 A JPH11237569 A JP H11237569A JP 4082598 A JP4082598 A JP 4082598A JP 4082598 A JP4082598 A JP 4082598A JP H11237569 A JPH11237569 A JP H11237569A
- Authority
- JP
- Japan
- Prior art keywords
- light
- polygon mirror
- lens
- effective area
- predetermined image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Laser Beam Printer (AREA)
- Mechanical Optical Scanning Systems (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、単色の高速レー
ザプリンタ、単色の高速デジタル複写機等に使用され、
複数の光ビームを走査するマルチビーム露光装置に関す
る。The present invention is used for a monochromatic high-speed laser printer, a monochromatic high-speed digital copier, and the like.
The present invention relates to a multi-beam exposure apparatus that scans a plurality of light beams.
【0002】[0002]
【従来の技術】同一色の画像データを複数の光ビームで
並列に露光することで、露光速度すなわち画像形成速度
を高速化する提案がある。この方法によれば、偏向装置
の反射面の回転数を増大させる場合であっても、その回
転数を、光ビームの本数分の1に低減できる。従って、
モータのコストおよび画像周波数の低減が可能となる。2. Description of the Related Art There is a proposal to increase the exposure speed, that is, the image forming speed, by exposing image data of the same color in parallel with a plurality of light beams. According to this method, even when the number of rotations of the reflection surface of the deflecting device is increased, the number of rotations can be reduced to 1 / number of light beams. Therefore,
The cost of the motor and the image frequency can be reduced.
【0003】上述した露光装置は、複数の半導体レーザ
素子、それぞれの半導体レーザ素子を放射された光ビー
ムの断面ビーム径を所定の大きさおよび形状に絞り込む
第1のレンズ群、第1のレンズ群により所定の大きさお
よび形状に絞り込まれた複数の光ビームを、光ビームに
より形成される画像を保持する記録媒体が搬送される方
向(補助走査方向)と直交する方向(すなわち走査方
向)に連続的に反射することで偏向すなわち走査する偏
向装置、偏向装置により走査されたそれぞれの光ビーム
を記録媒体の所定の位置に偏向装置の回転量と偏向装置
により走査された距離が比例するよう、等速度で結像さ
せる第2のレンズ群などを有している。なお、第2のレ
ンズ群としては、これまでのところ、少なくとも2枚の
fθレンズが用いられている。The above-described exposure apparatus includes a plurality of semiconductor laser elements, a first lens group for narrowing a cross-sectional beam diameter of a light beam emitted from each semiconductor laser element to a predetermined size and shape, and a first lens group. A plurality of light beams narrowed down to a predetermined size and shape by the laser beam are continuously formed in a direction (ie, a scanning direction) orthogonal to a direction (an auxiliary scanning direction) in which a recording medium holding an image formed by the light beams is transported (an auxiliary scanning direction). Deflecting device that deflects or scans by reflecting the light beam, the light beam scanned by the deflecting device is set at a predetermined position on the recording medium so that the amount of rotation of the deflecting device and the distance scanned by the deflecting device are proportional. It has a second lens group that forms an image at a speed. Note that so far, at least two fθ lenses have been used as the second lens group.
【0004】[0004]
【発明が解決しようとする課題】ところで、上述した露
光装置においては、第2のレンズ群のレンズ枚数が2枚
以上であることから、複数の光ビームを入射させる場合
には、補助走査方向の各光ビームが各レンズを通過する
位置を正確に維持する必要がある。このことから、レン
ズの形状および加工精度、およびレンズの組み付け精度
として、高い精度が要求され、結果としてコストが増大
する問題がある。In the above-described exposure apparatus, the number of lenses in the second lens group is two or more. Therefore, when a plurality of light beams are incident, the light beam in the auxiliary scanning direction is not used. It is necessary to accurately maintain the position where each light beam passes through each lens. For this reason, high accuracy is required as the shape and processing accuracy of the lens and the accuracy of assembling the lens, and there is a problem that the cost increases as a result.
【0005】また、コストの問題を無視したとしても、
現在実用化されている露光装置では、例えば、走査方向
ビーム径のばらつきにより、中間調画像の画像濃度が不
均一となったり、補助走査方向において、ジッタが生じ
て画質が劣化する問題がある。[0005] Further, even if the cost problem is ignored,
In an exposure apparatus currently in practical use, for example, there is a problem in that the image density of a halftone image becomes non-uniform due to a variation in the beam diameter in the scanning direction, and jitter occurs in the auxiliary scanning direction to deteriorate the image quality.
【0006】この発明の目的は、光ビーム相互間の結像
位置のずれ、解像度の低下あるいはビーム径の変動等に
よる画質の劣化の少ない複数のビームを走査する露光装
置を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide an exposure apparatus which scans a plurality of beams with little deterioration in image quality due to a shift of an imaging position between light beams, a decrease in resolution, or a change in beam diameter.
【0007】[0007]
【課題を解決するための手段】この発明は、上述した問
題点に基づきなされたもので、発光源と、この発光源か
らの光を第1の方向に概略等角速度で偏向する回転多面
鏡を含む偏向器と、この偏向器と前記発光源との間に配
置され、前記光源からの光に所定の特性を持たせながら
前記偏向器の前記回転多面鏡へ導く偏向前光学手段と、
前記回転多面鏡により偏向された光を所定の像面に前記
回転多面鏡の回転量と前記第1の方向の距離が比例する
よう、等速度で結像させる1枚のみレンズと、を有する
露光装置において、前記レンズは、光入射面および光出
射面を除いた任意の一面が、前記光入射面および前記光
出射面のそれぞれと交わる交線が非対称となる対称面に
形成され、前記回転多面鏡により前記光が偏向される偏
向点と前記所定像面の有効領域の中心を通るときの像面
間の距離をL、前記所定像面の有効領域中心を通る光線
が前記レンズと交わる近傍でのレンズの前記第1の方向
と垂直方向の第2の方向の近軸焦点距離をFとする時、 F/L ≦ 0.25 が満足されることを特徴とする露光装置を提供するもの
である。SUMMARY OF THE INVENTION The present invention has been made based on the above-mentioned problems, and comprises a light emitting source and a rotary polygon mirror for deflecting light from the light emitting source in a first direction at a substantially constant angular velocity. A deflector including, disposed between the deflector and the light-emitting source, pre-deflection optical means for guiding the light from the light source to the rotating polygon mirror of the deflector while having predetermined characteristics,
An exposure having only one lens that forms an image of light deflected by the rotating polygonal mirror at a constant speed such that a rotation amount of the rotating polygonal mirror and a distance in the first direction are proportional to a predetermined image plane; In the apparatus, the lens is formed such that any one surface except a light incident surface and a light exit surface is formed as a symmetric surface in which a line of intersection intersecting each of the light incident surface and the light exit surface is asymmetric, and The distance between the deflection point where the light is deflected by the mirror and the image plane when passing through the center of the effective area of the predetermined image plane is L, in the vicinity where the ray passing through the center of the effective area of the predetermined image plane intersects the lens. When the paraxial focal length of the second lens in the second direction perpendicular to the first direction is F, the following condition is satisfied: F / L ≦ 0.25. is there.
【0008】また、この発明は、発光源と、この発光源
からの光を第1の方向に概略等角速度で偏向する回転多
面鏡を含む偏向器と、この偏向器と前記発光源との間に
配置され、前記光源からの光に所定の特性を持たせなが
ら前記偏向器の前記回転多面鏡へ導く偏向前光学手段
と、前記回転多面鏡により偏向された光を所定の像面
に、前記回転多面鏡の回転量と前記第1の方向の距離が
比例するよう、等速度で結像させる1枚のみレンズと、
を有する露光装置において、前記レンズは、光入射面お
よび光出射面を除いた任意の一面が、前記光入射面およ
び前記光出射面のそれぞれと交わる交線が非対称となる
対称面に形成され、前記回転多面鏡により前記光が偏向
される偏向点と前記所定像面の有効領域の中心を通ると
きの像面間の距離をL、前記所定像面の有効領域中心を
通る光が前記レンズを出射する点と前記所定の像面との
間の距離をL3 とする時、 0.35 ≦ L3 /L ≦ 0.65 が満足されることを特徴とする露光装置を提供するもの
である。The present invention also provides a light emitting source, a deflector including a rotary polygon mirror for deflecting light from the light emitting source at a substantially constant angular velocity in a first direction, and between the deflector and the light emitting source. The pre-deflection optical means for guiding the light from the light source to the rotating polygon mirror of the deflector while giving predetermined characteristics to the light from the light source, and the light deflected by the rotating polygon mirror to a predetermined image plane, A single lens that forms an image at a constant speed so that the rotation amount of the rotating polygon mirror is proportional to the distance in the first direction,
In the exposure apparatus having the lens, any one surface except the light incident surface and the light exit surface is formed as a symmetric surface in which an intersection line intersecting with each of the light incident surface and the light exit surface is asymmetric. The distance between the deflection point at which the light is deflected by the rotating polygon mirror and the image plane when passing through the center of the effective area of the predetermined image plane is L, and the light passing through the center of the effective area of the predetermined image plane passes through the lens. Provided is an exposure apparatus, wherein 0.35 ≦ L 3 /L≦0.65 is satisfied when a distance between an emission point and the predetermined image plane is L 3. .
【0009】さらに、この発明は、発光源と、この発光
源からの光を第1の方向に概略等角速度で偏向する回転
多面鏡を含む偏向器と、この偏向器と前記発光源との間
に配置され、前記光源からの光に所定の特性を持たせな
がら前記偏向器の前記回転多面鏡へ導く偏向前光学手段
と、前記回転多面鏡により偏向された光を所定の像面に
前記回転多面鏡の回転量と前記第1の方向の距離が比例
するよう、等速度で結像させる1枚のみレンズと、を有
する露光装置において、前記レンズは、光入射面および
光出射面を除いた任意の一面が、前記光入射面および前
記光出射面のそれぞれと交わる交線が非対称となる対称
面に形成され、前記回転多面鏡により前記光が偏向され
る偏向点と前記所定像面の有効領域の中心を通るときの
像面間の距離をL、前記回転多面鏡により前記光が偏向
される偏向点から前記所定像面の有効領域中心を通る光
線がfθレンズへ入射する点との間の距離をL1 、前記
所定像面の有効領域中心と有効領域端との間で前記光が
前記偏向器により偏向される角度をΦ、とする時、 0.15 ≦ L1 ×sinΦ/L ≦ 0.27 が満足されることを特徴とする露光装置を提供するもの
である。Further, the present invention provides a light emitting source, a deflector including a rotary polygon mirror for deflecting light from the light emitting source in a first direction at a substantially constant angular velocity, and between the deflector and the light emitting source. And a pre-deflection optical means for guiding the light from the light source to the rotating polygon mirror of the deflector while giving the light a predetermined characteristic, and rotating the light deflected by the rotating polygon mirror to a predetermined image plane. In an exposure apparatus having only one lens that forms an image at a constant speed such that the rotation amount of the polygon mirror and the distance in the first direction are proportional, the lens excludes a light incident surface and a light exit surface. An arbitrary surface is formed as a symmetric surface in which an intersection line intersecting with each of the light incident surface and the light exit surface is asymmetric, and a deflection point at which the light is deflected by the rotary polygon mirror and an effective value of the predetermined image surface are determined. The distance between the image planes when passing through the center of the area is L Wherein the distance between the light rays passing through the effective area center of the predetermined image plane from the deflection point of the light is deflected by the rotary polygon mirror and the point of entering the fθ lens L 1, the effective area center of the predetermined image plane An exposure apparatus characterized by satisfying 0.15 ≦ L 1 × sinΦ / L ≦ 0.27, where Φ is an angle at which the light is deflected by the deflector with respect to an effective area end. Is provided.
【0010】またさらに、この発明は、発光源と、この
発光源からの光を第1の方向に概略等角速度で偏向する
回転多面鏡を含む偏向器と、この偏向器と前記発光源と
の間に配置され、前記光源からの光に所定の特性を持た
せながら前記偏向器の前記回転多面鏡へ導く偏向前光学
手段と、前記回転多面鏡により偏向された光を所定の像
面に前記回転多面鏡の回転量と前記第1の方向の距離が
比例するよう、等速度で結像させる1枚のみレンズと、
を有する露光装置において、前記レンズは、光入射面お
よび光出射面を除いた任意の一面が、前記光入射面およ
び前記光出射面のそれぞれと交わる交線が非対称となる
対称面に形成され、前記回転多面鏡により前記光が偏向
される偏向点と前記所定像面の有効領域の中心を通ると
きの像面間の距離をL、前記回転多面鏡により前記光が
偏向される偏向点から前記所定像面の有効領域中心を通
る光線がfθレンズへ入射する点との間の距離をL1 、
とする時、 0.3 ≦ L1 /L ≦ 0.65 が満足されることを特徴とする露光装置を提供するもの
である。Still further, the present invention provides a light emitting source, a deflector including a rotary polygon mirror for deflecting light from the light emitting source at a substantially constant angular velocity in a first direction, and combining the deflector with the light emitting source. Disposed between the light source and the pre-deflection optical means for guiding the light from the light source to the rotating polygon mirror of the deflector while giving predetermined characteristics, the light deflected by the rotating polygon mirror to a predetermined image plane A single lens that forms an image at a constant speed so that the rotation amount of the rotating polygon mirror is proportional to the distance in the first direction,
In the exposure apparatus having the lens, any one surface except the light incident surface and the light exit surface is formed as a symmetric surface in which an intersection line intersecting with each of the light incident surface and the light exit surface is asymmetric. The distance between the deflection point where the light is deflected by the rotating polygon mirror and the image plane when passing through the center of the effective area of the predetermined image plane is L, and the distance from the deflection point where the light is deflected by the rotating polygon mirror is L The distance between a point at which a light ray passing through the center of the effective area of the predetermined image plane enters the fθ lens is L 1 ,
It is intended to provide an exposure apparatus characterized by satisfying 0.3 ≦ L 1 /L≦0.65.
【0011】さらにまた、この発明は、複数の発光源
と、この発光源からのそれぞれの光を第1の方向に概略
等角速度で偏向する回転多面鏡を含む偏向器と、この偏
向器と前記発光源との間に配置され、前記光源からのそ
れぞれの光に所定の特性を持たせながら前記偏向器の前
記回転多面鏡へ導く偏向前光学手段と、前記回転多面鏡
により偏向されたそれぞれの光を所定の像面に前記回転
多面鏡の回転量と前記第1の方向の距離が比例するよ
う、等速度で結像させる1枚のみレンズと、を有する露
光装置において、前記レンズは、光入射面および光出射
面を除いた任意の一面が、前記光入射面および前記光出
射面のそれぞれと交わる交線が非対称となる対称面に形
成され、前記回転多面鏡により前記光が偏向される偏向
点と前記所定像面の有効領域の中心を通るときの像面間
の距離をL、前記所定像面の有効領域中心と有効領域端
との間の距離をW、前記所定像面の有効領域中心と有効
領域端との間で前記それぞれの光が前記偏向器により偏
向される角度をΦ、とする時、 0.8 ≦ tan-1(W/L)/Φ ≦ 1.3 が満足されることを特徴とする露光装置を提供するもの
である。Further, the present invention provides a deflector including a plurality of light-emitting sources, a rotary polygon mirror for deflecting each light from the light-emitting sources in a first direction at a substantially constant angular velocity, the deflector and the deflector. A pre-deflection optical unit that is disposed between the light source and guides the light from the light source to the rotating polygon mirror of the deflector while having predetermined characteristics, and respective light beams deflected by the rotating polygon mirror. An exposure apparatus having only one lens that forms an image at a constant speed so that the amount of rotation of the rotating polygon mirror and the distance in the first direction are proportional to a predetermined image plane; An arbitrary surface excluding the incident surface and the light exit surface is formed as a symmetric surface in which an intersection line intersecting with each of the light incident surface and the light exit surface is asymmetric, and the light is deflected by the rotating polygon mirror. Having a deflection point and the predetermined image plane L is the distance between image planes when passing through the center of the area, W is the distance between the center of the effective area of the predetermined image plane and the end of the effective area, and W is the distance between the center of the effective area of the predetermined image plane and the end of the effective area. An exposure apparatus characterized by satisfying 0.8 ≦ tan −1 (W / L) /Φ≦1.3, where Φ is an angle at which each light is deflected by the deflector. Is provided.
