JPH11237337A - Specified constituent and its concentration measurement method for multiple-constituent substance - Google Patents

Specified constituent and its concentration measurement method for multiple-constituent substance

Info

Publication number
JPH11237337A
JPH11237337A JP5592498A JP5592498A JPH11237337A JP H11237337 A JPH11237337 A JP H11237337A JP 5592498 A JP5592498 A JP 5592498A JP 5592498 A JP5592498 A JP 5592498A JP H11237337 A JPH11237337 A JP H11237337A
Authority
JP
Japan
Prior art keywords
light
sensor chip
component
substance
specific component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5592498A
Other languages
Japanese (ja)
Inventor
Kuniaki Nagayama
国昭 永山
Hideki Adachi
栄希 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON LASER DENSHI KK
Original Assignee
NIPPON LASER DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON LASER DENSHI KK filed Critical NIPPON LASER DENSHI KK
Priority to JP5592498A priority Critical patent/JPH11237337A/en
Publication of JPH11237337A publication Critical patent/JPH11237337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a specific constituent and its concentration measurement method for multiple-constituent substance for making the specific substance and its concentration detectable by surface plasmon resonance method. SOLUTION: A surface plasmon resonance measuring device 1 measures the amount of adsorption of a multiple-constituent substance in a sensor chip 3 based on the resonance angle change of reflection light from the sensor chip 3 by applying a non-absorbent light to a specific constituent and other constituents for a multiple-constituent substance consisting of the mixed form of the specific constituent with a characteristic for absorbing light with a specific wavelength being adsorbed to the sensor chip 3 where a metal thin film is deposited on a glass plate 5 and other constituents with the non-absorption characteristics of light. Light with an absorption characteristic to the specific constituent is applied to the sensor chip 3, the specific constituent in the multiple-constituent substance is specified based on a resonance angle from the sensor chip 3, and at the same time the concentration of the specific constituent is measured according to the ratio of transmittance before and after the absorption of multiple-constituent substance for the sensor chip 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、多成分系物質に
おける特定成分及びその濃度計測方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a specific component in a multicomponent substance and a method for measuring the concentration of the specific component.

【0002】[0002]

【発明が解決しようとする課題】例えば液晶、半導体、
高分子薄膜、医療検査等の各種技術分野においては、多
成分系物質中における特定成分及びその濃度を検出する
必要がある。そして多成分系物質中の特定成分を検出す
る方法としては、従来、偏光解析法、光導波路法、表面
プラズモン共鳴法等が一般に知られている。
SUMMARY OF THE INVENTION For example, liquid crystals, semiconductors,
In various technical fields such as polymer thin films and medical tests, it is necessary to detect a specific component and its concentration in a multi-component substance. Conventionally, as a method for detecting a specific component in a multi-component substance, an ellipsometry, an optical waveguide method, a surface plasmon resonance method, and the like are generally known.

【0003】その内、偏光解析法は、基板上の物質に偏
光を照射してその反射光の偏光状態を解析して特定成分
を検出する方法であるが、光路が液体中にある場合には
光が散乱するため、液体に接している多成分系物質の特
定成分を検出できなかった。
[0003] Among them, the ellipsometry is a method of irradiating a substance on a substrate with polarized light and analyzing the polarization state of the reflected light to detect a specific component. Due to the scattering of light, a specific component of the multi-component substance in contact with the liquid could not be detected.

【0004】又、光導波路法は、光導波路の外側に多成
分系物質を吸着させた際に、反射条件が変化して射出さ
れる光の強度減衰に基づいて特定成分を検出する方法で
あるが、光導波路内に導入する白色光の光源としてハロ
ゲン、キセノン等を使用する場合には、スポット光源に
することができなかった。この結果、全波長で全反射条
件を満たすように光を集光させて光導波路内に導入する
ことができなかった。
The optical waveguide method is a method for detecting a specific component based on the attenuation of the intensity of light emitted due to a change in reflection conditions when a multi-component substance is adsorbed outside the optical waveguide. However, when a halogen, xenon, or the like was used as a light source for white light introduced into the optical waveguide, it could not be used as a spot light source. As a result, light could not be condensed so as to satisfy the condition of total reflection at all wavelengths, and could not be introduced into the optical waveguide.