【0012】またさらに、この発明は、発光源と、この
発光源からの光を第1の方向に概略等角速度で偏向する
回転多面鏡を含む偏向器と、この偏向器と前記発光源と
の間に配置され、前記光源からの光に所定の特性を持た
せながら前記偏向器の前記回転多面鏡へ導く偏向前光学
手段と、前記回転多面鏡により偏向された光を所定の像
面に前記回転多面鏡の回転量と前記第1の方向の距離が
比例するよう、等速度で結像させる1枚のみレンズと、
を有する露光装置において、前記レンズは、光入射面お
よび光出射面を除いた任意の一面が、前記光入射面およ
び前記光出射面のそれぞれと交わる交線が非対称となる
対称面に形成され、前記回転多面鏡により前記光が偏向
される偏向点と前記所定像面の有効領域の中心を通ると
きの像面間の距離をL、前記回転多面鏡により前記光が
偏向される偏向点から前記所定像面の有効領域中心を通
る光線がfθレンズへ入射する点との間の距離をL1 、
前記所定像面の有効領域中心を通る光が前記レンズを出
射する点と前記所定の像面との間の距離をL3 とする
時、 0.17 ≦ L1 ×L3 /L2 ≦0.23 が満足されることを特徴とする露光装置を提供するもの
である。Still further, the present invention provides a light emitting source, a deflector including a rotary polygonal mirror for deflecting light from the light emitting source in a first direction at a substantially constant angular velocity, and combining the deflector with the light emitting source. Disposed between the light source and the pre-deflection optical means for guiding the light from the light source to the rotating polygon mirror of the deflector while giving predetermined characteristics, the light deflected by the rotating polygon mirror to a predetermined image plane A single lens that forms an image at a constant speed so that the rotation amount of the rotating polygon mirror is proportional to the distance in the first direction,
In the exposure apparatus having the lens, any one surface except the light incident surface and the light exit surface is formed as a symmetric surface in which an intersection line intersecting with each of the light incident surface and the light exit surface is asymmetric. The distance between the deflection point where the light is deflected by the rotating polygon mirror and the image plane when passing through the center of the effective area of the predetermined image plane is L, and the distance from the deflection point where the light is deflected by the rotating polygon mirror is L The distance between a point at which a light ray passing through the center of the effective area of the predetermined image plane enters the fθ lens is L 1 ,
When the distance between the point at which light passing through the center of the effective area of the predetermined image plane exits the lens and the predetermined image plane is L 3 , 0.17 ≦ L 1 × L 3 / L 2 ≦ 0 .23 are satisfied.
【0013】さらにまた、この発明は、発光源と、この
発光源からの光を第1の方向に概略等角速度で偏向する
回転多面鏡を含む偏向器と、この偏向器と前記発光源と
の間に配置され、前記光源からの光に所定の特性を持た
せながら前記偏向器の前記回転多面鏡へ導く偏向前光学
手段と、前記回転多面鏡により偏向された光を所定の像
面に前記回転多面鏡の回転量と前記第1の方向の距離が
比例するよう、等速度で結像させる1枚のみレンズと、
を有する露光装置において、前記レンズは、光入射面お
よび光出射面を除いた任意の一面が、前記光入射面およ
び前記光出射面のそれぞれと交わる交線が非対称となる
対称面に形成され、前記所定像面の有効領域中心と有効
領域端との間で前記光が前記偏向器により偏向される角
度をΦ、前記回転多面鏡により前記光が偏向される偏向
点と前記所定像面の有効領域の中心を通るときの像面間
の距離をL、前記所定像面の有効領域中心と有効領域端
との間の距離をW、前記所定像面の有効領域中心を通る
光が前記レンズを出射する点と前記所定の像面との間の
距離をL3 とする時、 φ×(L/W)/L3 ≦ 0.009 が満足されることを特徴とする露光装置提供するもので
ある。Still further, the present invention provides a light emitting source, a deflector including a rotary polygon mirror for deflecting light from the light emitting source in a first direction at a substantially constant angular velocity, and combining the deflector with the light emitting source. Disposed between the light source and the pre-deflection optical means for guiding the light from the light source to the rotating polygon mirror of the deflector while giving predetermined characteristics, the light deflected by the rotating polygon mirror to a predetermined image plane A single lens that forms an image at a constant speed so that the rotation amount of the rotating polygon mirror is proportional to the distance in the first direction,
In the exposure apparatus having the lens, any one surface except the light incident surface and the light exit surface is formed as a symmetric surface in which an intersection line intersecting with each of the light incident surface and the light exit surface is asymmetric. The angle at which the light is deflected by the deflector between the center of the effective area and the end of the effective area of the predetermined image plane is Φ, the deflection point at which the light is deflected by the rotating polygon mirror, and the effective point of the predetermined image plane The distance between the image planes when passing through the center of the area is L, the distance between the center of the effective area of the predetermined image plane and the end of the effective area is W, and light passing through the center of the effective area of the predetermined image plane passes through the lens. Provided is an exposure apparatus characterized by satisfying φ × (L / W) / L 3 ≦ 0.009 when a distance between an emission point and the predetermined image plane is L 3. is there.
【0014】またさらに、この発明は、発光源と、この
発光源からの光を第1の方向に概略等角速度で偏向する
回転多面鏡を含む偏向器と、この偏向器と前記発光源と
の間に配置され、前記光源からの光に所定の特性を持た
せながら前記偏向器の前記回転多面鏡へ導く偏向前光学
手段と、前記回転多面鏡により偏向された光を所定の像
面に前記回転多面鏡の回転量と前記第1の方向の距離が
比例するよう、等速度で結像させる1枚のみレンズと、
を有する露光装置において、前記レンズは、光入射面お
よび光出射面を除いた任意の一面が、前記光入射面およ
び前記光出射面のそれぞれと交わる交線が非対称となる
対称面に形成され、前記回転多面鏡により前記光が偏向
される偏向点と前記所定像面の有効領域の中心を通ると
きの像面間の距離をL、前記所定像面の有効領域中心を
通る光線が前記レンズと交わる近傍でのレンズの前記第
1の方向と垂直方向の第2の方向の近軸焦点距離をF、
前記所定像面の有効領域中心を通る光が前記レンズを出
射する点と前記所定の像面との間の距離をL3 、前記回
転多面鏡により前記光が偏向される偏向点から前記所定
像面の有効領域中心を通る光線がfθレンズへ入射する
点との間の距離をL1 、前記所定像面の有効領域中心と
有効領域端との間で前記光が前記偏向器により偏向され
る角度をΦ、前記所定像面の有効領域中心と有効領域端
との間の距離をW、とするとき、 F/L≦0.25、 0.35 ≦ L3 /L ≦ 0.65、 0.15 ≦ L1 ×sinΦ/L ≦ 0.27、 0.3 ≦ L1 /L ≦ 0.65、 0.8 ≦ tan-1(W/L)Φ ≦ 1.3、 0.17 ≦ L1 ×L3 /L2 ≦ 0.23、およ
び φ×(L/W)/L3 ≦ 0.009 が満足されることを特徴とする露光装置を提供するもの
である。Still further, the present invention provides a light emitting source, a deflector including a rotary polygon mirror for deflecting light from the light emitting source in a first direction at a substantially constant angular velocity, and combining the deflector with the light emitting source. Disposed between the light source and the pre-deflection optical means for guiding the light from the light source to the rotating polygon mirror of the deflector while giving predetermined characteristics, the light deflected by the rotating polygon mirror to a predetermined image plane A single lens that forms an image at a constant speed so that the rotation amount of the rotating polygon mirror is proportional to the distance in the first direction,
In the exposure apparatus having the lens, any one surface except the light incident surface and the light exit surface is formed as a symmetric surface in which an intersection line intersecting with each of the light incident surface and the light exit surface is asymmetric. The distance between the deflection point where the light is deflected by the rotating polygon mirror and the image plane when passing through the center of the effective area of the predetermined image plane is L, and the light beam passing through the center of the effective area of the predetermined image plane is the lens. The paraxial focal length of the lens in the second direction perpendicular to the first direction near the intersection is F,
The distance between the point at which light passing through the effective area center of the predetermined image plane exits the lens and the predetermined image plane is L 3 , and the predetermined image is obtained from a deflection point at which the light is deflected by the rotating polygon mirror. The distance between the point at which the ray passing through the center of the effective area of the surface enters the fθ lens is L 1 , and the light is deflected by the deflector between the center of the effective area of the predetermined image plane and the end of the effective area. Assuming that the angle is Φ and the distance between the center of the effective area of the predetermined image plane and the end of the effective area is W, F / L ≦ 0.25, 0.35 ≦ L 3 /L≦0.65, 0 .15 ≦ L 1 × sinΦ / L ≦ 0.27, 0.3 ≦ L 1 / L ≦ 0.65, 0.8 ≦ tan -1 (W / L) Φ ≦ 1.3, 0.17 ≦ L provide an exposure apparatus characterized by 1 × L 3 / L 2 ≦ 0.23, and φ × (L / W) / L 3 ≦ 0.009 is satisfied Is shall.
【0015】さらにまた、この発明は、発光源と、この
発光源からの光を第1の方向に概略等角速度で偏向する
回転多面鏡を含む偏向器と、この偏向器と前記発光源と
の間に配置され、前記光源からの光に所定の特性を持た
せながら前記偏向器の前記回転多面鏡へ導く偏向前光学
手段と、前記回転多面鏡により偏向された光を所定の像
面に前記回転多面鏡の回転量と前記第1の方向の距離が
比例するよう、等速度で結像させる1枚のみレンズと、
を有する露光装置において、前記レンズは、光入射面お
よび光出射面を除いた任意の一面が、前記光入射面およ
び前記光出射面のそれぞれと交わる交線が非対称となる
対称面に形成され、前記回転多面鏡により前記光が偏向
される偏向点と前記所定像面の有効領域の中心を通ると
きの像面間の距離をL、前記所定像面の有効領域中心を
通る光線が前記レンズと交わる近傍でのレンズの前記第
1の方向と垂直方向の第2の方向の近軸焦点距離をF、
前記所定像面の有効領域中心を通る光が前記レンズを出
射する点と前記所定の像面との間の距離をL3 、前記回
転多面鏡により前記光が偏向される偏向点から前記所定
像面の有効領域中心を通る光線がfθレンズへ入射する
点との間の距離をL1 、前記所定像面の有効領域中心と
有効領域端との間で前記光が前記偏向器により偏向され
る角度をΦ、前記所定像面の有効領域中心と有効領域端
との間の距離をW、とするとき、 F/L≦0.25、 0.35 ≦ L3 /L ≦ 0.65、 0.15 ≦ L1 ×sinΦ/L ≦ 0.27、 0.3 ≦ L1 /L ≦ 0.65、 0.8 ≦ tan-1(W/L)Φ ≦ 1.3、 0.17 ≦ L1 ×L3 /L2 ≦ 0.23、およ
び φ×(L/W)/L3 ≦ 0.009 の少なくとも2つが満足されることを特徴とする露光装
置を提供するものである。Further, the present invention provides a light emitting source, a deflector including a rotary polygon mirror for deflecting light from the light emitting source in a first direction at a substantially constant angular velocity, and combining the deflector with the light emitting source. Disposed between the light source and the pre-deflection optical means for guiding the light from the light source to the rotating polygon mirror of the deflector while giving predetermined characteristics, the light deflected by the rotating polygon mirror to a predetermined image plane A single lens that forms an image at a constant speed so that the rotation amount of the rotating polygon mirror is proportional to the distance in the first direction,
In the exposure apparatus having the lens, any one surface except the light incident surface and the light exit surface is formed as a symmetric surface in which an intersection line intersecting with each of the light incident surface and the light exit surface is asymmetric. The distance between the deflection point where the light is deflected by the rotating polygon mirror and the image plane when passing through the center of the effective area of the predetermined image plane is L, and the light beam passing through the center of the effective area of the predetermined image plane is the lens. The paraxial focal length of the lens in the second direction perpendicular to the first direction near the intersection is F,
The distance between the point at which light passing through the effective area center of the predetermined image plane exits the lens and the predetermined image plane is L 3 , and the predetermined image is obtained from a deflection point at which the light is deflected by the rotating polygon mirror. The distance between the point at which the ray passing through the center of the effective area of the surface enters the fθ lens is L 1 , and the light is deflected by the deflector between the center of the effective area of the predetermined image plane and the end of the effective area. Assuming that the angle is Φ and the distance between the center of the effective area of the predetermined image plane and the end of the effective area is W, F / L ≦ 0.25, 0.35 ≦ L 3 /L≦0.65, 0 .15 ≦ L 1 × sinΦ / L ≦ 0.27, 0.3 ≦ L 1 / L ≦ 0.65, 0.8 ≦ tan -1 (W / L) Φ ≦ 1.3, 0.17 ≦ L It is characterized in that the 1 × L 3 / L 2 ≦ 0.23, and φ × (L / W) / L 3 ≦ 0.009 of at least two are satisfied There is provided an exposure apparatus.
【0016】またさらに、この発明は、発光源と、この
発光源からの光を第1の方向に概略等角速度で偏向する
回転多面鏡を含む偏向器と、この偏向器と前記発光源と
の間に配置され、前記光源からの光に所定の特性を持た
せながら前記偏向器の前記回転多面鏡へ導く偏向前光学
手段と、前記回転多面鏡により偏向された光を所定の像
面に前記回転多面鏡の回転量と前記第1の方向の距離が
比例するよう、等速度で結像させる1枚のみレンズと、
を有する露光装置において、前記レンズは、光入射面お
よび光出射面を除いた任意の一面が、前記光入射面およ
び前記光出射面のそれぞれと交わる交線が非対称となる
対称面に形成され、前記回転多面鏡により前記光が偏向
される偏向点と前記所定像面の有効領域の中心を通ると
きの像面間の距離をL、前記所定像面の有効領域中心を
通る光線が前記レンズと交わる近傍でのレンズの前記第
1の方向と垂直方向の第2の方向の近軸焦点距離をF、
前記所定像面の有効領域中心を通る光が前記レンズを出
射する点と前記所定の像面との間の距離をL3 、前記回
転多面鏡により前記光が偏向される偏向点から前記所定
像面の有効領域中心を通る光線がfθレンズへ入射する
点との間の距離をL1 、前記所定像面の有効領域中心と
有効領域端との間で前記光が前記偏向器により偏向され
る角度をΦ、前記所定像面の有効領域中心と有効領域端
との間の距離をW、とするとき、 F/L≦0.25、 0.35 ≦ L3 /L ≦ 0.65、 0.15 ≦ L1 ×sinΦ/L ≦ 0.27、 0.3 ≦ L1 /L ≦ 0.65、 0.8 ≦ tan-1(W/L)Φ ≦ 1.3、 0.17 ≦ L1 ×L3 /L2 ≦ 0.23、およ
び φ×(L/W)/L3 ≦ 0.009 の任意の組み合わせが満足されることを特徴とする露光
装置を提供するものである。Still further, the invention provides a light emitting source, a deflector including a rotary polygon mirror for deflecting light from the light emitting source in a first direction at a substantially constant angular velocity, and combining the deflector with the light emitting source. Disposed between the light source and the pre-deflection optical means for guiding the light from the light source to the rotating polygon mirror of the deflector while giving predetermined characteristics, the light deflected by the rotating polygon mirror to a predetermined image plane A single lens that forms an image at a constant speed so that the rotation amount of the rotating polygon mirror is proportional to the distance in the first direction,
In the exposure apparatus having the lens, any one surface except the light incident surface and the light exit surface is formed as a symmetric surface in which an intersection line intersecting with each of the light incident surface and the light exit surface is asymmetric. The distance between the deflection point where the light is deflected by the rotating polygon mirror and the image plane when passing through the center of the effective area of the predetermined image plane is L, and the light beam passing through the center of the effective area of the predetermined image plane is the lens. The paraxial focal length of the lens in the second direction perpendicular to the first direction near the intersection is F,
The distance between the point at which light passing through the effective area center of the predetermined image plane exits the lens and the predetermined image plane is L 3 , and the predetermined image is obtained from a deflection point at which the light is deflected by the rotating polygon mirror. The distance between the point at which the ray passing through the center of the effective area of the surface enters the fθ lens is L 1 , and the light is deflected by the deflector between the center of the effective area of the predetermined image plane and the end of the effective area. Assuming that the angle is Φ and the distance between the center of the effective area of the predetermined image plane and the end of the effective area is W, F / L ≦ 0.25, 0.35 ≦ L 3 /L≦0.65, 0 .15 ≦ L 1 × sinΦ / L ≦ 0.27, 0.3 ≦ L 1 / L ≦ 0.65, 0.8 ≦ tan -1 (W / L) Φ ≦ 1.3, 0.17 ≦ L and wherein the 1 × L 3 / L 2 ≦ 0.23, and φ × (L / W) / any combination of L 3 ≦ 0.009 is satisfied There is provided a that exposure apparatus.