【0005】更に、表面プラズモン共鳴法は、金又は銀
等の金属薄膜が蒸着されたガラス基板に光を照射して反
射率が最小になる共鳴角を検出し、この共鳴角の変化か
ら特定物質を検出する方法であるが、単一波長の光では
全成分による寄与を反映して各成分を区別できないた
め、特定成分を検出できなかった。又、特定物質の濃度
も検出できなかった。
Further, in the surface plasmon resonance method, a glass substrate on which a metal thin film of gold, silver, or the like is deposited is irradiated with light to detect a resonance angle at which the reflectance is minimized. However, a specific component cannot be detected because light of a single wavelength cannot distinguish each component by reflecting the contribution of all components. Also, the concentration of the specific substance could not be detected.

【0006】本発明は、上記した従来の欠点を解決する
ために発明されたものであり、その課題とする処は、表
面プラズモン共鳴法による特定物質及びその濃度検出を
可能にする多成分系物質における特定成分及びその濃度
計測方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned conventional drawbacks, and an object thereof is to provide a specific substance by a surface plasmon resonance method and a multi-component substance capable of detecting its concentration. And a method for measuring the concentration of the specific component.

【0007】[0007]

【問題点を解決するための手段】このため本発明は、ガ
ラス板に金属薄膜が蒸着されたセンサーチップに吸着さ
れた所定波長の光を吸光する特性を有した特定成分及び
該光の非吸光特性を有した他成分の混合形態からなる多
成分系物質に対し、特定成分及び他成分に対して非吸光
の光を照射してセンサーチップからの反射光の共鳴角変
化に基づいてセンサーチップにおける多成分系物質の吸
着量を計測し、次に特定成分への吸光特性を有した光を
センサーチップに照射してセンサーチップからの共鳴角
に基づいて多成分系物質中における特定成分を特定する
と共にセンサーチップに対する多成分系物質の吸着前及
び後における透過率比により特定成分の濃度を計測する
ことを特徴としている。
Accordingly, the present invention provides a specific component having a characteristic of absorbing light of a predetermined wavelength adsorbed on a sensor chip having a metal thin film deposited on a glass plate, and a non-absorbing component of the light. For a multi-component substance composed of a mixed form of other components having characteristics, a specific component and other components are irradiated with non-absorbing light, and a change in the resonance angle of the reflected light from the sensor chip is used in the sensor chip. Measure the amount of adsorption of the multi-component substance, and then irradiate the sensor chip with light having light absorption characteristics for the specific component, and specify the specific component in the multi-component substance based on the resonance angle from the sensor chip In addition, the concentration of the specific component is measured by the transmittance ratio before and after the adsorption of the multi-component substance on the sensor chip.

【0008】[0008]

【発明の実施の形態】以下、本発明方法を図に従って説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention will be described below with reference to the drawings.

【0009】図1は本発明方法を具体化した検出装置例
を示す説明図である。
FIG. 1 is an explanatory view showing an example of a detection apparatus embodying the method of the present invention.

【0010】図2は図1A箇所の拡大図である。FIG. 2 is an enlarged view of a portion shown in FIG. 1A.

【0011】本発明は、表面プラズモン共鳴計測装置
(以下、SPR計測装置という)1のセンサーチップ3
上に、吸光度を持つ特定成分と持たない特定成分の多成
分系物質が存在する場合、特定成分に対して吸光度を持
たない波長の光により多成分系物質の全体量を測定する
と共に特定成分に対して吸光度を持つ波長の光により多
成分系物質中の特定成分を検出すると共に全体に対する
特定成分比により濃度を測定することを原理とする。
According to the present invention, a sensor chip 3 of a surface plasmon resonance measuring device (hereinafter referred to as an SPR measuring device) 1 is provided.
Above, when there is a multi-component material of the specific component with absorbance and the specific component without the absorbance, the total amount of the multi-component material is measured with light having a wavelength that does not have absorbance for the specific component, and On the other hand, the principle is that a specific component in a multi-component substance is detected by light having a wavelength having an absorbance and the concentration is measured by a specific component ratio to the whole.