【0017】さらにまた、この発明は、発光源と、この
発光源からの光を第1の方向に概略等角速度で偏向する
回転多面鏡を含む偏向器と、この偏向器と前記発光源と
の間に配置され、前記光源からの光に所定の特性を持た
せながら前記偏向器の前記回転多面鏡へ導く偏向前光学
手段と、前記回転多面鏡により偏向された光を所定の像
面に前記回転多面鏡の回転量と前記第1の方向の距離が
比例するよう、等速度で結像させる1枚のみレンズと、
を有する露光装置において、前記レンズは、光入射面お
よび光出射面を除いた任意の一面が、前記光入射面およ
び前記光出射面のそれぞれと交わる交線が非対称となる
対称面に形成され、前記回転多面鏡により前記光が偏向
される偏向点と前記所定像面の有効領域の中心を通ると
きの像面間の距離をL、前記所定像面の有効領域中心を
通る光線が前記レンズと交わる近傍でのレンズの前記第
1の方向と垂直方向の第2の方向の近軸焦点距離をF、
前記所定像面の有効領域中心を通る光が前記レンズを出
射する点と前記所定の像面との間の距離をL3 、前記回
転多面鏡により前記光が偏向される偏向点から前記所定
像面の有効領域中心を通る光線がfθレンズへ入射する
点との間の距離をL1 、前記所定像面の有効領域中心と
有効領域端との間で前記光が前記偏向器により偏向され
る角度をΦ、前記所定像面の有効領域中心と有効領域端
との間の距離をW、とするとき、 F/L≦0.25、 0.35 ≦ L3 /L ≦ 0.65、 0.15 ≦ L1 ×sinΦ/L ≦ 0.27、 0.3 ≦ L1 /L ≦ 0.65、 0.8 ≦ tan-1(W/L)Φ ≦ 1.3、 0.17 ≦ L1 ×L3 /L2 ≦ 0.23、およ
び φ×(L/W)/L3 ≦ 0.009 が満足されることを特徴とする露光装置と、この露光装
置により像担持体に形成された潜像を現像する現像装置
と、この現像装置により現像された現像剤像を被転写材
に転写する転写装置と、を有することを特徴とする画像
形成装置を提供するものである。Still further, the present invention provides a light emitting source, a deflector including a rotary polygonal mirror for deflecting light from the light emitting source in a first direction at a substantially constant angular velocity, and combining the deflector with the light emitting source. Disposed between the light source and the pre-deflection optical means for guiding the light from the light source to the rotating polygon mirror of the deflector while giving predetermined characteristics, the light deflected by the rotating polygon mirror to a predetermined image plane A single lens that forms an image at a constant speed so that the rotation amount of the rotating polygon mirror is proportional to the distance in the first direction,
In the exposure apparatus having the lens, any one surface except the light incident surface and the light exit surface is formed as a symmetric surface in which an intersection line intersecting with each of the light incident surface and the light exit surface is asymmetric. The distance between the deflection point where the light is deflected by the rotating polygon mirror and the image plane when passing through the center of the effective area of the predetermined image plane is L, and the light beam passing through the center of the effective area of the predetermined image plane is the lens. The paraxial focal length of the lens in the second direction perpendicular to the first direction near the intersection is F,
The distance between the point at which light passing through the effective area center of the predetermined image plane exits the lens and the predetermined image plane is L 3 , and the predetermined image is obtained from a deflection point at which the light is deflected by the rotating polygon mirror. The distance between the point at which the ray passing through the center of the effective area of the surface enters the fθ lens is L 1 , and the light is deflected by the deflector between the center of the effective area of the predetermined image plane and the end of the effective area. Assuming that the angle is Φ and the distance between the center of the effective area of the predetermined image plane and the end of the effective area is W, F / L ≦ 0.25, 0.35 ≦ L 3 /L≦0.65, 0 .15 ≦ L 1 × sinΦ / L ≦ 0.27, 0.3 ≦ L 1 / L ≦ 0.65, 0.8 ≦ tan -1 (W / L) Φ ≦ 1.3, 0.17 ≦ L an exposure apparatus characterized by 1 × L 3 / L 2 ≦ 0.23, and φ × (L / W) / L 3 ≦ 0.009 is satisfied, this An image forming apparatus comprising: a developing device that develops a latent image formed on an image carrier by an exposure device; and a transfer device that transfers a developer image developed by the developing device to a material to be transferred. Is provided.
【0018】[0018]
【発明の実施の形態】以下、図面を参照してこの発明の
実施の形態を詳細に説明する。Embodiments of the present invention will be described below in detail with reference to the drawings.
【0019】図1に示されるように、画像形成装置10
0は、露光対象に向かって複数の光ビームを同時に出力
する露光装置1と、この露光装置1から出力された光ビ
ームに対応する画像を形成して記録用紙に出力する画像
形成部51を有している。As shown in FIG. 1, an image forming apparatus 10
Reference numeral 0 denotes an exposure device 1 that simultaneously outputs a plurality of light beams toward an exposure target, and an image forming unit 51 that forms an image corresponding to the light beam output from the exposure device 1 and outputs the image to recording paper. doing.
【0020】露光装置1は、図2に示されるように、所
定の波長の光ビーム(レーザビーム)を放射する発光源
としての半導体レーザ素子3、回転可能な反射面を有
し、この反射面を所定の速度で回転することで、半導体
レーザ素子3を放射されたレーザビームを、所定の位置
に配置された像面Sすなわち画像形成部51の後段に詳
述する像担持体としての感光体ドラムの所定位置に向か
って所定の線速度で偏向(走査)する偏向装置7を有し
ている。なお、偏向装置7と半導体レーザ素子3との間
には、レーザ素子3から出射されたレーザビームの断面
ビーム形状を所定の大きさかつ所定の形状に整える偏向
前光学系5が配置されている。また、偏向装置7と像面
Sとの間には、偏向装置7の反射面の回転によって偏向
されたレーザビームを、反射面の回転に応じて規定され
る反射角と像面上の距離が比例するよう、等速度で結像
させる偏向後光学系9が配置されている。なお、以下、
偏向装置7によりレーザビームが偏向される方向を主走
査方向(後段に詳述する感光体ドラムの軸方向)、主走
査方向と直交する方向(同感光体ドラムが回転される方
向)を副走査方向と示す。As shown in FIG. 2, the exposure apparatus 1 has a semiconductor laser element 3 as a light emitting source for emitting a light beam (laser beam) of a predetermined wavelength, and a rotatable reflecting surface. Is rotated at a predetermined speed, so that the laser beam emitted from the semiconductor laser element 3 is transferred to an image plane S disposed at a predetermined position, that is, a photosensitive member as an image carrier, which will be described in detail after the image forming section 51. It has a deflecting device 7 that deflects (scans) at a predetermined linear velocity toward a predetermined position on the drum. A pre-deflection optical system 5 that arranges the cross-sectional beam shape of the laser beam emitted from the laser element 3 into a predetermined size and a predetermined shape is disposed between the deflection device 7 and the semiconductor laser element 3. . Further, between the deflecting device 7 and the image plane S, the laser beam deflected by the rotation of the reflecting surface of the deflecting device 7 is reflected by a reflection angle defined by the rotation of the reflecting surface and a distance on the image surface. A post-deflection optical system 9 that forms an image at a constant speed is disposed so as to be proportional. Note that
The direction in which the laser beam is deflected by the deflecting device 7 is the main scanning direction (the axial direction of the photosensitive drum described in detail below), and the direction orthogonal to the main scanning direction (the direction in which the photosensitive drum is rotated) is the sub-scanning. Direction.
【0021】半導体レーザ素子3は、図3に示すよう
に、第1のレーザビームAを出射する第1の発光点3a
と第2のレーザビームBを出射する第2の発光点3bが
所定の間隔で同一の素子上に配列されたレーザ素子であ
って、組立時には、それぞれの発光点を放射されたレー
ザビームAおよびBが、副走査方向に所定の間隔となる
よう、図示しないハウジングに固定される。As shown in FIG. 3, the semiconductor laser element 3 has a first light emitting point 3a for emitting a first laser beam A.
And a second light emitting point 3b for emitting the second laser beam B is a laser element arranged on the same element at a predetermined interval, and at the time of assembly, the laser beams A and B is fixed to a housing (not shown) so as to have a predetermined interval in the sub-scanning direction.
【0022】偏向前光学系5は、レーザ素子3の第1お
よび第2の発光点3a,3bのそれぞれを出射されたレ
ーザビームA,Bに所定の収束性を与える有限焦点レン
ズ11、有限焦点レンズ11の後ろ側焦点位置に配置さ
れ、有限焦点レンズ11により所定の収束性が与えられ
たレーザビームAおよびBのそれぞれの断面ビーム形状
を所定の形状に整える絞り13、絞り13を通過された
レーザビームA,Bのそれぞれに、副走査方向に対して
のみ、さらに所定の収束性を与えるシリンダレンズ15
からなり、各発光点3a,3bを出射された第1および
第2のレーザビームA,Bのそれぞれに所定の収束性お
よび断面ビーム形状を与えて、偏向装置7の反射面(多
面鏡7a)に案内する。なお、図2(a)に示されるよ
うに、それぞれのレーザビームA,Bは、主走査方向に
関して、実質的に重なり合っている。また、副走査方向
についても、半導体レーザ素子3を出射された時点で
は、2本であるが絞り13を通過した付近から、実質的
に1本のレーザビームとみなすことができる。The pre-deflection optical system 5 includes a finite focus lens 11 for giving predetermined convergence to the laser beams A and B emitted from the first and second light emitting points 3a and 3b of the laser element 3, and a finite focus lens. The laser beam A and the laser beam B, which are disposed at the focal position on the rear side of the lens 11 and have predetermined convergence by the finite focus lens 11, adjust the respective sectional beam shapes of the laser beams A and B into a predetermined shape. A cylinder lens 15 that gives a predetermined convergence to each of the laser beams A and B only in the sub-scanning direction.
The first and second laser beams A and B emitted from the respective light emitting points 3a and 3b are given predetermined convergence and a sectional beam shape, respectively, so that the reflecting surface of the deflecting device 7 (polyhedral mirror 7a) To guide. Note that, as shown in FIG. 2A, the laser beams A and B substantially overlap in the main scanning direction. Also, in the sub-scanning direction, when the laser beam is emitted from the semiconductor laser element 3, it can be regarded as a substantially single laser beam from the vicinity of the two passing through the aperture 13.
【0023】有限焦点レンズ11は、例えば非球面ガラ
スレンズもしくは球面ガラスレンズのレーザ入射面およ
び出射面の少なくとも一方の面に、例えばUV(Urt
ra−Violet=紫外線)硬化型の図示しないプラ
スチックレンズを貼り合わせた(または図示しないプラ
スチックレンズを一体成形した)レンズが利用される。The finite focus lens 11 is provided with, for example, UV (Urt) on at least one of the laser incidence surface and the emission surface of an aspherical glass lens or a spherical glass lens.
A lens in which a plastic lens (not shown) of a curable type is attached (or a plastic lens (not shown) is integrally molded) is used.
【0024】絞り13は、図3に示したように、有限焦
点レンズ9の後ろ側焦点位置に位置される。これによ
り、2つの発光点3a,3bのそれぞれから出射された
2本のレーザビームの光量の変動が最小に抑えられる。As shown in FIG. 3, the stop 13 is located at the rear focal position of the finite focus lens 9. Thereby, the fluctuation of the light amounts of the two laser beams emitted from each of the two light emitting points 3a and 3b is suppressed to a minimum.
【0025】シリンダレンズ15は、例えばPMMA
(ポリメチルメタクリル)等によって形成されたプラス
チックシリンダレンズ15pと例えばLAH78等によ
って形成されたガラスシリンダレンズ15gとが一体的
に設けられたもので、両レンズの接合面側のレンズ面の
曲率が実質的に同一に形成され、それぞれが、例えば接
着によって貼り合わせられている。なお、シリンダレン
ズ15は、有限レンズ11を保持する図示しない保持部
材と一体に形成された位置決め部により、有限焦点レン
ズ11と正確な間隔で固定される。The cylinder lens 15 is made of, for example, PMMA
A plastic cylinder lens 15p formed of (polymethyl methacryl) or the like and a glass cylinder lens 15g formed of, for example, LAH78 or the like are provided integrally, and the curvature of the lens surface on the joint surface side of both lenses is substantially Are formed in the same manner, and are bonded to each other by, for example, adhesion. The cylinder lens 15 is fixed at an accurate distance from the finite focus lens 11 by a positioning portion formed integrally with a holding member (not shown) that holds the finite lens 11.
【0026】また、プラスチックシリンダレンズ15p
の空気と接する面は、円筒面の一部に形成され、副走査
方向にパワーが与えられている。なお、シリンダレンズ
15は、ガラスシリンダレンズ15gとPMMAのシリ
ンダレンズ15pとが、図示しない位置決め部材に向け
て、所定の方向から押圧されることで、一体に形成され
てもよい。また、シリンダレンズ15は、ガラスシリン
ダレンズ15gの入射面に、プラスチックシリンダレン
ズ15pを一体に成型することによっても提供可能であ
る。The plastic cylinder lens 15p
The surface in contact with air is formed on a part of the cylindrical surface, and power is given in the sub-scanning direction. The cylinder lens 15 may be integrally formed by pressing the glass cylinder lens 15g and the PMMA cylinder lens 15p from a predetermined direction toward a positioning member (not shown). Further, the cylinder lens 15 can also be provided by molding a plastic cylinder lens 15p integrally with the incident surface of the glass cylinder lens 15g.
【0027】偏向装置7は、例えば6面の平面反射鏡
(面)が正多角形状に配置された多面鏡7aと、多面鏡
7aを主走査方向に沿って所定の速度で回転させるモー
タ7bとを有している。多面鏡7aは、例えばアルミニ
ウムにより形成される。また、多面鏡7aの各反射面
は、多面鏡7aが回転される方向を含む面すなわち主走
査方向と直交する面すなわちモータ7bの軸方向に平行
な副走査方向に沿って切り出されたのち、切断面に、例
えばSiO2 などの表面保護層兼高輝反射層が蒸着され
ることで提供される。The deflecting device 7 includes, for example, a polygon mirror 7a having six plane reflecting mirrors (surfaces) arranged in a regular polygonal shape, and a motor 7b for rotating the polygon mirror 7a at a predetermined speed in the main scanning direction. have. The polygon mirror 7a is formed of, for example, aluminum. Further, after each reflecting surface of the polygon mirror 7a is cut out along a plane including a direction in which the polygon mirror 7a is rotated, that is, a plane orthogonal to the main scanning direction, that is, a sub-scanning direction parallel to the axial direction of the motor 7b, For example, a surface protective layer such as SiO 2 and a high-brightness reflective layer are provided on the cut surface by vapor deposition.
【0028】偏向後光学系9は、周知のfθレンズに類
似した形状および特性が与えられた1枚のみの結像レン
ズ21と、レンズ21を通過されて所定の結像特性が与
えられたレーザビームLA,LBを以下に説明する画像
形成部51の感光体ドラムに向けて折り曲げる出射ミラ
ー23と、出射ミラー23と感光体ドラムの間に位置さ
れ、露光装置1を気密にする防塵ガラス25を含み、偏
向装置7により所定の速度で偏向されたレーザビームL
A,LBを、感光体ドラムの軸線方向に、等速度で結像
させる。The post-deflection optical system 9 includes only one imaging lens 21 having a shape and characteristics similar to a well-known fθ lens, and a laser which has passed through the lens 21 and has given imaging characteristics. An emission mirror 23 that bends the beams LA and LB toward the photosensitive drum of the image forming unit 51 described below, and a dust-proof glass 25 that is positioned between the emission mirror 23 and the photosensitive drum and hermetically seals the exposure device 1. And the laser beam L deflected at a predetermined speed by the deflector 7
A and LB are imaged at a constant speed in the axial direction of the photosensitive drum.
【0029】偏向後光学系のレンズ面形状は、The lens surface shape of the post-deflection optical system is as follows:
【数1】 (Equation 1)
【0030】で表される形状を有している。Has a shape represented by
【0031】なお、(A)式において、「amn」のm項
が奇数である場合は、主走査方向が非対称であることを
表すもので、これにより、偏向装置7の多面鏡7aの回
転により生じる偏向点が移動することの影響を補正する
ことができる。なお、最適化の結果、表1の実施例1に
示すように、「amn」のm項が全て「0」の際には、主
走査方向のデフォーカス量、副走査方向のデフォーカス
量、複数のレーザビームを用いる場合の副走査方向のレ
ーザビームの位置のずれに関して、特性の劣化がみられ
る。また、副走査方向断面を円弧形状からずらす働きを
持つ「amn」のn項が「0」以外である場合には、副走
査方向の集光状態が劣化し、レーザビームのビーム径を
小さく絞ることができないが、?この項?を入れること
により、レーザビームの最小ビーム径を、従来の露光装
置に比較して、小さなビーム径に絞ることができる。In the equation (A), when the m term of “a mn” is an odd number, it indicates that the main scanning direction is asymmetric, and thereby the rotation of the polygon mirror 7 a of the deflecting device 7 is performed. , The influence of the movement of the deflection point can be corrected. As a result of the optimization, as shown in Example 1 of Table 1, when the m terms of “a mn ” are all “0”, the defocus amount in the main scanning direction and the defocus amount in the sub scanning direction In the case where a plurality of laser beams are used, the characteristics are degraded with respect to the displacement of the laser beams in the sub-scanning direction. Further, when the n term of “a mn ” having a function of shifting the cross section in the sub-scanning direction from the arc shape is other than “0”, the focusing state in the sub-scanning direction is deteriorated, and the beam diameter of the laser beam is reduced. Can't squeeze, but? This section? , The minimum beam diameter of the laser beam can be reduced to a smaller beam diameter as compared with a conventional exposure apparatus.