【0012】そして上記計測を使用するSPR計測装置
1のセンサーチップ3はガラス基板5上に膜厚5±0.
5nmの金薄膜7a(図2に示す)及び膜厚36±3n
mの銀薄膜7b(図2に示す)を2層に蒸着している。
又、ガラス基板5の金属薄膜非蒸着面にはプリズム9が
マッチングオイル(図示せず)により密着されている。
The sensor chip 3 of the SPR measuring device 1 using the above measurement has a film thickness of 5 ± 0.
5 nm gold thin film 7a (shown in FIG. 2) and film thickness 36 ± 3n
m of silver thin film 7b (shown in FIG. 2) is deposited in two layers.
Further, a prism 9 is adhered to the non-deposited metal thin film surface of the glass substrate 5 by a matching oil (not shown).

【0013】ガラス基板5に蒸着される金属薄膜を金薄
膜及び銀薄膜の2層構造とするのは以下の理由による。
即ち、異なる波長の光を使用した表面プラズモン共鳴計
測装置1による反射角の検出範囲は約10°幅に制限さ
れているが、単一の金属薄膜を使用した場合、表1に示
すように異なる波長の光による反射角が上記した約10
°の範囲で表れない。これを回避するため、ガラス基板
5に蒸着した銀薄膜上に酸化防止用の金薄膜を設けた2
層構造とした。これにより、表2に示すように赤色レー
ザ光(波長636nm)及び緑色レーザ光(波長538
nm)での各共鳴角を約10°の範囲内で同時に表すこ
とができた。
The metal thin film deposited on the glass substrate 5 has a two-layer structure of a gold thin film and a silver thin film for the following reasons.
That is, the detection range of the reflection angle by the surface plasmon resonance measurement apparatus 1 using light of different wavelengths is limited to about 10 ° width. The reflection angle of the light having the wavelength is about 10 as described above.
It does not appear in the range of °. In order to avoid this, a gold thin film for preventing oxidation was provided on the silver thin film deposited on the glass substrate 5.
A layer structure was adopted. Thereby, as shown in Table 2, the red laser light (wavelength 636 nm) and the green laser light (wavelength 538)
nm) could be expressed simultaneously within a range of about 10 °.

【0014】プリズム9の図示する鉛垂直左側には光照
射装置11が配置されている。該光照射装置11は波長
636nmの赤色レーザ光、波長538nmの緑色レー
ザ光及び波長441nmの青色レーザ光からなる白色レ
ーザ光を照射する白色レーザ光源11aと、白色レーザ
光を上記した所要波長の光に選択する干渉フィルター1
1bと、光ファイバー11c及びコリノメータ11dを
透過した光を平行光線化した後にプリズム9を透過して
ガラス基板5と銀薄膜7bとの境界にて集光するレンズ
系11eとから構成されている。レンズ系11eにより
集光されるレーザ光はプリズム9に対する入射角幅が約
60〜80度の範囲で設定される。又、本測定方法にお
いては、干渉フィルター11bにより波長636nmの
赤色レーザ光と波長538nmの緑色レーザ光を選択し
て使用した。
A light irradiation device 11 is arranged on the left side of the prism 9 in the vertical direction of the lead. The light irradiation device 11 irradiates a white laser light including a red laser light having a wavelength of 636 nm, a green laser light having a wavelength of 538 nm, and a blue laser light having a wavelength of 441 nm. Interference filter 1 to select
1b, and a lens system 11e that converts the light transmitted through the optical fiber 11c and the collinometer 11d into parallel rays, transmits the prism 9, and collects light at the boundary between the glass substrate 5 and the silver thin film 7b. The laser beam condensed by the lens system 11e has an incident angle width with respect to the prism 9 set within a range of about 60 to 80 degrees. In this measurement method, red laser light having a wavelength of 636 nm and green laser light having a wavelength of 538 nm were selected and used by the interference filter 11b.

【0015】尚、白色レーザ光源11aから照射される
白色レーザ光は必要に応じてNDフィルター(図示せ
ず)により所要強度に減衰される。
The white laser light emitted from the white laser light source 11a is attenuated to a required intensity by an ND filter (not shown) as required.

【0016】一方、プリズム9の図示する鉛直線右側に
は光検出装置13が配置されている。該光検出装置13
は金薄膜7a及び銀薄膜7bにより反射してプリズム9
から出射されるレーザ光を平行光線化するレンズ系13
aと、平行光線における光強度を検出するCCD等の受
光部材13bとから構成されている。
On the other hand, a light detecting device 13 is disposed on the right side of the prism 9 in the drawing. The light detection device 13
Is reflected by the gold thin film 7a and the silver thin film 7b,
Lens system 13 for converting a laser beam emitted from a laser beam into a parallel beam
a, and a light receiving member 13b such as a CCD for detecting the light intensity of the parallel light beam.