【0032】また、結像レンズ21のレンズ面の形状を
(A)式に示されるように回転対称軸を持たない形状に
設定することで、複数のレーザビームの副走査方法の間
隔を全ての走査領域において一定に保つという条件で、
回転対称軸を持つトーリックレンズもしくは回転対称非
球面レンズでは結像レンズを1枚にしようとした際に、
波面収差を完全に除去できなかった従来の光学系に比較
して、最小ビーム径を、50μm程度まで絞ることがで
きることが、シミュレーションにより確認されている。Further, by setting the shape of the lens surface of the imaging lens 21 to a shape having no rotationally symmetric axis as shown in the equation (A), the intervals of the plurality of laser beams in the sub-scanning method can be reduced. Under the condition that it is kept constant in the scanning area,
In the case of a toric lens having a rotationally symmetric axis or a rotationally symmetric aspherical lens, when trying to use only one imaging lens,
It has been confirmed by simulation that the minimum beam diameter can be reduced to about 50 μm as compared with a conventional optical system in which the wavefront aberration cannot be completely removed.
【0033】再び、図1を参照すれば、画像形成部51
は、露光装置1の出射ミラー23により折り曲げられ、
防塵ガラス25を通過されたレーザビームLA,LBが
出射される位置に、円筒ドラム状で、矢印の方向に回転
可能に形成され、画像に対応する静電潜像が形成される
感光体ドラム53を有している。Referring again to FIG. 1, the image forming unit 51
Is bent by the emission mirror 23 of the exposure apparatus 1,
A photosensitive drum 53 is formed at a position where the laser beams LA and LB that have passed through the dustproof glass 25 are emitted, and is formed in a cylindrical drum shape so as to be rotatable in the direction of an arrow, and forms an electrostatic latent image corresponding to an image. have.
【0034】感光体ドラム53の周囲には、感光体ドラ
ム53の表面に所定の電位を提供する帯電装置55、感
光体ドラム53の表面に、露光装置1からのレーザビー
ムLA,LBが照射されて形成された静電潜像にトナー
を供給することで可視化する現像装置57、記録媒体す
なわち記録用紙Pを感光体ドラム53との間に介在させ
た状態で感光体ドラム53に対向され、図示しない搬送
機構により搬送される用紙Pに感光体ドラム53上のト
ナー像(トナー)を転写する転写装置59、転写装置5
9によりトナーが転写されたあとに感光体ドラム53上
に残った残存トナーを除去するクリーナ61、および転
写装置59によりトナー像が転写されたあとの感光体ド
ラム53上に残った残存電位を除去する除電装置63
が、感光体ドラム53の回転方向に沿って順に配置され
ている。Around the photosensitive drum 53, a charging device 55 for providing a predetermined potential to the surface of the photosensitive drum 53, and the surfaces of the photosensitive drum 53 are irradiated with laser beams LA and LB from the exposure device 1. A developing device 57 for visualizing the electrostatic latent image formed by supplying toner to the photosensitive drum 53 in a state where a recording medium, that is, a recording sheet P is interposed between the developing device 57 and the photosensitive drum 53, Transfer device 59 and transfer device 5 for transferring the toner image (toner) on the photosensitive drum 53 to the paper P conveyed by the conveyance mechanism that does not
9, a cleaner 61 for removing the residual toner remaining on the photosensitive drum 53 after the toner is transferred, and a residual potential remaining on the photosensitive drum 53 after the toner image is transferred by the transfer device 59. Static eliminator 63
Are sequentially arranged along the rotation direction of the photosensitive drum 53.
【0035】感光体ドラム53の下方には、画像形成部
51により形成された画像が転写されるための用紙Pを
収容する用紙カセット65が配置されている。なお、用
紙Pは、用紙カセット65の一端に設けられた断面形状
が概ね半円状の送り出しローラ67により最上部から1
枚ずつ取り出され、レジストローラ69により用紙Pの
先端と感光体ドラム53に形成される画像の先端とが整
合されて、所定のタイミングで、転写装置59と感光体
ドラム53との間の転写領域に、給送される。Below the photosensitive drum 53, a paper cassette 65 for accommodating paper P on which an image formed by the image forming section 51 is transferred is disposed. The sheet P is fed from the top by a delivery roller 67 provided at one end of the sheet cassette 65 and having a substantially semicircular cross section.
The leading edge of the sheet P and the leading edge of the image formed on the photosensitive drum 53 are aligned by the registration roller 69, and the transfer area between the transfer device 59 and the photosensitive drum 53 is determined at a predetermined timing. To be fed.
【0036】また、トナー(トナー像)が転写された用
紙Pは、搬送ベルト71により定着装置73に向けて搬
送され、定着装置71により、トナーが定着される。The paper P to which the toner (toner image) has been transferred is conveyed by a conveyance belt 71 to a fixing device 73, where the toner is fixed.
【0037】次に、結像レンズ21の光学(形状)特性
と、図2に示した露光装置1内でのレンズ21の位置関
係について説明する。Next, the optical (shape) characteristics of the imaging lens 21 and the positional relationship of the lens 21 in the exposure apparatus 1 shown in FIG. 2 will be described.
【0038】図4ないし図11に、Lを、偏向装置7の
多面鏡7aによりレーザビームLA,LBが偏向される
偏向点とそれぞれのレーザビームLA,LBが所定像面
の有効領域の中心を通るときの像面間の距離、L1 を、
偏向装置7の多面鏡7aによりレーザビームLA,LB
が偏向される偏向点と所定像面の有効領域中心を通るレ
ーザビームLA,LBが結像レンズ21へ入射する点と
の間の距離、L3 を、所定像面の有効領域中心を通るレ
ーザビームが結像レンズ21を出射する点と所定像面と
の間の距離、Fを、所定像面の有効領域中心を通る光線
が結像レンズ21と交わる近傍でのレンズの副走査方向
の近軸焦点距離、Φを、所定像面の有効領域の中心と有
効領域の端部との間でレーザビームLA,LBが偏向装
置7の多面鏡7aにより偏向される角度[rad]、W
を、所定像面の有効領域の中心と有効領域の端部との間
の距離、と、それぞれ定義し、各パラメータを最適化し
た場合に得られる光学特性、すなわち、偏向装置7の多
面鏡7aの各反射面が回転軸に対して非平行となる限度
量すなわち面倒れが1分である場合のレーザビームL
A,LBの副走査方向の結像位置のずれ量(1)、すな
わち F/L (C−1)、 副走査方向のデフォーカス(各レーザビームLA,LB
が最小ビーム径となる位置と像面Sとのずれ)量
(2)、すなわち L3 /L (C−2)、 主走査方向のデフォーカス(各レーザビームLA,LB
が最小ビーム径となる位置と像面Sとのずれ)量
(3)、すなわち L1 ×sinΦ/L (C−3)、 各レーザビームLA,LBが結像レンズを通る際に、像
面S上で最大どれだけ離れるかを示す主走査方向のレー
ザビームのばらつきの範囲(4)、すなわち L1 /L (C−4)、 各発光源から放射されるレーザビームLA,LBの波長
が100nm変動した場合のときの主走査方向の結像位
置のずれ量(5)、すなわち tan-1(W/L)/Φ (C−5)、 各レーザビームLA,LBに対する主走査方向のfθ特
性(6)、すなわち L1 ×L3 /L2 (C−6)、および レンズ21の透過率の偏差による影響(7)すなわち φ×(L/W)L3 (C−7) のそれぞれについてシミュレーションして得られた最適
化データを示す。なお、図4ないし図11は、実施例1
ないし62について、一連のデータを示すもので、全て
の実施例について、図4に示した条件が適用されるもの
である。また、図4ないし図11のそれぞれにおいて
は、偏向前光学系5の配置および近軸特性、同レンズ2
1を用いた場合に、像面においてレーザビームLA,L
B相互の間隔を3ドットとすることのできる第1の発光
点3aおよび第2の発光点3bの副走査方向の距離も、
同時に示している。FIGS. 4 to 11 denote L as the deflection point at which the laser beams LA and LB are deflected by the polygon mirror 7a of the deflecting device 7, and the center of the effective area of the predetermined image plane where the laser beams LA and LB are located. the distance between the image plane when passing through, the L 1,
Laser beams LA and LB by polygon mirror 7a of deflecting device 7
Laser but through laser beam LA through the effective area center point of deflection and a predetermined image surface to be deflected, the distance between the point where LB is incident to the imaging lens 21, an L 3, the effective area center of a predetermined image surface The distance between the point at which the beam exits the imaging lens 21 and the predetermined image plane, F, is the distance in the sub-scanning direction of the lens near the point where a ray passing through the center of the effective area of the predetermined image plane intersects the imaging lens 21. The axial focal length, Φ, is defined as the angle [rad], W, at which the laser beams LA, LB are deflected by the polygon mirror 7a of the deflecting device 7 between the center of the effective area of the predetermined image plane and the end of the effective area.
Is defined as the distance between the center of the effective area of the predetermined image plane and the end of the effective area, and the optical characteristics obtained when each parameter is optimized, that is, the polygon mirror 7a of the deflecting device 7 Laser beam L in the case where each of the reflecting surfaces is non-parallel to the rotation axis, that is, the surface tilt is 1 minute.
A, LB, the amount of deviation of the imaging position in the sub-scanning direction (1), ie, F / L (C-1), defocus in the sub-scanning direction (each laser beam LA, LB
Is the difference between the position at which is the minimum beam diameter and the image plane S) (2), that is, L 3 / L (C-2), the defocus in the main scanning direction (the laser beams LA and LB).
(3), ie, L 1 × sin Φ / L (C-3), when each of the laser beams LA and LB passes through the imaging lens. The range (4) of the variation of the laser beam in the main scanning direction indicating the maximum distance on S, that is, L 1 / L (C-4), and the wavelengths of the laser beams LA and LB emitted from each light emitting source are The shift amount (5) of the imaging position in the main scanning direction when it fluctuates by 100 nm, that is, tan -1 (W / L) / Φ (C-5), and fθ in the main scanning direction with respect to each of the laser beams LA and LB. Characteristic (6), that is, L 1 × L 3 / L 2 (C-6) and the effect (7) due to the deviation of the transmittance of the lens 21, that is, optimization data obtained by simulation for each of φ × (L / W) L 3 (C-7) are shown. 4 to 11 show the first embodiment.
A series of data are shown for Nos. 62 through 62, and the conditions shown in FIG. 4 are applied to all the examples. 4 to 11, the arrangement and paraxial characteristics of the pre-deflection optical system 5, the lens 2
1, the laser beams LA, L on the image plane
The distance in the sub-scanning direction between the first light-emitting point 3a and the second light-emitting point 3b that can set the distance between B to 3 dots is also
It is shown at the same time.
【0039】図12ないし図19は、図4ないし図11
に示した光学特性において、条件式(C−1)ないし
(C−7)と対応するそれぞれの条件の相関の程度、す
なわち各条件式の有意性を評価するためのグラフであ
る。FIGS. 12 to 19 correspond to FIGS.
6 is a graph for evaluating the degree of correlation between the conditional expressions (C-1) to (C-7) and the significance of each conditional expression in the optical characteristics shown in FIG.
【0040】図12は、面倒れが1分である場合の各レ
ーザビームの結像位置のずれ量と条件式(C−1)との
関係を示すグラフであり、F/Lと同ずれ量との間に
は、強い相関が認められる。なお、実際の製造面の結像
レンズ21、図示しないハウジングおよび半導体レーザ
素子3等の個体誤差等を考慮して、同ずれ量を3μm以
下にするためには、 F/L≦0.25 (B−1) を満足するようF/Lを設定する必要がある。FIG. 12 is a graph showing the relationship between the deviation amount of the imaging position of each laser beam and the conditional expression (C-1) when the surface tilt is 1 minute, and the same deviation amount as F / L. And a strong correlation is observed between In addition, in order to reduce the amount of deviation to 3 μm or less in consideration of individual errors of the imaging lens 21, the housing (not shown), the semiconductor laser element 3, and the like on the actual manufacturing surface, F / L ≦ 0.25 ( It is necessary to set F / L so as to satisfy B-1).
【0041】図13は、副走査方向のデフォーカス(各
レーザビームLA,LBが最小ビーム径となる位置と像
面Sとのずれ)量と条件式(C−2)との関係を示すグ
ラフであり、L3 /Lと副走査方向のデフォーカス量と
の間には、強い相関が認められる。なお、実際の製造面
の結像レンズ21、図示しないハウジングおよび半導体
レーザ素子3等の個体誤差等を考慮して、同デフォーカ
ス量を2mm以下にするためには、 0.35 ≦ L3 /L ≦ 0.65 (B−2) を満足するよう、L3 /Lを設定することが必要であ
る。FIG. 13 is a graph showing the relationship between the amount of defocus in the sub-scanning direction (deviation between the position where each of the laser beams LA and LB has the minimum beam diameter and the image plane S) and the conditional expression (C-2). And a strong correlation is recognized between L 3 / L and the defocus amount in the sub-scanning direction. In order to reduce the defocus amount to 2 mm or less in consideration of an individual error of the imaging lens 21, the housing (not shown), the semiconductor laser element 3 and the like on the actual manufacturing surface, 0.35 ≦ L 3 / It is necessary to set L 3 / L so as to satisfy L ≦ 0.65 (B-2).
【0042】図14は、主走査方向のデフォーカス(各
レーザビームLA,LBが最小ビーム径となる位置と像
面Sとのずれ)量と条件式(C−3)との関係を示すグ
ラフであり、L1 ×sinΦ/Lと主走査方向のデフォ
ーカス量との間には、強い相関が認められる。なお、実
際の製造面の結像レンズ21、図示しないハウジングお
よび半導体レーザ素子3等の個体誤差等を考慮して、主
走査方向デフォーカス量2mm以下にするためには、 0.15 ≦ L1 ×sinΦ/L ≦ 0.27 (B−3) を満足するようL1 ×sinΦ/Lを設定することが必
要である。FIG. 14 is a graph showing the relationship between the amount of defocus in the main scanning direction (the deviation between the position where each of the laser beams LA and LB has the minimum beam diameter and the image plane S) and the conditional expression (C-3). And a strong correlation is recognized between L 1 × sin Φ / L and the defocus amount in the main scanning direction. In order to reduce the defocus amount in the main scanning direction to 2 mm or less in consideration of the individual error of the imaging lens 21, the housing (not shown), the semiconductor laser element 3 and the like on the actual manufacturing surface, 0.15 ≦ L 1 It is necessary to set L 1 × sin φ / L so as to satisfy × sin φ / L ≦ 0.27 (B-3).
【0043】図15は、結像レンズを通る全てのレーザ
ビームが、像面S上で最大どれだけ離れるかを示す主走
査方向のレーザビームのばらつきの範囲と条件式(C−
4)との関係を示すグラフであり、L1 /Lと同ばらつ
きとの間には、強い相関が認められる。なお、実際の製
造面の結像レンズ21、図示しないハウジングおよび半
導体レーザ素子3等の個体誤差等を考慮して、同ばらつ
きの範囲を20μm以下にするためには、 0.3 ≦ L1 /L ≦ 0.65 (B−4) を満足するよう、L1 /Lを設定する必要である。FIG. 15 is a graph showing the range of variation of the laser beam in the main scanning direction and the conditional expression (C−C) indicating the maximum distance of all the laser beams passing through the imaging lens on the image plane S.
4 is a graph showing the relationship with 4), and a strong correlation is observed between L 1 / L and the same variation. Incidentally, the actual imaging of manufacturing surface lens 21, taking into account the individual error of 3 such housing and a semiconductor laser device not shown, to the extent of the variation in 20μm or less, 0.3 ≦ L 1 / It is necessary to set L 1 / L so as to satisfy L ≦ 0.65 (B-4).
【0044】図16は、条件式(C−4)と副走査方向
のレーザビーム相互の間隔の中心値を42.3μmとし
た際の走査範囲内全域での副走査方向の各レーザビーム
相互の間隔の変動量を示すグラフである。図16によれ
ば、L1 /Lは、副走査方向の各レーザビームの間隔の
変動量に対しても図15に示したばらつきに類似した相
関を示す。なお、図16に示したばらつきの範囲が20
μm以下となる場合、すなわち式(B−4)を満足する
範囲では、同副走査方向のレーザビーム相互の間隔のず
れは、3μm以下である。FIG. 16 shows the relationship between the laser beam in the sub-scanning direction over the entire scanning range when the center value of the interval between the laser beams in the sub-scanning direction is set to 42.3 μm. It is a graph which shows the fluctuation amount of an interval. According to FIG. 16, L 1 / L shows a correlation similar to the variation shown in FIG. 15 with respect to the variation of the interval between the laser beams in the sub-scanning direction. The range of variation shown in FIG.
When the distance is equal to or less than μm, that is, in a range satisfying the expression (B-4), the deviation of the interval between the laser beams in the sub-scanning direction is 3 μm or less.
【0045】図17は、半導体レーザ素子3の発光源3
a,3bのそれぞれから放射されるレーザビームLA,
LBの波長が100nm変動した場合のときの主走査方
向の結像位置のずれ量と条件式(C−5)との関係を示
すグラフであり、主走査方向位置ずれ量と、tan
-1(W/L)/Φとの間に、強い相関が認められる。FIG. 17 shows the light emitting source 3 of the semiconductor laser device 3.
a, laser beam LA emitted from each of 3b
10 is a graph showing the relationship between the amount of deviation of the imaging position in the main scanning direction and the conditional expression (C-5) when the wavelength of LB fluctuates by 100 nm.
-1 (W / L) / Φ has a strong correlation.
【0046】ところで、半導体レーザ素子は、発光点
(パッケージおよびマウントを含む)の温度が変化する
と放射するレーザビームの発光波長が変動するとともに
モードホッピング現象により、任意の温度において、例
えば0.1°C程度の温度変化に対して発光波長が3n
m程度変動することが知られている。このため、半導体
レーザ素子の各発光点から放射されるレーザビームの発
光波長のみならず、任意に用いられる半導体レーザ素子
から放射される全ての波長を均一にすることは、困難で
ある。従って、ある条件下で発光波長を一致できたとし
ても、温度条件を含む全ての条件においては、発光波長
にばらつきが生じることになる。By the way, when the temperature of the light emitting point (including the package and the mount) changes, the light emitting wavelength of the emitted laser beam fluctuates, and the mode hopping phenomenon causes the semiconductor laser element to emit 0.1 ° at an arbitrary temperature. 3n emission wavelength for temperature change of about C
It is known to fluctuate by about m. For this reason, it is difficult to make not only the emission wavelength of the laser beam emitted from each emission point of the semiconductor laser element, but also all the wavelengths emitted from the arbitrarily used semiconductor laser element uniform. Therefore, even if the emission wavelengths can be matched under a certain condition, the emission wavelength varies under all conditions including the temperature condition.
【0047】なお、用紙P上でレーザビーム相互の副走
査方向のずれを識別できない許容値は、15μm以下で
あることから、発光波長の変動量を3nm程度に抑える
ことで、モードホッピングにより発光波長が変動して
も、用紙P上で識別しにくくなることになる。このこと
から、図17において、主走査方向の位置ずれ量を0.
5mm以下にできる条件を、条件式(C−5)に当ては
めると、一般的な半導体レーザで生じることのあるモー
ドホッピングの大きさが3nmとすると、主走査方向位
置ずれ量は、図17に示したずれ量の約3/100であ
り、3nmの波長変動が生じた場合であっても、用紙上
でのずれ量を15μm以下とするためには、100nm
の波長変動(図17の条件)において、0.5mm以下
となるよう、範囲を特定すればよいことになる。Note that the allowable value at which the deviation of the laser beams in the sub-scanning direction on the sheet P cannot be identified is 15 μm or less. Therefore, by suppressing the variation of the emission wavelength to about 3 nm, the emission wavelength is reduced by mode hopping. Fluctuates, it becomes difficult to identify on the paper P. For this reason, in FIG. 17, the position shift amount in the main scanning direction is set to 0.
If the condition that can be made 5 mm or less is applied to the conditional expression (C-5), assuming that the mode hopping that may occur in a general semiconductor laser is 3 nm, the amount of positional deviation in the main scanning direction is shown in FIG. It is about 3/100 of the shift amount, and even if a wavelength variation of 3 nm occurs, 100 nm is required to reduce the shift amount on the paper to 15 μm or less.
In this case, the range may be specified so as to be 0.5 mm or less in the wavelength variation (the condition in FIG. 17).
【0048】従って、 0.8 ≦ tan-1(W/L)Φ ≦ 1.3 (B−5) を満たすよう、(W/L)Φを設定すればよいことにな
る。Therefore, it is only necessary to set (W / L) Φ so as to satisfy 0.8 ≦ tan −1 (W / L) Φ ≦ 1.3 (B-5).
【0049】図18は、fθ特性と条件式(C−6)と
の関係を示すグラフであり、fθ特性とL1 ×L3 /L
2 との間には、強い相関が認められる。なお、実際の製
造面の結像レンズ21、図示しないハウジングおよび半
導体レーザ素子3等の個体誤差等を考慮して、同特性の
変化量の最大値を0.4%程度に抑えるためには、 0.17 ≦ L1 ×L3 /L2 ≦ 0.23 (B−6) を満足するよう、L1 ×L3 /L2 を設定する必要であ
る。FIG. 18 is a graph showing the relationship between the fθ characteristic and the conditional expression (C-6). The fθ characteristic and L 1 × L 3 / L
There is a strong correlation between the two . In order to suppress the maximum value of the variation of the characteristics to about 0.4% in consideration of individual errors of the imaging lens 21, the housing (not shown), the semiconductor laser element 3 and the like on the actual manufacturing surface, 0.17 ≦ L 1 × L 3 / L 2 ≦ 0.23 to meet the (B-6), it is necessary to set the L 1 × L 3 / L 2 .
【0050】図19は、レンズ21の透過率の偏差によ
る影響と条件式(C−7)との関係を示すグラフであ
り、透過率の偏差(ばらつき)とφ×(L/W)/L3
との間には、強い相関があることが認められる。なお、
実際の製造面の結像レンズ21、図示しないハウジング
および半導体レーザ素子3等の個体誤差等を考慮して、
透過率の偏差(ばらつき)を10%以下とするために
は、 φ×(L/W)/L3 ≦0.009 (B−7) とすることが好ましい。FIG. 19 is a graph showing the relationship between the influence of the deviation of the transmittance of the lens 21 and the conditional expression (C-7). The deviation (variation) of the transmittance and φ × (L / W) / L Three
It is recognized that there is a strong correlation between In addition,
In consideration of individual errors of the imaging lens 21, the housing (not shown), the semiconductor laser element 3 and the like on the actual manufacturing surface,
In order to make the deviation (variation) of the transmittance 10% or less, it is preferable that φ × (L / W) / L 3 ≦ 0.009 (B-7).
【0051】なお、上述した図12ないし図19におい
て、×印で示されているデータは、図4ないし図11に
示した実施例1ないし実施例62のうちの実施例1すな
わち(A)式において、「a mn」のm項が全て「0」の
場合を示しており、図12〜図19を用いて設定した上
記最適化条件すなわち(B−1)ないし(B−7)を満
足するよう図4に示した多くのパラメータを変更した例
である実施例2ないし実施例25に比較して、主走査方
向のデフォーカス量、副走査方向のデフォーカス量、複
数のレーザビームを用いる場合の副走査方向のレーザビ
ームの位置のずれに関して、特性の劣化がみられる。In FIGS. 12 to 19 described above, the data indicated by crosses is the data of the embodiment 1 of the embodiments 1 to 62 shown in FIGS. Shows a case where all the m terms of “a mn ” are “0”, and satisfies the above-mentioned optimization conditions set using FIGS. 12 to 19, ie, (B-1) to (B-7). As compared with Embodiments 2 to 25 which are examples in which many parameters shown in FIG. 4 are changed, a case where a defocus amount in the main scanning direction, a defocus amount in the sub-scanning direction, and a plurality of laser beams are used. Regarding the deviation of the position of the laser beam in the sub-scanning direction, the characteristics are deteriorated.
【0052】従って、結像レンズ21のレンズ面の形状
を(A)式に示されるように回転対称軸を持たない形状
に設定し、Lを、偏向装置7の多面鏡7aによりレーザ
ビームLA,LBが偏向される偏向点とそれぞれのレー
ザビームLA,LBが所定像面の有効領域の中心を通る
ときの像面間の距離、L1 を、偏向装置7の多面鏡7a
によりレーザビームLA,LBが偏向される偏向点と所
定像面の有効領域中心を通るレーザビームLA,LBが
結像レンズ21へ入射する点との間の距離、L3 を、所
定像面の有効領域中心を通るレーザビームが結像レンズ
21を出射する点と所定像面との間の距離、Fを、所定
像面の有効領域中心を通る光線が結像レンズ21と交わ
る近傍でのレンズの副走査方向の近軸焦点距離、Φを、
所定像面の有効領域の中心と有効領域の端部との間でレ
ーザビームLA,LBが偏向装置7の多面鏡7aにより
偏向される角度[rad]、Wを、所定像面の有効領域
の中心と有効領域の端部との間の距離、と、それぞれ定
義し、条件式(C−1)に基づいて、面倒れを1分とし
た時に各レーザビームが結像される位置のずれ量を3μ
m以下とするよう、F/Lの範囲を F/L≦0.25 に、条件式(C−2)に基づいて、副走査方向のデフォ
ーカス量を2mm以下とするよう、L3 /Lの範囲を 0.35 ≦ L3 /L ≦ 0.65 に、条件式(C−3)に基づいて、主走査方向のデフォ
ーカス量を2mm以下とするよう、L1 ×sinΦ/L
の範囲を 0.15 ≦ L1 ×sinΦ/L ≦ 0.27 に、条件式(C−4)に基づいて、主走査方向におい
て、各レーザビームLA,LBが結像レンズ21を通る
際に、像面S上で最大どれだけ離れるかを示すばらつき
の範囲を20μm以下とするよう、L1 /Lの範囲を 0.3 ≦ L1 /L ≦ 0.65 に、条件式(C−5)に基づいて、モードホッピングが
3nmである場合に用紙P上での主走査方向の結像位置
のずれを15μm以下とするよう、tan-1(W/L)
Φの範囲を 0.8 ≦ tan-1(W/L)Φ ≦ 1.3 に、条件式(C−6)に基づいて、fθ特性の変化量の
最大値を0.4%以下とするよう、L1 ×L3 /L2 の
範囲を 0.17 ≦ L1 ×L3 /L2 ≦ 0.23 に、および条件式(C−7)に基づいて、透過率の偏差
(ばらつき)を10%以下とするよう、φ×(L/W)
/L3 の範囲を φ×(L/W)/L3 ≦ 0.009 に、それぞれ設定することで、結像レンズ21を1枚の
みとし、最小ビーム径を、50μm程度まで絞ることが
できる。Therefore, the shape of the lens surface of the imaging lens 21 is set to a shape having no axis of rotational symmetry as shown in the equation (A), and L is changed by the polygon mirror 7a of the deflecting device 7 to the laser beam LA, L. LB is the respective laser beams LA and deflection point being deflected, the distance between the image plane when the LB passes through the center of the effective region of the predetermined image plane, the L 1, polygon mirror 7a of the deflection device 7
The laser beam LA, a laser beam LA through the effective area center of the deflection point and the predetermined image plane LB is deflected, the distance between the point where LB is incident to the imaging lens 21, an L 3, a predetermined image surface The distance between the point at which the laser beam passing through the center of the effective area exits the imaging lens 21 and the predetermined image plane, F, is a lens in the vicinity where the light beam passing through the center of the effective area of the predetermined image plane intersects the imaging lens 21. , The paraxial focal length in the sub-scanning direction
The angle [rad] and W at which the laser beams LA and LB are deflected by the polygon mirror 7a of the deflecting device 7 between the center of the effective area of the predetermined image plane and the end of the effective area are determined by the values of the effective area of the predetermined image plane. The distance between the center and the end of the effective area, respectively, is defined, and based on conditional expression (C-1), the amount of displacement of the position where each laser beam is imaged when the surface tilt is 1 minute 3μ
m, the range of F / L is set to F / L ≦ 0.25, and based on conditional expression (C-2), L 3 / L is set so that the defocus amount in the sub-scanning direction is set to 2 mm or less. Is set to 0.35 ≦ L 3 /L≦0.65, and L 1 × sin Φ / L is set so that the defocus amount in the main scanning direction is set to 2 mm or less based on the conditional expression (C-3).
Is set to 0.15 ≦ L 1 × sinΦ / L ≦ 0.27, and based on the conditional expression (C-4), when the laser beams LA and LB pass through the imaging lens 21 in the main scanning direction. The range of L 1 / L is set to 0.3 ≦ L 1 /L≦0.65, and the conditional expression (C-5) is set so that the range of the maximum deviation on the image plane S is 20 μm or less. ) Based on tan -1 (W / L) such that when the mode hopping is 3 nm, the deviation of the imaging position in the main scanning direction on the paper P is 15 μm or less.
The range of Φ is set to 0.8 ≦ tan −1 (W / L) Φ ≦ 1.3, and the maximum value of the change amount of the fθ characteristic is set to 0.4% or less based on the conditional expression (C-6). Thus, based on the range of L 1 × L 3 / L 2 as 0.17 ≦ L 1 × L 3 / L 2 ≦ 0.23 and based on the conditional expression (C-7), the deviation (variation) of the transmittance is obtained. Φ (L / W) so that is not more than 10%.
By setting the range of / L 3 to φ × (L / W) / L 3 ≦ 0.009, only one imaging lens 21 can be used and the minimum beam diameter can be reduced to about 50 μm. .
【0053】図20ないし図32は、(A)式に示した
「a mn」のm項を全て「0」とせず、すなわちm項に奇
数項を含ませた図4ないし図11の実施例2ないし実施
例25のそれぞれの結像レンズ21の入射面および出射
面の形状を、数値データにより示したものである。FIGS. 20 to 32 show the embodiments of FIGS. 4 to 11 in which all the m terms of "a mn" shown in equation (A) are not set to "0", that is, m terms include odd terms. The shape of the entrance surface and the exit surface of each of the imaging lenses 21 of Examples 2 to 25 is shown by numerical data.
【0054】上述した、実施例2ないし実施例25は、
面倒れを1分とした時の各レーザビームの結像位置のず
れ量を3μm以下に、副走査方向のデフォーカス量を2
mm以下に、主走査方向のデフォーカス量を2mm以下
に、レーザビームが結像レンズ21を通る際の主走査方
向の像面S上の通過位置のばらつきの範囲を20μm以
下に、半導体レーザ素子に3nmのモードホッピングが
生じた場合でも用紙P上での主走査方向の結像位置のず
れを15μm以下に、fθ特性の変化量の最大値を0.
4%以下に、かつ透過率の偏差(ばらつき)を10%以
下に設定可能な1枚のみの結像レンズ21を提供でき
る。なお、図4ないし図11に示した実施例26ないし
実施例62のレンズ面の形状に関する詳細な説明は省略
する。Embodiments 2 to 25 described above are:
The amount of deviation of the imaging position of each laser beam when the surface tilt is 1 minute is 3 μm or less, and the amount of defocus in the sub-scanning direction is 2 μm.
mm or less, the defocus amount in the main scanning direction is 2 mm or less, and the variation range of the passing position on the image plane S in the main scanning direction when the laser beam passes through the imaging lens 21 is 20 μm or less. Even when 3 nm mode hopping occurs, the deviation of the imaging position in the main scanning direction on the paper P is set to 15 μm or less, and the maximum value of the change amount of the fθ characteristic is set to 0.
It is possible to provide only one imaging lens 21 that can be set to 4% or less and the transmittance deviation (variation) to 10% or less. The detailed description of the shape of the lens surface in Examples 26 to 62 shown in FIGS. 4 to 11 is omitted.
【0055】図33は、図2に示した露光装置1におい
て、偏向前光学系5の光源3を複数の半導体レーザ素子
103aおよび103bにより構成した例を示す概略図
である。なお、この場合、有限焦点レンズ111a,1
11bと、両レンズにより所定の収束性が与えられた第
1および第2のレーザビームLA,LBを合成するハー
フミラー117により、図2に示したと同様の露光装置
を提供可能である。FIG. 33 is a schematic diagram showing an example in which the light source 3 of the pre-deflection optical system 5 is constituted by a plurality of semiconductor laser elements 103a and 103b in the exposure apparatus 1 shown in FIG. In this case, the finite focus lenses 111a, 111
An exposure apparatus similar to that shown in FIG. 2 can be provided by the half mirror 117 that combines the first and second laser beams LA and LB having predetermined convergence by both lenses.
【0056】図33に示す例では、半導体レーザ素子1
03a,103bに、汎用のコストの低いレーザ素子を
使用可能であり、しかも一方のレーザ素子の発光が停止
した場合もしくはモードホッピングの程度が大きな場合
等において、該当するレーザ素子のみを交換可能とする
ことから、露光装置全体のコストを低減できる。In the example shown in FIG.
A general-purpose low-cost laser element can be used for 03a and 103b, and when one of the laser elements stops emitting light or the degree of mode hopping is large, only the corresponding laser element can be replaced. Therefore, the cost of the entire exposure apparatus can be reduced.