【0017】以下に、上記SPR計測装置1を使用して
多成分系物質中の特定成分及びその濃度の計測例を説明
する。
Hereinafter, an example of measuring a specific component in a multi-component substance and its concentration using the SPR measuring device 1 will be described.

【0018】多成分系物質は、緑色レーザ光に対して吸
光度を持つ蛍光標識を付加した特定物質と、非標識の成
分とを混合した溶液、具体的には標識特定成分及び非標
識他成分と共に分子量約150000のIgG蛋白質を
使用し、これに標識物質として分子量448の蛍光分子
を1IgG分子当たり平均2.6分子付加した。そして
混合溶液中の全蛋白質濃度を1mg/mlに固定する一
方、混合溶液中における標識特定成分の濃度を、0mg
/ml、0.1mg/ml、0.25mg/ml、1m
g/mlに夫々調整した多成分系物質とした。
The multi-component substance is a solution in which a specific substance to which a fluorescent label having an absorbance with respect to green laser light is added and an unlabeled component are mixed, specifically, a labeled specific component and non-labeled other components. An IgG protein having a molecular weight of about 150,000 was used, and a fluorescent substance having a molecular weight of 448 was added as an labeling substance to the average of 2.6 molecules per IgG molecule. Then, while the total protein concentration in the mixed solution was fixed at 1 mg / ml, the concentration of the labeled specific component in the mixed solution was reduced to 0 mg / ml.
/ Ml, 0.1mg / ml, 0.25mg / ml, 1m
g / ml.

【0019】表3に示すように上記多成分系物質の標識
特定成分は、波長536nmの緑色レーザ光に対して吸
光性を持つと共に非標識他成分はこの緑色レーザ光に対
して吸光性を持たない。
As shown in Table 3, the labeled specific component of the multi-component substance has absorbance with respect to the green laser light having a wavelength of 536 nm, and the unlabeled other components have absorbance with respect to this green laser light. Absent.

【0020】緑色レーザ光使用時の蛍光標識分子の吸着
前後での反射率変化を測定した。先ず、センサーチップ
3に純水(n=1.333)を接触させ平衡を得た後、
干渉フィルター11bにより緑色レーザ光を選択、反射
率の入射角依存性を測定した。次に、1mg/mlの蛍
光標識分子溶液と純水を置換し、分子をセンサーチップ
3に吸着させて平衡を得た。センサーチップ3に吸着し
た分子の影響だけを検出するために溶液を再び純水に置
換して平衡を得た後、同様に反射率の入射角依存性を測
定した。その結果を表4に示す。
The change in reflectance before and after the adsorption of the fluorescent labeled molecule when using the green laser light was measured. First, pure water (n = 1.333) is brought into contact with the sensor chip 3 to obtain equilibrium.
Green laser light was selected by the interference filter 11b, and the incident angle dependence of the reflectance was measured. Next, 1 mg / ml of the fluorescent-labeled molecule solution was replaced with pure water, and the molecules were adsorbed to the sensor chip 3 to obtain equilibrium. In order to detect only the influence of the molecules adsorbed on the sensor chip 3, the solution was replaced with pure water again to obtain an equilibrium, and the incident angle dependence of the reflectance was measured in the same manner. Table 4 shows the results.

【0021】上記したように緑色レーザ光は標識特質、
従って標識特定成分に吸収されるため、この共鳴角の測
定によりセンサーチップ3上の標識成分及び非標識成分
からなる多成分系物質の吸着量を測定することができ
る。
As described above, the green laser light is a marker characteristic,
Therefore, since it is absorbed by the label specific component, the amount of adsorption of the multicomponent substance composed of the label component and the non-label component on the sensor chip 3 can be measured by measuring the resonance angle.