【0057】[0057]
【発明の効果】以上説明したように、この発明の露光装
置によれば、1枚の結像レンズのみにより、偏向装置で
所定の速度で偏向された複数のレーザビームを、感光体
ドラムの軸線方向に等速度で結像させることができる。As described above, according to the exposure apparatus of the present invention, a plurality of laser beams deflected at a predetermined speed by a deflecting device by only one imaging lens are applied to the axis of the photosensitive drum. An image can be formed at a constant speed in the direction.
【0058】また、結像レンズは、The imaging lens is
【数2】 (Equation 2)
【0059】で表される光入射面および光出射面を除い
た任意の一面が、前記光入射面および前記光出射面のそ
れぞれと交わる交線が非対称となる対称面に形成された
回転対称軸を持たないレンズであって、1枚のみである
にも拘わらず、主走査方向のデフォーカス量、副走査方
向のデフォーカス量、複数のレーザビームを用いる場合
の副走査方向のレーザビームの位置のずれのそれぞれを
所定の範囲内に設定し、しかも、像面における最小ビー
ム径を50μm程度に収束できる。An arbitrary surface excluding the light incident surface and the light emitting surface represented by the following expression is a rotationally symmetric axis formed on a symmetrical surface where the line of intersection intersecting each of the light incident surface and the light emitting surface is asymmetric. Defocus amount in the main scanning direction, defocus amount in the sub-scanning direction, and position of the laser beam in the sub-scanning direction when a plurality of laser beams are used, even though there is only one lens. Can be set within a predetermined range, and the minimum beam diameter on the image plane can be converged to about 50 μm.
【0060】従って、低いコストで、高速、小型で、画
質の高い露光装置を提供できる。Therefore, it is possible to provide a low-cost, high-speed, small-size and high-quality exposure apparatus.
【図1】この発明の実施の形態である露光装置が組み込
まれる画像形成装置を示す概略図。FIG. 1 is a schematic diagram showing an image forming apparatus in which an exposure apparatus according to an embodiment of the present invention is incorporated.
【図2】図1に示した画像形成装置に組み込まれる露光
装置の光学部材の配置の一例を示す概略図。FIG. 2 is a schematic diagram showing an example of an arrangement of optical members of an exposure device incorporated in the image forming apparatus shown in FIG.
【図3】図2に示した露光装置に組み込まれる半導体レ
ーザ素子(光源)を示す概略図。FIG. 3 is a schematic diagram showing a semiconductor laser element (light source) incorporated in the exposure apparatus shown in FIG.
【図4】図2に示した結像レンズ21の実施の形態を示
すデータテーブル。FIG. 4 is a data table showing an embodiment of the imaging lens 21 shown in FIG.
【図5】図4に示したデータテーブルに引き続く図2の
結像レンズ21の実施の形態を示すデータテーブル。5 is a data table showing an embodiment of the imaging lens 21 of FIG. 2 subsequent to the data table shown in FIG. 4;
【図6】図5に示したデータテーブルに引き続く図2の
結像レンズ21の実施の形態を示すデータテーブル。FIG. 6 is a data table showing an embodiment of the imaging lens 21 of FIG. 2 subsequent to the data table shown in FIG. 5;
【図7】図6に示したデータテーブルに引き続く図2の
結像レンズ21の実施の形態を示すデータテーブル。FIG. 7 is a data table showing an embodiment of the imaging lens 21 of FIG. 2 subsequent to the data table shown in FIG. 6;
【図8】図7に示したデータテーブルに引き続く図2の
結像レンズ21の実施の形態を示すデータテーブル。8 is a data table showing an embodiment of the imaging lens 21 of FIG. 2 subsequent to the data table shown in FIG. 7;
【図9】図8に示したデータテーブルに引き続く図2の
結像レンズ21の実施の形態を示すデータテーブル。9 is a data table showing an embodiment of the imaging lens 21 of FIG. 2 subsequent to the data table shown in FIG. 8;
【図10】図9に示したデータテーブルに引き続く図2
の結像レンズ21の実施の形態を示すデータテーブル。FIG. 10 is a view following FIG. 2 following the data table shown in FIG. 9;
9 is a data table showing an embodiment of the imaging lens 21 of FIG.
【図11】図10に示したデータテーブルに引き続く図
2の結像レンズ21の実施の形態を示すデータテーブ
ル。11 is a data table showing an embodiment of the imaging lens 21 of FIG. 2 subsequent to the data table shown in FIG. 10;
【図12】図4ないし図11に示した結像レンズにおい
て、偏向装置7の多面鏡7aの各反射面が回転軸に対し
て非平行となる限度量すなわち面倒れが1分である場合
のレーザビームLA,LBの副走査方向の結像位置のず
れ量とその最適化条件(C−1)との関係を示すグラ
フ。FIG. 12 shows a case where each of the reflecting surfaces of the polygon mirror 7a of the deflecting device 7 is non-parallel to the rotation axis, that is, the surface tilt is one minute in the imaging lens shown in FIGS. 9 is a graph showing the relationship between the amount of deviation of the imaging position of the laser beams LA and LB in the sub-scanning direction and the optimization condition (C-1).
【図13】図4ないし図11に示した結像レンズにおい
て、副走査方向のデフォーカス(各レーザビームLA,
LBが最小ビーム径となる位置と像面Sとのずれ)量と
その最適化条件(C−2)との関係を示すグラフ。FIG. 13 shows the defocusing in the sub-scanning direction (each laser beam LA,
9 is a graph showing a relationship between a position where LB is a minimum beam diameter and a shift amount between the image plane S and an optimization condition (C-2).
【図14】図4ないし図11に示した結像レンズにおい
て、主走査方向のデフォーカス(各レーザビームLA,
LBが最小ビーム径となる位置と像面Sとのずれ)量と
その最適化条件(C−3)との関係を示すグラフ。FIG. 14 shows a defocusing in the main scanning direction (each laser beam LA,
9 is a graph showing a relationship between a position where LB is a minimum beam diameter and a shift amount between the image plane S and the optimization condition (C-3).
【図15】図4ないし図11に示した結像レンズにおい
て、各レーザビームLA,LBが結像レンズを通る際
に、像面S上で最大どれだけ離れるかを示す主走査方向
のレーザビームのばらつきの範囲とその最適化条件(C
−4)との関係を示すグラフ。FIG. 15 shows a laser beam in the main scanning direction indicating the maximum distance on the image plane S when each of the laser beams LA and LB passes through the imaging lens in the imaging lens shown in FIGS. 4 to 11; Range and its optimization conditions (C
4) is a graph showing the relationship with 4).
【図16】図4ないし図11に示した結像レンズにおい
て、図15から得られた最適化条件に対応する副走査方
向のレーザビーム相互の間隔の変動量を、中心値を4
2.3μmとして走査範囲内全域について求めたグラ
フ。16 is a graph showing the variation of the interval between laser beams in the sub-scanning direction corresponding to the optimization condition obtained from FIG. 15 in the imaging lens shown in FIGS.
The graph calculated | required about the whole area within a scanning range as 2.3 micrometers.
【図17】図4ないし図11に示した結像レンズにおい
て、各発光源から放射されるレーザビームLA,LBの
波長が100nm変動した場合のときの主走査方向の結
像位置のずれ量とその最適化条件(C−5)との関係を
示すグラフ。FIG. 17 shows the amount of deviation of the imaging position in the main scanning direction when the wavelengths of the laser beams LA and LB emitted from each light emitting source fluctuate by 100 nm in the imaging lens shown in FIGS. The graph which shows the relationship with the optimization condition (C-5).
【図18】図4ないし図11に示した結像レンズにおい
て、各レーザビームLA,LBに対する主走査方向のf
θ特性とその最適化条件(C−6)との関係を示すグラ
フ。FIG. 18 is a graph showing the relationship between the laser beams LA and LB in the main scanning direction in the imaging lens shown in FIGS. 4 to 11;
7 is a graph showing the relationship between θ characteristics and its optimization condition (C-6).
【図19】図4ないし図11に示した結像レンズにおい
て、レンズ21の透過率の偏差による影響とその最適化
条件(C−7)との関係を示すグラフ。19 is a graph showing the relationship between the influence of the deviation of the transmittance of the lens 21 and the optimization condition (C-7) in the imaging lens shown in FIGS. 4 to 11. FIG.
【図20】図12ないし図19により得られた最適化条
件を図4ないし図11に示した結像レンズの実施例2お
よび実施例3に適用した場合に得られるレンズ面の形状
を示すデータテーブル。FIG. 20 is a diagram showing lens surface shapes obtained when the optimization conditions obtained from FIGS. 12 to 19 are applied to Embodiments 2 and 3 of the imaging lens shown in FIGS. 4 to 11. table.
【図21】図12ないし図19により得られた最適化条
件を図4ないし図11に示した結像レンズの実施例4お
よび実施例5に適用した場合に得られるレンズ面の形状
を示すデータテーブル。FIG. 21 is a diagram showing lens surface shapes obtained when the optimization conditions obtained from FIGS. 12 to 19 are applied to Embodiments 4 and 5 of the imaging lens shown in FIGS. 4 to 11; table.
【図22】図12ないし図19により得られた最適化条
件を図4ないし図11に示した結像レンズの実施例6お
よび実施例7に適用した場合に得られるレンズ面の形状
を示すデータテーブル。FIG. 22 is a diagram showing data indicating lens surface shapes obtained when the optimization conditions obtained from FIGS. 12 to 19 are applied to Embodiments 6 and 7 of the imaging lens shown in FIGS. 4 to 11. table.
【図23】図12ないし図19により得られた最適化条
件を図4ないし図11に示した結像レンズの実施例8お
よび実施例9に適用した場合に得られるレンズ面の形状
を示すデータテーブル。FIG. 23 is a diagram showing lens surface shapes obtained when the optimization conditions obtained from FIGS. 12 to 19 are applied to Embodiments 8 and 9 of the imaging lens shown in FIGS. 4 to 11; table.
【図24】図12ないし図19により得られた最適化条
件を図4ないし図11に示した結像レンズの実施例10
および実施例11に適用した場合に得られるレンズ面の
形状を示すデータテーブル。FIG. 24 shows an embodiment 10 of the imaging lens in which the optimization conditions obtained from FIGS. 12 to 19 are shown in FIGS. 4 to 11;
21 is a data table showing the shape of a lens surface obtained when applied to Example 11;
【図25】図12ないし図19により得られた最適化条
件を図4ないし図11に示した結像レンズの実施例12
および実施例13に適用した場合に得られるレンズ面の
形状を示すデータテーブル。FIG. 25 shows an embodiment 12 of the imaging lens in which the optimization conditions obtained from FIGS. 12 to 19 are shown in FIGS. 4 to 11;
15 is a data table showing the shape of a lens surface obtained when applied to Example 13;
【図26】図12ないし図19により得られた最適化条
件を図4ないし図11に示した結像レンズの実施例14
および実施例15に適用した場合に得られるレンズ面の
形状を示すデータテーブル。FIG. 26 shows an embodiment 14 of the imaging lens in which the optimization conditions obtained from FIGS. 12 to 19 are shown in FIGS. 4 to 11;
15 is a data table showing the shape of a lens surface obtained when applied to Example 15;
【図27】図12ないし図19により得られた最適化条
件を図4ないし図11に示した結像レンズの実施例16
および実施例17に適用した場合に得られるレンズ面の
形状を示すデータテーブル。FIG. 27 shows Embodiment 16 of the imaging lens in which the optimization conditions obtained from FIGS. 12 to 19 are shown in FIGS. 4 to 11.
And a data table showing the shape of the lens surface obtained when applied to Example 17.
【図28】図12ないし図19により得られた最適化条
件を図4ないし図11に示した結像レンズの実施例18
および実施例19に適用した場合に得られるレンズ面の
形状を示すデータテーブル。FIG. 28 shows an embodiment 18 of the imaging lens in which the optimization conditions obtained from FIGS. 12 to 19 are shown in FIGS. 4 to 11;
And a data table showing the shape of the lens surface obtained when applied to Example 19.
【図29】図12ないし図19により得られた最適化条
件を図4ないし図11に示した結像レンズの実施例20
および実施例21に適用した場合に得られるレンズ面の
形状を示すデータテーブル。FIG. 29 shows an embodiment 20 of the imaging lens in which the optimization conditions obtained from FIGS. 12 to 19 are shown in FIGS. 4 to 11;
23 is a data table showing the shape of a lens surface obtained when applied to Example 21.
【図30】図12ないし図19により得られた最適化条
件を図4ないし図11に示した結像レンズの実施例22
および実施例23に適用した場合に得られるレンズ面の
形状を示すデータテーブル。FIG. 30 shows an embodiment 22 of the imaging lens in which the optimization conditions obtained from FIGS. 12 to 19 are shown in FIGS. 4 to 11.
24 is a data table showing the shape of a lens surface obtained when applied to Example 23.
【図31】図12ないし図19により得られた最適化条
件を図4ないし図11に示した結像レンズの実施例24
および実施例25に適用した場合に得られるレンズ面の
形状を示すデータテーブル。FIG. 31 shows an embodiment 24 of the imaging lens in which the optimization conditions obtained from FIGS. 12 to 19 are shown in FIGS. 4 to 11.
26 is a data table showing the shape of a lens surface obtained when applied to Example 25.
【図32】図12ないし図19により得られた最適化条
件を図4ないし図11に示した結像レンズの実施例26
に適用した場合に得られるレンズ面の形状を示すデータ
テーブル。FIG. 32 shows Embodiment 26 of the imaging lens in which the optimization conditions obtained from FIGS. 12 to 19 are shown in FIGS. 4 to 11;
9 is a data table showing the shape of the lens surface obtained when the method is applied to FIG.
【図33】図2に示した露光装置の別の実施の形態を示
す概略図。FIG. 33 is a schematic view showing another embodiment of the exposure apparatus shown in FIG. 2;
1 ・・・マルチビーム露光装置、 3 ・・・光源、 3a・・・第1の発光点、 3b・・・第2の発光点、 5 ・・・偏向前光学系、 7 ・・・偏向装置、 7a・・・多面鏡、 9 ・・・偏向後光学系、 11 ・・・有限焦点レンズ、 13 ・・・絞り、 15 ・・・シリンダレンズ、 15g・・・ガラスシリンダレンズ、 15p・・・プラスチックシリンダレンズ、 21 ・・・結像レンズ、 23 ・・・ミラー、 25 ・・・防塵ガラス、 51 ・・・画像形成部、 100 ・・・画像形成装置。 DESCRIPTION OF SYMBOLS 1 ... Multi-beam exposure apparatus 3 ... Light source 3a ... 1st light emission point 3b ... 2nd light emission point 5 ... Pre-deflection optical system 7 ... Deflection device 7a: a polygon mirror, 9: post-deflection optical system, 11: finite focal length lens, 13: stop, 15: cylinder lens, 15g: glass cylinder lens, 15p ... Plastic cylinder lens, 21 ... imaging lens, 23 ... mirror, 25 ... dustproof glass, 51 ... image forming unit, 100 ... image forming apparatus.
Claims (12)
する回転多面鏡を含む偏向器と、 この偏向器と前記発光源との間に配置され、前記光源か
らの光に所定の特性を持たせながら前記偏向器の前記回
転多面鏡へ導く偏向前光学手段と、 前記回転多面鏡により偏向された光を所定の像面に前記
回転多面鏡の回転量と前記第1の方向の距離が比例する
よう、等速度で結像させる1枚のみレンズと、を有する
露光装置において、 前記レンズは、光入射面および光出射面を除いた任意の
一面が、前記光入射面および前記光出射面のそれぞれと
交わる交線が非対称となる対称面に形成され、 前記回転多面鏡により前記光が偏向される偏向点と前記
所定像面の有効領域の中心を通るときの像面間の距離を
L、 前記所定像面の有効領域中心を通る光線が前記レンズと
交わる近傍でのレンズの前記第1の方向と垂直方向の第
2の方向の近軸焦点距離をFとする時、 F/L ≦ 0.25 が満足されることを特徴とする露光装置。A light source, a deflector including a rotary polygon mirror for deflecting light from the light source in a first direction at a substantially constant angular velocity, and disposed between the deflector and the light source; Pre-deflection optical means for guiding the light from the light source to the rotating polygon mirror of the deflector while giving predetermined characteristics to the light, and rotating the rotating polygon mirror to rotate the light deflected by the rotating polygon mirror to a predetermined image plane. An exposure apparatus having only one lens that forms an image at a constant speed such that the amount is proportional to the distance in the first direction, wherein the lens has an arbitrary surface excluding a light incident surface and a light exit surface. An intersection line that intersects each of the light incident surface and the light exit surface is formed on a symmetric surface where the light is deflected by the rotary polygon mirror and a center of an effective area of the predetermined image surface with a deflection point at which the light is deflected. Let L be the distance between image planes when passing, When a paraxial focal length in a second direction perpendicular to the first direction of the lens near the point where a ray passing through the center of the effective area intersects the lens is F, F / L ≦ 0.25 is satisfied. An exposure apparatus, comprising:
する回転多面鏡を含む偏向器と、 この偏向器と前記発光源との間に配置され、前記光源か
らの光に所定の特性を持たせながら前記偏向器の前記回
転多面鏡へ導く偏向前光学手段と、 前記回転多面鏡により偏向された光を所定の像面に、前
記回転多面鏡の回転量と前記第1の方向の距離が比例す
るよう、等速度で結像させる1枚のみレンズと、を有す
る露光装置において、 前記レンズは、光入射面および光出射面を除いた任意の
一面が、前記光入射面および前記光出射面のそれぞれと
交わる交線が非対称となる対称面に形成され、 前記回転多面鏡により前記光が偏向される偏向点と前記
所定像面の有効領域の中心を通るときの像面間の距離を
L、 前記所定像面の有効領域中心を通る光が前記レンズを出
射する点と前記所定の像面との間の距離をL3 とする
時、 0.35 ≦ L3 /L ≦ 0.65 が満足されることを特徴とする露光装置。2. A light source, a deflector including a rotary polygon mirror for deflecting light from the light source in a first direction at substantially constant angular velocity, and disposed between the deflector and the light source. Pre-deflection optical means for guiding the light from the light source to the rotating polygon mirror of the deflector while giving predetermined characteristics to the light, and the light deflected by the rotating polygon mirror is converted into a predetermined image plane by the rotating polygon mirror. An exposure apparatus having only one lens that forms an image at a constant speed such that the amount of rotation is proportional to the distance in the first direction, wherein the lens is an arbitrary surface excluding a light incident surface and a light exit surface Are formed on a symmetrical plane in which intersection lines intersecting each of the light incident surface and the light emitting surface are asymmetric, and a deflection point at which the light is deflected by the rotating polygon mirror and a center of an effective area of the predetermined image plane. L is the distance between image planes when passing through the predetermined image plane When the light passing through the effective region center and L 3 the distance between the predetermined image plane and that emits the lens, characterized in that 0.35 ≦ L 3 / L ≦ 0.65 is satisfied Exposure apparatus.