【0022】次に、蛍光標識分子の濃度を0mg/m
l、0.1mg/ml、0.25mg/ml、0.5m
g/ml、1.0mg/mlと変え、赤色レーザ光、緑
色レーザ光を使用して夫々共鳴角、共鳴角での反射率の
変化を測定した。表5に赤色レーザ光使用時の吸着前後
での標識特定成分濃度に対する共鳴角変化を示す。セン
サーチップ3に吸着された多成分系物質の濃度は何れの
場合も一定の1mg/mlに調整されているため、本
来、共鳴角は一定にならなければならないが、標識特定
成分の濃度が0.5mg/ml、1mg/mlの場合、
濃度が0mg/ml、0.1mg/ml、0.25mg
/mlの場合に比べて共鳴角が変化したが、これはセン
サーチップ3の表面及び標識特定成分に含有された蛍光
基が夫々疎水的であることによりセンサーチップ3への
吸着量が増加したことによる。
Next, the concentration of the fluorescent labeling molecule was set to 0 mg / m
1, 0.1 mg / ml, 0.25 mg / ml, 0.5 m
g / ml and 1.0 mg / ml, and using a red laser beam and a green laser beam, the resonance angle and the change in reflectance at the resonance angle were measured, respectively. Table 5 shows the change in the resonance angle with respect to the concentration of the specific component of the label before and after the adsorption when using the red laser beam. Since the concentration of the multi-component substance adsorbed on the sensor chip 3 is adjusted to a constant value of 1 mg / ml in any case, the resonance angle should originally be constant. In the case of 0.5 mg / ml and 1 mg / ml,
0mg / ml, 0.1mg / ml, 0.25mg
/ Ml, the resonance angle was changed, but this was because the amount of adsorption to the sensor chip 3 increased due to the hydrophobicity of the fluorescent group contained in the surface of the sensor chip 3 and the labeling specific component. by.

【0023】次に、表6に緑色レーザ光使用時の吸着前
後での標識特定成分濃度に対する規格化透過率比を示
す。規格化透過率比は、緑色レーザ光使用時の共鳴角で
の吸着前後の反射率から透過率を求め、吸着後の透過率
を吸着前の透過率で除した値を、更に赤色レーザ光使用
時の共鳴角での吸着前後の反射率から透過率を求め、吸
着後の透過率を吸着前の透過率で除した値で除し求め
た。赤色レーザ光、緑色レーザ光による測定は、干渉フ
ィルター11bにより選択し、ほぼ同時に行った。この
規格化透過率比はセンサーチップ3に吸着された多成分
系物質の吸着量に依存しない吸着前後の透過率比を示し
ている。
Next, Table 6 shows the normalized transmittance ratio with respect to the concentration of the label specific component before and after the adsorption when using the green laser light. The normalized transmittance ratio is obtained by calculating the transmittance from the reflectance before and after adsorption at the resonance angle when using green laser light, dividing the transmittance after adsorption by the transmittance before adsorption, and then using the red laser light. The transmittance was determined from the reflectance before and after the adsorption at the resonance angle at the time, and the transmittance after the adsorption was divided by the value obtained by dividing the transmittance before the adsorption. The measurement using the red laser light and the green laser light was selected by the interference filter 11b and performed almost simultaneously. The normalized transmittance ratio indicates a transmittance ratio before and after the adsorption that does not depend on the amount of adsorption of the multi-component substance adsorbed on the sensor chip 3.

【0024】上記表6から、規格化透過率は多成分系物
質中における標識成分濃度に応じて比例的に減少するた
め、これによりセンサーチップ3に吸着された標識特定
成分の濃度を測定することができた。
From the above Table 6, since the normalized transmittance decreases in proportion to the concentration of the label component in the multi-component substance, the concentration of the label specific component adsorbed on the sensor chip 3 can be measured. Was completed.

【0025】本実施形態は、表面プラズモン共鳴法にお
いて検出しようとする特定成分に対して吸光する波長の
光と、特定成分及び他成分に対して非吸光の光とを使用
して共鳴角の変化を測定することにより多成分系物質中
から特定成分を検出すると共にその濃度を計測すること
ができる。
In the present embodiment, the change in resonance angle is determined by using light having a wavelength that absorbs a specific component to be detected in the surface plasmon resonance method and light that does not absorb the specific component and other components. By measuring the specific component, a specific component can be detected from the multi-component substance and the concentration thereof can be measured.

【0026】上記説明においては、異なる波長の光とし
て特定成分に対して吸着する緑色レーザ光と非吸光の赤
色レーザ光を使用したが、本発明はこれらに限定される
ものではなく、特定成分の吸光特性に応じて異なる波長
の紫外レーザ光等により計測してもよい。
In the above description, green laser light adsorbed to a specific component and red laser light that does not absorb light are used as light of different wavelengths. However, the present invention is not limited to these, and the present invention is not limited thereto. The measurement may be performed using an ultraviolet laser beam having a different wavelength according to the light absorption characteristics.

【0027】[0027]

【発明の効果】このため本発明は、表面プラズモン共鳴
法による特定物質及びその濃度検出を可能にすることが
できる。
According to the present invention, it is possible to detect a specific substance and its concentration by the surface plasmon resonance method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を具体化した検出装置例を示す説明
図である。
FIG. 1 is an explanatory diagram showing an example of a detection device embodying the method of the present invention.

【図2】図1A箇所の拡大図である。FIG. 2 is an enlarged view of a portion of FIG. 1A.

【符号の説明】[Explanation of symbols]

1 SPR計測装置、3 センサーチップ、5 ガラス
板、7a 金薄膜、7b銀薄膜
1 SPR measurement device, 3 sensor chip, 5 glass plate, 7a gold thin film, 7b silver thin film

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

【表6】 [Table 6]

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】ガラス板に金属薄膜が蒸着されたセンサー
チップに吸着された所定波長の光を吸光する特性を有し
た特定成分及び該光の非吸光特性を有した他成分の混合
形態からなる多成分系物質に対し、特定成分及び他成分
に対して非吸光の光を照射してセンサーチップからの反
射光の共鳴角変化に基づいてセンサーチップにおける多
成分系物質の吸着量を計測する、特定成分への吸光特性
を有した光をセンサーチップに照射してセンサーチップ
からの共鳴角に基づいて多成分系物質中における特定成
分を特定すると共にセンサーチップに対する多成分系物
質の吸着前及び後における透過率比により特定成分の濃
度を計測する多成分系物質における特定成分及びその濃
度計測方法。
1. A mixed form of a specific component having a characteristic of absorbing light of a predetermined wavelength adsorbed on a sensor chip having a metal thin film deposited on a glass plate and another component having a non-absorbing characteristic of the light. Irradiating the non-absorbing light to the specific component and other components to the multi-component material, and measuring the adsorption amount of the multi-component material on the sensor chip based on the change in the resonance angle of the reflected light from the sensor chip, By irradiating the sensor chip with light having light absorption characteristics for the specific component, the specific component in the multi-component material is specified based on the resonance angle from the sensor chip, and before and after the adsorption of the multi-component material on the sensor chip. And a method for measuring the concentration of a specific component in a multi-component substance, wherein the concentration of the specific component is measured by a transmittance ratio in the method.
【請求項2】請求項1において、センサーチップに蒸着
される金属薄膜は、金薄膜及び銀薄膜からなる多成分系
物質における特定成分及びその濃度計測方法。
2. A method according to claim 1, wherein the metal thin film deposited on the sensor chip is a specific component in a multi-component substance comprising a gold thin film and a silver thin film, and a method for measuring the concentration thereof.
【請求項3】請求項1において、センサーチップはガラ
ス板の金属薄膜非蒸着面にプリズムを設け、所要の入射
角度幅で平行光線化した光を金属薄膜と吸着された多成
分系物質との界面にて集光可能にさせると共にセンサー
チップからの反射光を所要の角度に拡開可能にした多成
分系物質における特定成分及びその濃度計測方法。
3. The sensor chip according to claim 1, wherein the sensor chip is provided with a prism on the surface of the glass plate on which the metal thin film is not deposited, and converts the parallel light with a required incident angle width into a multi-component material adsorbed by the metal thin film. A method for measuring a specific component in a multi-component material and its concentration, wherein the light can be collected at an interface and the reflected light from a sensor chip can be spread at a required angle.
【請求項4】請求項1において、特定成分には特定波長
の光を吸収する吸光物質を付加して吸光可能にした特定
成分及びその濃度計測方法。
4. The method for measuring the concentration of a specific component according to claim 1, wherein the specific component is made absorbable by adding a light-absorbing substance that absorbs light of a specific wavelength.
【請求項5】請求項4において、吸光物質は蛍光物質か
らなる特定成分及びその濃度計測方法。
5. The method according to claim 4, wherein the light-absorbing substance is a specific component consisting of a fluorescent substance and its concentration measurement method.
【請求項6】請求項4において、吸光物質は金属物質か
らなる特定成分及びその濃度計測方法。
6. The method according to claim 4, wherein the light-absorbing substance is a specific component comprising a metal substance and its concentration measurement method.
JP5592498A 1998-02-20 1998-02-20 Specified constituent and its concentration measurement method for multiple-constituent substance Pending JPH11237337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5592498A JPH11237337A (en) 1998-02-20 1998-02-20 Specified constituent and its concentration measurement method for multiple-constituent substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5592498A JPH11237337A (en) 1998-02-20 1998-02-20 Specified constituent and its concentration measurement method for multiple-constituent substance

Publications (1)

Publication Number Publication Date
JPH11237337A true JPH11237337A (en) 1999-08-31

Family

ID=13012663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5592498A Pending JPH11237337A (en) 1998-02-20 1998-02-20 Specified constituent and its concentration measurement method for multiple-constituent substance

Country Status (1)

Country Link
JP (1) JPH11237337A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040272A1 (en) * 2002-11-01 2004-05-13 Takuo Tanaka Surface plasmon fluorescence microscope, and method of measuring fluorescence excited by surface plasmon
KR100633333B1 (en) 2005-02-23 2006-10-12 주식회사 하이닉스반도체 Composition Calculation Method for Multi Component Thin Film by Atomic Layer Deposition
US8148140B2 (en) 2006-05-12 2012-04-03 Canon Kabushiki Kaisha Target substance detecting element, target substance detecting apparatus, and target substance detecting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040272A1 (en) * 2002-11-01 2004-05-13 Takuo Tanaka Surface plasmon fluorescence microscope, and method of measuring fluorescence excited by surface plasmon
KR100633333B1 (en) 2005-02-23 2006-10-12 주식회사 하이닉스반도체 Composition Calculation Method for Multi Component Thin Film by Atomic Layer Deposition
US8148140B2 (en) 2006-05-12 2012-04-03 Canon Kabushiki Kaisha Target substance detecting element, target substance detecting apparatus, and target substance detecting method

Similar Documents

Publication Publication Date Title
FI76432B (en) FARING REQUIREMENTS FOR THE CONSTITUTION OF THE ELEMENT I LOESNING MED EN LJUSLEDARE.
US5986754A (en) Medical diagnostic apparatus using a Fresnel reflector
JP4623522B2 (en) Read head for optical inspection equipment
JP3786073B2 (en) Biochemical sensor kit and measuring device
JPS59501873A (en) Immunoassay device and method
RU2519505C2 (en) Sensor device for target substance identification
JPH04233465A (en) Scattered-light detecting immunoassay
JP6536413B2 (en) Surface plasmon resonance fluorescence analyzer and surface plasmon resonance fluorescence analysis method
JP2019007987A (en) Surface plasmon resonance fluorescence spectroscopy
JP3947685B2 (en) Apparatus for surface plasmon resonance and fluorescence polarization measurement
JP2004170217A (en) Coloration measuring apparatus
US8932880B2 (en) Method for the direct measure of molecular interactions by detection of light reflected from multilayered functionalized dielectrics
JPH01213552A (en) Improved reflection photometer
JP2010210378A (en) Sensing method and sensing kit to be used of the same
JP2005030830A (en) Optical multiplexer/demultiplexer for fluorometric analysis, optical module for fluorometric analysis, fluorometric analysis apparatus, fluorescence/photothermal spectral analysis apparatus, and chip for fluorometric analysis
JPWO2016170967A1 (en) Detection chip manufacturing method and detection chip
JP2020535403A (en) Autofluorescent quenching assay and equipment
JPH11237337A (en) Specified constituent and its concentration measurement method for multiple-constituent substance
JPH07243973A (en) Detecting material for acid gas or alkaline gas, manufacture thereof, and detecting device therefor
JP2008051822A (en) Chemical analyzer
JP3274049B2 (en) Optical measurement of liquids in porous materials.
JPS61502418A (en) Optical analysis method and device
US20060128034A1 (en) Diagnostic test using gated measurement of fluorescence from quantum dots
JP2011089917A (en) Testpiece housing and immunochromatographic device for concentration measurement
JP2003098078A (en) Sample concentration measuring device