する回転多面鏡を含む偏向器と、 この偏向器と前記発光源との間に配置され、前記光源か
らの光に所定の特性を持たせながら前記偏向器の前記回
転多面鏡へ導く偏向前光学手段と、 前記回転多面鏡により偏向された光を所定の像面に前記
回転多面鏡の回転量と前記第1の方向の距離が比例する
よう、等速度で結像させる1枚のみレンズと、を有する
露光装置において、 前記レンズは、光入射面および光出射面を除いた任意の
一面が、前記光入射面および前記光出射面のそれぞれと
交わる交線が非対称となる対称面に形成され、 前記回転多面鏡により前記光が偏向される偏向点と前記
所定像面の有効領域の中心を通るときの像面間の距離を
L、 前記回転多面鏡により前記光が偏向される偏向点から前
記所定像面の有効領域中心を通る光線がfθレンズへ入
射する点との間の距離をL1 、 前記所定像面の有効領域中心と有効領域端との間で前記
光が前記偏向器により偏向される角度をΦとする時、 0.15 ≦ L1 ×sinΦ/L ≦ 0.27 が満足されることを特徴とする露光装置。3. A light source, a deflector including a rotary polygon mirror for deflecting light from the light source in a first direction at substantially constant angular velocity, and disposed between the deflector and the light source. Pre-deflection optical means for guiding the light from the light source to the rotating polygon mirror of the deflector while giving predetermined characteristics to the light, and rotating the rotating polygon mirror to rotate the light deflected by the rotating polygon mirror to a predetermined image plane. An exposure apparatus having only one lens that forms an image at a constant speed such that the amount is proportional to the distance in the first direction, wherein the lens has an arbitrary surface excluding a light incident surface and a light exit surface. An intersection line that intersects each of the light incident surface and the light exit surface is formed on a symmetric surface where the light is deflected by the rotary polygon mirror and a center of an effective area of the predetermined image surface with a deflection point at which the light is deflected. The distance between the image planes when passing through is L, the rotating polygon mirror L 1 the distance between the point at which rays from the deflection point to more the light is deflected through the effective area center of the predetermined image plane incident on the fθ lens, and the effective area center and the effective area end of the predetermined image plane An exposure apparatus characterized by satisfying 0.15 ≦ L 1 × sin φ / L ≦ 0.27, where φ is the angle at which the light is deflected by the deflector.
する回転多面鏡を含む偏向器と、 この偏向器と前記発光源との間に配置され、前記光源か
らの光に所定の特性を持たせながら前記偏向器の前記回
転多面鏡へ導く偏向前光学手段と、 前記回転多面鏡により偏向された光を所定の像面に前記
回転多面鏡の回転量と前記第1の方向の距離が比例する
よう、等速度で結像させる1枚のみレンズと、を有する
露光装置において、 前記レンズは、光入射面および光出射面を除いた任意の
一面が、前記光入射面および前記光出射面のそれぞれと
交わる交線が非対称となる対称面に形成され、 前記回転多面鏡により前記光が偏向される偏向点と前記
所定像面の有効領域の中心を通るときの像面間の距離を
L、 前記回転多面鏡により前記光が偏向される偏向点から前
記所定像面の有効領域中心を通る光線がfθレンズへ入
射する点との間の距離をL1 とする時、 0.3 ≦ L1 /L ≦ 0.65 が満足されることを特徴とする露光装置。4. A deflector including a light emitting source; a deflector including a rotary polygon mirror for deflecting light from the light emitting source in a first direction at substantially constant angular velocity; and a deflector disposed between the deflector and the light emitting source. Pre-deflection optical means for guiding the light from the light source to the rotating polygon mirror of the deflector while giving predetermined characteristics to the light, and rotating the rotating polygon mirror to rotate the light deflected by the rotating polygon mirror to a predetermined image plane. An exposure apparatus having only one lens that forms an image at a constant speed such that the amount is proportional to the distance in the first direction, wherein the lens has an arbitrary surface excluding a light incident surface and a light exit surface. An intersection line that intersects each of the light incident surface and the light exit surface is formed on a symmetric surface where the light is deflected by the rotary polygon mirror and a center of an effective area of the predetermined image surface with a deflection point at which the light is deflected. The distance between the image planes when passing through is L, the rotating polygon mirror When light from the deflection point to more the light is deflected through the effective area center of the predetermined image surface to the distance between the point of entering the fθ lens and L 1, 0.3 ≦ L 1 / L ≦ 0 65. An exposure apparatus, characterized by satisfying the following.
速度で偏向する回転多面鏡を含む偏向器と、 この偏向器と前記発光源との間に配置され、前記光源か
らのそれぞれの光に所定の特性を持たせながら前記偏向
器の前記回転多面鏡へ導く偏向前光学手段と、 前記回転多面鏡により偏向されたそれぞれの光を所定の
像面に前記回転多面鏡の回転量と前記第1の方向の距離
が比例するよう、等速度で結像させる1枚のみレンズ
と、を有する露光装置において、 前記レンズは、光入射面および光出射面を除いた任意の
一面が、前記光入射面および前記光出射面のそれぞれと
交わる交線が非対称となる対称面に形成され、 前記回転多面鏡により前記光が偏向される偏向点と前記
所定像面の有効領域の中心を通るときの像面間の距離を
L、 前記所定像面の有効領域中心と有効領域端との間の距離
をW、 前記所定像面の有効領域中心と有効領域端との間で前記
それぞれの光が前記偏向器により偏向される角度をΦと
する時、 0.8 ≦ tan-1(W/L)/Φ ≦ 1.3 が満足されることを特徴とする露光装置。5. A deflector including a plurality of light-emitting sources, a deflector including a rotary polygon mirror for deflecting each light from the light-emitting sources in a first direction at a substantially constant angular velocity, and between the deflector and the light-emitting sources. And a pre-deflection optical unit for guiding each light from the light source to the rotary polygon mirror of the deflector while giving the light a predetermined characteristic, and converting each light deflected by the rotary polygon mirror into a predetermined image. An exposure apparatus having, on a surface, only one lens that forms an image at a constant speed so that a rotation amount of the rotary polygon mirror and a distance in the first direction are proportional to each other; An arbitrary surface excluding a surface is formed as a symmetric surface in which an intersection line intersecting each of the light incident surface and the light exit surface is asymmetric, and a deflection point at which the light is deflected by the rotary polygon mirror and the predetermined point. When passing through the center of the effective area of the image plane L is the distance between the image planes of the predetermined image plane, and W is the distance between the center of the effective area of the predetermined image plane and the end of the effective area. An exposure apparatus, wherein when an angle deflected by the deflector is Φ, 0.8 ≦ tan −1 (W / L) /Φ≦1.3 is satisfied.
する回転多面鏡を含む偏向器と、 この偏向器と前記発光源との間に配置され、前記光源か
らの光に所定の特性を持たせながら前記偏向器の前記回
転多面鏡へ導く偏向前光学手段と、 前記回転多面鏡により偏向された光を所定の像面に前記
回転多面鏡の回転量と前記第1の方向の距離が比例する
よう、等速度で結像させる1枚のみレンズと、を有する
露光装置において、 前記レンズは、光入射面および光出射面を除いた任意の
一面が、前記光入射面および前記光出射面のそれぞれと
交わる交線が非対称となる対称面に形成され、 前記回転多面鏡により前記光が偏向される偏向点と前記
所定像面の有効領域の中心を通るときの像面間の距離を
L、 前記回転多面鏡により前記光が偏向される偏向点から前
記所定像面の有効領域中心を通る光線がfθレンズへ入
射する点との間の距離をL1 、 前記所定像面の有効領域中心を通る光が前記レンズを出
射する点と前記所定の像面との間の距離をL3 とする
時、 0.17 ≦ L1 ×L3 /L2 ≦0.23 が満足されることを特徴とする露光装置。6. A deflector including a light emitting source, a deflector including a rotary polygon mirror for deflecting light from the light emitting source at a substantially constant angular velocity in a first direction, and disposed between the deflector and the light emitting source. Pre-deflection optical means for guiding the light from the light source to the rotating polygon mirror of the deflector while giving predetermined characteristics to the light, and rotating the rotating polygon mirror to rotate the light deflected by the rotating polygon mirror to a predetermined image plane. An exposure apparatus having only one lens that forms an image at a constant speed such that the amount is proportional to the distance in the first direction, wherein the lens has an arbitrary surface excluding a light incident surface and a light exit surface. An intersection line that intersects each of the light incident surface and the light exit surface is formed on a symmetric surface where the light is deflected by the rotary polygon mirror and a center of an effective area of the predetermined image surface with a deflection point at which the light is deflected. The distance between the image planes when passing through is L, the rotating polygon mirror The light passing through the distance L 1, the effective area center of the predetermined image surface between the point where light rays passing through the effective area center of the predetermined image plane from the deflection point is incident to the fθ lens more the light is deflected Exposure apparatus characterized by satisfying 0.17 ≦ L 1 × L 3 / L 2 ≦ 0.23 where L 3 is the distance between the point at which the lens exits and the predetermined image plane. .
する回転多面鏡を含む偏向器と、 この偏向器と前記発光源との間に配置され、前記光源か
らの光に所定の特性を持たせながら前記偏向器の前記回
転多面鏡へ導く偏向前光学手段と、 前記回転多面鏡により偏向された光を所定の像面に前記
回転多面鏡の回転量と前記第1の方向の距離が比例する
よう、等速度で結像させる1枚のみレンズと、を有する
露光装置において、 前記レンズは、光入射面および光出射面を除いた任意の
一面が、前記光入射面および前記光出射面のそれぞれと
交わる交線が非対称となる対称面に形成され、 前記所定像面の有効領域中心と有効領域端との間で前記
光が前記偏向器により偏向される角度をΦ、 前記回転多面鏡により前記光が偏向される偏向点と前記
所定像面の有効領域の中心を通るときの像面間の距離を
L、 前記所定像面の有効領域中心と有効領域端との間の距離
をW、 前記所定像面の有効領域中心を通る光が前記レンズを出
射する点と前記所定の像面との間の距離をL3 とする
時、 φ×(L/W)/L3 ≦ 0.009 が満足されることを特徴とする露光装置。7. A light source, a deflector including a rotary polygon mirror for deflecting light from the light source at a substantially constant angular velocity in a first direction, and a deflector disposed between the deflector and the light source. Pre-deflection optical means for guiding the light from the light source to the rotating polygon mirror of the deflector while giving predetermined characteristics to the light, and rotating the rotating polygon mirror to rotate the light deflected by the rotating polygon mirror to a predetermined image plane. An exposure apparatus having only one lens that forms an image at a constant speed such that the amount is proportional to the distance in the first direction, wherein the lens has an arbitrary surface excluding a light incident surface and a light exit surface. An intersection line intersecting with each of the light incident surface and the light exit surface is formed on a symmetric surface where the line is asymmetric, and the light is deflected by the deflector between an effective area center and an effective area end of the predetermined image plane. Is the angle to be formed, and the light is L is the distance between the point of deflection and the image plane when passing through the center of the effective area of the predetermined image plane; W is the distance between the center of the effective area of the predetermined image plane and the end of the effective area; when the distance between the point at which light passing through the effective area center of the surface to emit the lens and the predetermined image plane and L 3, φ × (L / W) / L 3 ≦ 0.009 is satisfied An exposure apparatus, comprising:
する回転多面鏡を含む偏向器と、 この偏向器と前記発光源との間に配置され、前記光源か
らの光に所定の特性を持たせながら前記偏向器の前記回
転多面鏡へ導く偏向前光学手段と、 前記回転多面鏡により偏向された光を所定の像面に前記
回転多面鏡の回転量と前記第1の方向の距離が比例する
よう、等速度で結像させる1枚のみレンズと、を有する
露光装置において、 前記レンズは、光入射面および光出射面を除いた任意の
一面が、前記光入射面および前記光出射面のそれぞれと
交わる交線が非対称となる対称面に形成され、 前記回転多面鏡により前記光が偏向される偏向点と前記
所定像面の有効領域の中心を通るときの像面間の距離を
L、 前記所定像面の有効領域中心を通る光線が前記レンズと
交わる近傍でのレンズの前記第1の方向と垂直方向の第
2の方向の近軸焦点距離をF、 前記所定像面の有効領域中心を通る光が前記レンズを出
射する点と前記所定の像面との間の距離をL3 、 前記回転多面鏡により前記光が偏向される偏向点から前
記所定像面の有効領域中心を通る光線がfθレンズへ入
射する点との間の距離をL1 、 前記所定像面の有効領域中心と有効領域端との間で前記
光が前記偏向器により偏向される角度をΦ、 前記所定像面の有効領域中心と有効領域端との間の距離
をW、とするとき、 F/L≦0.25、 0.35 ≦ L3 /L ≦ 0.65、 0.15 ≦ L1 ×sinΦ/L ≦ 0.27、 0.3 ≦ L1 /L ≦ 0.65、 0.8 ≦ tan-1(W/L)Φ ≦ 1.3、 0.17 ≦ L1 ×L3 /L2 ≦ 0.23、およ
び φ×(L/W)/L3 ≦ 0.009 が満足されることを特徴とする露光装置。8. A deflector including a light emitting source; a deflector including a rotary polygon mirror for deflecting light from the light emitting source in a first direction at a substantially constant angular velocity; and a deflector disposed between the deflector and the light emitting source. Pre-deflection optical means for guiding the light from the light source to the rotating polygon mirror of the deflector while giving predetermined characteristics to the light, and rotating the rotating polygon mirror to rotate the light deflected by the rotating polygon mirror to a predetermined image plane. An exposure apparatus having only one lens that forms an image at a constant speed such that the amount is proportional to the distance in the first direction, wherein the lens has an arbitrary surface excluding a light incident surface and a light exit surface. An intersection line that intersects each of the light incident surface and the light exit surface is formed on a symmetric surface where the light is deflected by the rotary polygon mirror and a center of an effective area of the predetermined image surface with a deflection point at which the light is deflected. Let L be the distance between image planes when passing, The paraxial focal length in a second direction perpendicular to the first direction of the lens near the intersection of the ray passing through the effective area center with the lens is F, and the light passing through the effective area center of the predetermined image plane is The distance between the point at which the lens exits and the predetermined image plane is L 3 , and a ray passing through the center of the effective area of the predetermined image plane from the deflection point where the light is deflected by the rotating polygon mirror enters the fθ lens. L 1 , the angle at which the light is deflected by the deflector between the center of the effective area of the predetermined image plane and the end of the effective area is Φ, and the center of the effective area of the predetermined image plane. Assuming that the distance from the edge of the effective area is W, F / L ≦ 0.25, 0.35 ≦ L 3 /L≦0.65, 0.15 ≦ L 1 × sinΦ / L ≦ 0.27 , 0.3 ≦ L 1 / L ≦ 0.65, 0.8 ≦ tan -1 (W / L) Φ ≦ 1.3, 0. 7 ≦ L 1 × L 3 / L 2 ≦ 0.23, and φ × (L / W) / L 3 ≦ 0.009 exposure apparatus, wherein a is satisfied.
する回転多面鏡を含む偏向器と、 この偏向器と前記発光源との間に配置され、前記光源か
らの光に所定の特性を持たせながら前記偏向器の前記回
転多面鏡へ導く偏向前光学手段と、 前記回転多面鏡により偏向された光を所定の像面に前記
回転多面鏡の回転量と前記第1の方向の距離が比例する
よう、等速度で結像させる1枚のみレンズと、を有する
露光装置において、 前記レンズは、光入射面および光出射面を除いた任意の
一面が、前記光入射面および前記光出射面のそれぞれと
交わる交線が非対称となる対称面に形成され、 前記回転多面鏡により前記光が偏向される偏向点と前記
所定像面の有効領域の中心を通るときの像面間の距離を
L、 前記所定像面の有効領域中心を通る光線が前記レンズと
交わる近傍でのレンズの前記第1の方向と垂直方向の第
2の方向の近軸焦点距離をF、 前記所定像面の有効領域中心を通る光が前記レンズを出
射する点と前記所定の像面との間の距離をL3 、 前記回転多面鏡により前記光が偏向される偏向点から前
記所定像面の有効領域中心を通る光線がfθレンズへ入
射する点との間の距離をL1 、 前記所定像面の有効領域中心と有効領域端との間で前記
光が前記偏向器により偏向される角度をΦ、 前記所定像面の有効領域中心と有効領域端との間の距離
をW、とするとき、 F/L≦0.25、 0.35 ≦ L3 /L ≦ 0.65、 0.15 ≦ L1 ×sinΦ/L ≦ 0.27、 0.3 ≦ L1 /L ≦ 0.65、 0.8 ≦ tan-1(W/L)Φ ≦ 1.3、 0.17 ≦ L1 ×L3 /L2 ≦ 0.23、およ
び φ×(L/W)/L3 ≦ 0.009 の少なくとも2つが満足されることを特徴とする露光装
置。9. A deflector including a light emitting source, a deflector including a rotary polygon mirror for deflecting light from the light emitting source in a first direction at substantially constant angular velocity, and disposed between the deflector and the light emitting source. Pre-deflection optical means for guiding the light from the light source to the rotating polygon mirror of the deflector while giving predetermined characteristics to the light, and rotating the rotating polygon mirror to rotate the light deflected by the rotating polygon mirror to a predetermined image plane. An exposure apparatus having only one lens that forms an image at a constant speed such that the amount is proportional to the distance in the first direction, wherein the lens has an arbitrary surface excluding a light incident surface and a light exit surface. An intersection line that intersects each of the light incident surface and the light exit surface is formed on a symmetric surface where the light is deflected by the rotary polygon mirror and a center of an effective area of the predetermined image surface with a deflection point at which the light is deflected. Let L be the distance between image planes when passing, The paraxial focal length in a second direction perpendicular to the first direction of the lens near the intersection of the ray passing through the effective area center with the lens is F, and the light passing through the effective area center of the predetermined image plane is The distance between the point at which the lens exits and the predetermined image plane is L 3 , and a ray passing through the center of the effective area of the predetermined image plane from the deflection point where the light is deflected by the rotating polygon mirror enters the fθ lens. L 1 , the angle at which the light is deflected by the deflector between the center of the effective area of the predetermined image plane and the end of the effective area is Φ, and the center of the effective area of the predetermined image plane. Assuming that the distance from the edge of the effective area is W, F / L ≦ 0.25, 0.35 ≦ L 3 /L≦0.65, 0.15 ≦ L 1 × sinΦ / L ≦ 0.27 , 0.3 ≦ L 1 / L ≦ 0.65, 0.8 ≦ tan -1 (W / L) Φ ≦ 1.3, 0. 7 ≦ L 1 × L 3 / L 2 ≦ 0.23, and φ × (L / W) / exposure apparatus, wherein at least two are satisfied L 3 ≦ 0.009.
する回転多面鏡を含む偏向器と、 この偏向器と前記発光源との間に配置され、前記光源か
らの光に所定の特性を持たせながら前記偏向器の前記回
転多面鏡へ導く偏向前光学手段と、 前記回転多面鏡により偏向された光を所定の像面に前記
回転多面鏡の回転量と前記第1の方向の距離が比例する
よう、等速度で結像させる1枚のみレンズと、を有する
露光装置において、 前記レンズは、光入射面および光出射面を除いた任意の
一面が、前記光入射面および前記光出射面のそれぞれと
交わる交線が非対称となる対称面に形成され、 前記回転多面鏡により前記光が偏向される偏向点と前記
所定像面の有効領域の中心を通るときの像面間の距離を
L、 前記所定像面の有効領域中心を通る光線が前記レンズと
交わる近傍でのレンズの前記第1の方向と垂直方向の第
2の方向の近軸焦点距離をF、 前記所定像面の有効領域中心を通る光が前記レンズを出
射する点と前記所定の像面との間の距離をL3 、 前記回転多面鏡により前記光が偏向される偏向点から前
記所定像面の有効領域中心を通る光線がfθレンズへ入
射する点との間の距離をL1 、 前記所定像面の有効領域中心と有効領域端との間で前記
光が前記偏向器により偏向される角度をΦ、 前記所定像面の有効領域中心と有効領域端との間の距離
をW、とするとき、 F/L≦0.25、 0.35 ≦ L3 /L ≦ 0.65、 0.15 ≦ L1 ×sinΦ/L ≦ 0.27、 0.3 ≦ L1 /L ≦ 0.65、 0.8 ≦ tan-1(W/L)Φ ≦ 1.3、 0.17 ≦ L1 ×L3 /L2 ≦ 0.23、およ
び φ×(L/W)/L3 ≦ 0.009 の任意の組み合わせが満足されることを特徴とする露光
装置。10. A light source, a deflector including a rotary polygon mirror for deflecting light from the light source in the first direction at substantially constant angular velocity, and disposed between the deflector and the light source. Pre-deflection optical means for guiding the light from the light source to the rotating polygon mirror of the deflector while giving predetermined characteristics to the light, and rotating the rotating polygon mirror to rotate the light deflected by the rotating polygon mirror to a predetermined image plane. An exposure apparatus having only one lens that forms an image at a constant speed such that the amount is proportional to the distance in the first direction, wherein the lens has an arbitrary surface excluding a light incident surface and a light exit surface. An intersection line that intersects each of the light incident surface and the light exit surface is formed on a symmetric surface where the light is deflected by the rotary polygon mirror and a center of an effective area of the predetermined image surface with a deflection point at which the light is deflected. The distance between the image planes when passing is L, the predetermined image plane The paraxial focal length in the second direction perpendicular to the first direction of the lens near the intersection of the ray passing through the center of the effective area with the lens is F, and the light passing through the center of the effective area on the predetermined image plane is The distance between the point at which the lens exits and the predetermined image plane is L 3 , and a ray passing through the center of the effective area of the predetermined image plane from the deflection point where the light is deflected by the rotating polygon mirror enters the fθ lens. L 1 , the angle at which the light is deflected by the deflector between the center of the effective area of the predetermined image plane and the end of the effective area is Φ, and the center of the effective area of the predetermined image plane. Assuming that the distance from the edge of the effective area is W, F / L ≦ 0.25, 0.35 ≦ L 3 /L≦0.65, 0.15 ≦ L 1 × sinΦ / L ≦ 0.27 , 0.3 ≦ L 1 / L ≦ 0.65, 0.8 ≦ tan -1 (W / L) Φ ≦ 1.3, 0 17 ≦ L 1 × L 3 / L 2 ≦ 0.23, and φ × (L / W) / L 3 ≦ 0.009 exposure apparatus characterized by any combination are satisfied.
を含むことを特徴とする請求項1ないし4および6ない
し10のいづれかに記載の露光装置。11. An exposure apparatus according to claim 1, wherein said light emitting source includes at least two or more light sources.
する回転多面鏡を含む偏向器と、 この偏向器と前記発光源との間に配置され、前記光源か
らの光に所定の特性を持たせながら前記偏向器の前記回
転多面鏡へ導く偏向前光学手段と、 前記回転多面鏡により偏向された光を所定の像面に前記
回転多面鏡の回転量と前記第1の方向の距離が比例する
よう、等速度で結像させる1枚のみレンズと、を有する
露光装置において、 前記レンズは、光入射面および光出射面を除いた任意の
一面が、前記光入射面および前記光出射面のそれぞれと
交わる交線が非対称となる対称面に形成され、 前記回転多面鏡により前記光が偏向される偏向点と前記
所定像面の有効領域の中心を通るときの像面間の距離を
L、 前記所定像面の有効領域中心を通る光線が前記レンズと
交わる近傍でのレンズの前記第1の方向と垂直方向の第
2の方向の近軸焦点距離をF、 前記所定像面の有効領域中心を通る光が前記レンズを出
射する点と前記所定の像面との間の距離をL3 、 前記回転多面鏡により前記光が偏向される偏向点から前
記所定像面の有効領域中心を通る光線がfθレンズへ入
射する点との間の距離をL1 、 前記所定像面の有効領域中心と有効領域端との間で前記
光が前記偏向器により偏向される角度をΦ、 前記所定像面の有効領域中心と有効領域端との間の距離
をW、とするとき、 F/L≦0.25、 0.35 ≦ L3 /L ≦ 0.65、 0.15 ≦ L1 ×sinΦ/L ≦ 0.27、 0.3 ≦ L1 /L ≦ 0.65、 0.8 ≦ tan-1(W/L)Φ ≦ 1.3、 0.17 ≦ L1 ×L3 /L2 ≦ 0.23、およ
び φ×(L/W)/L3 ≦ 0.009 が満足されることを特徴とする露光装置と、 この露光装置により像担持体に形成された潜像を現像す
る現像装置と、 この現像装置により現像された現像剤像を被転写材に転
写する転写装置と、を有することを特徴とする画像形成
装置。12. A light source, a deflector including a rotary polygon mirror for deflecting light from the light source in a first direction at substantially constant angular velocity, and disposed between the deflector and the light source. Pre-deflection optical means for guiding the light from the light source to the rotating polygon mirror of the deflector while giving predetermined characteristics to the light, and rotating the rotating polygon mirror to rotate the light deflected by the rotating polygon mirror to a predetermined image plane. An exposure apparatus having only one lens that forms an image at a constant speed such that the amount is proportional to the distance in the first direction, wherein the lens has an arbitrary surface excluding a light incident surface and a light exit surface. An intersection line that intersects each of the light incident surface and the light exit surface is formed on a symmetric surface where the light is deflected by the rotary polygon mirror and a center of an effective area of the predetermined image surface with a deflection point at which the light is deflected. The distance between the image planes when passing is L, the predetermined image plane The paraxial focal length in the second direction perpendicular to the first direction of the lens near the intersection of the ray passing through the center of the effective area with the lens is F, and the light passing through the center of the effective area on the predetermined image plane is The distance between the point at which the lens exits and the predetermined image plane is L 3 , and a ray passing through the center of the effective area of the predetermined image plane from the deflection point where the light is deflected by the rotating polygon mirror enters the fθ lens. L 1 , the angle at which the light is deflected by the deflector between the center of the effective area of the predetermined image plane and the end of the effective area is Φ, and the center of the effective area of the predetermined image plane. Assuming that the distance from the edge of the effective area is W, F / L ≦ 0.25, 0.35 ≦ L 3 /L≦0.65, 0.15 ≦ L 1 × sinΦ / L ≦ 0.27 , 0.3 ≦ L 1 / L ≦ 0.65, 0.8 ≦ tan -1 (W / L) Φ ≦ 1.3, 0 17 ≦ L 1 × L 3 / L 2 ≦ 0.23, and φ × (L / W) / an exposure apparatus characterized by L 3 ≦ 0.009 is satisfied, the image carrier by the exposure device An image forming apparatus comprising: a developing device that develops a latent image formed in a developing device; and a transfer device that transfers a developer image developed by the developing device to a material to be transferred.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04082598A JP4489852B2 (en) | 1998-02-23 | 1998-02-23 | Exposure apparatus and image forming apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04082598A JP4489852B2 (en) | 1998-02-23 | 1998-02-23 | Exposure apparatus and image forming apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11237569A true JPH11237569A (en) | 1999-08-31 |
JP4489852B2 JP4489852B2 (en) | 2010-06-23 |
Family
ID=12591451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04082598A Expired - Fee Related JP4489852B2 (en) | 1998-02-23 | 1998-02-23 | Exposure apparatus and image forming apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4489852B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7053922B2 (en) | 2002-08-08 | 2006-05-30 | Canon Kabushiki Kaisha | Optical scanning apparatus, and image forming apparatus using such optical scanning apparatus |
CN104553353A (en) * | 2014-12-18 | 2015-04-29 | 广州创乐激光设备有限公司 | Controlled distance indicating method, marking method and controlled distance indicating device for 3D laser marking machine and 3D laser marking machine |
US9372431B2 (en) | 2014-02-28 | 2016-06-21 | Brother Kogyo Kabushiki Kaisha | Scanning optical apparatus, image forming apparatus and method for manufacturing a scanning lens |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08190062A (en) * | 1995-01-12 | 1996-07-23 | Fuji Xerox Co Ltd | Scanning lens and optical scanning device |
JPH08297256A (en) * | 1995-02-28 | 1996-11-12 | Canon Inc | Scanning optical device and multibeam scanning optical device |
JPH09179017A (en) * | 1995-12-27 | 1997-07-11 | Ricoh Co Ltd | Optical scanning lens and optical scanner |
JPH1048552A (en) * | 1996-08-01 | 1998-02-20 | Canon Inc | Optical scanning optical system |
-
1998
- 1998-02-23 JP JP04082598A patent/JP4489852B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08190062A (en) * | 1995-01-12 | 1996-07-23 | Fuji Xerox Co Ltd | Scanning lens and optical scanning device |
JPH08297256A (en) * | 1995-02-28 | 1996-11-12 | Canon Inc | Scanning optical device and multibeam scanning optical device |
JPH09179017A (en) * | 1995-12-27 | 1997-07-11 | Ricoh Co Ltd | Optical scanning lens and optical scanner |
JPH1048552A (en) * | 1996-08-01 | 1998-02-20 | Canon Inc | Optical scanning optical system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7053922B2 (en) | 2002-08-08 | 2006-05-30 | Canon Kabushiki Kaisha | Optical scanning apparatus, and image forming apparatus using such optical scanning apparatus |
US9372431B2 (en) | 2014-02-28 | 2016-06-21 | Brother Kogyo Kabushiki Kaisha | Scanning optical apparatus, image forming apparatus and method for manufacturing a scanning lens |
CN104553353A (en) * | 2014-12-18 | 2015-04-29 | 广州创乐激光设备有限公司 | Controlled distance indicating method, marking method and controlled distance indicating device for 3D laser marking machine and 3D laser marking machine |
Also Published As
Publication number | Publication date |
---|---|
JP4489852B2 (en) | 2010-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7248279B2 (en) | Optical scanning device and image forming apparatus using the same | |
JP3451473B2 (en) | Multi-beam scanning device and image forming device | |
US7061658B2 (en) | Scanning image formation optical system, optical scanner using the optical system, and image forming apparatus using the optical scanner | |
JP2008076557A (en) | Optical scanner and image forming apparatus using the same | |
JP2007010797A (en) | Optical scanner and image forming apparatus | |
JP2007041420A (en) | Optical scanner and image forming apparatus | |
JP4684470B2 (en) | Optical scanning device and image forming apparatus using the same | |
JP2010134430A (en) | Scanning optical apparatus and image forming apparatus using the same | |
JP4015249B2 (en) | Multi-beam exposure system | |
JP2004070109A (en) | Optical scanner and image forming apparatus using the same | |
JP5168753B2 (en) | Optical scanning apparatus, image forming apparatus, and lens | |
JP2005024958A (en) | Optical scanner | |
JP4526331B2 (en) | Optical scanning apparatus and image forming apparatus | |
KR100510141B1 (en) | Laser scanning unit | |
JP4294913B2 (en) | Optical scanning apparatus and image forming apparatus | |
JP4489852B2 (en) | Exposure apparatus and image forming apparatus | |
JP4715418B2 (en) | Optical scanning apparatus and image forming apparatus | |
JP2019159222A (en) | Optical scanner and image formation device | |
JP4841268B2 (en) | Optical scanning apparatus and image forming apparatus | |
JP6388382B2 (en) | Scanning optical apparatus and image forming apparatus | |
JP2002131671A (en) | Optical scanner and image forming apparatus | |
JP4411054B2 (en) | Optical scanning device and image forming apparatus using the same | |
KR100484199B1 (en) | Optical scanning apparatus | |
JP4744117B2 (en) | Optical scanning apparatus and image forming apparatus | |
JP4280748B2 (en) | Optical scanning device and image forming apparatus using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050128 |
|
A621 | Written request for application examination |
Effective date: 20050128 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081031 |
|
A131 | Notification of reasons for refusal |
Effective date: 20081111 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20100330 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100401 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20130409 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |