JPH11237315A - Measuring method for local concentration air-fuel mixture - Google Patents

Measuring method for local concentration air-fuel mixture

Info

Publication number
JPH11237315A
JPH11237315A JP3828598A JP3828598A JPH11237315A JP H11237315 A JPH11237315 A JP H11237315A JP 3828598 A JP3828598 A JP 3828598A JP 3828598 A JP3828598 A JP 3828598A JP H11237315 A JPH11237315 A JP H11237315A
Authority
JP
Japan
Prior art keywords
intensity
concentration
emission
fuel mixture
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3828598A
Other languages
Japanese (ja)
Inventor
Kazunari Kuwabara
一成 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP3828598A priority Critical patent/JPH11237315A/en
Publication of JPH11237315A publication Critical patent/JPH11237315A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Testing Of Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a measuring method by which the concentration of an air-fuel mixture existing around a spark plug in the ignition time can be estimated, by performing a spectrum analysis regarding the OH band and the CN band of an ignition emission. SOLUTION: An ignition emission in the discharge moment of a spark plug 100 is diffracted by a diffraction grating 200, and its spectrum is detected by a spectroscopic analyzer 300. Since the spark plug 100 is placed inside the cylinder of an engine, a window is formed in the cylinder, and it is required to guide the ignition emission to the diffraction grating 200 and the spectroscopic analyzer 300 via an optical system such as an optical fiber or the like. A value which is detected by the spectroscopic analyzer 300 is amplified by an amplifier 400, it is stored in a memory 500, and it is normalized by a computing unit 600 by using the emission of NO2 , and the ratio of a CN intensity to an OH intensity is found. In addition, the OH intensity and the CN intensity use a value in which the emission intensity of NO2 in a lower slope part is removed. The value is changed by depending on the concentration of an air-fuel mixture. Then, when the ratio of the CN intensity to the OH intensity and the concentration of the air-fuel mixture are found in advance, the concentration of the air-fuel mixture near the spark plug 100 can be estimated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、局所混合気濃度計
測法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a local concentration of an air-fuel mixture.

【0002】[0002]

【従来の技術】従来技術の局所空燃比検出装置(例え
ば、特開平1−247740号公報)では、100μ秒
オーダー以下で火炎の化学発光のスペクトルを分光分析
し、ピーク電圧Vo,VEを計測して空燃比A/Fを推測
しているが、スートが生成する条件ではスートからの固
体熱放射が化学発光の妨害となるため適用し難い。
2. Description of the Related Art In a conventional local air-fuel ratio detecting device (for example, Japanese Patent Application Laid-Open No. 1-247740), the spectrum of flame chemiluminescence is analyzed in the order of 100 μs or less, and peak voltages V o and V E are determined. Although the air-fuel ratio A / F is estimated by measurement, it is difficult to apply it under conditions where soot is generated, since solid heat radiation from the soot interferes with chemiluminescence.

【0003】その他の光学的計測法としては、燃料中に
蛍光剤を添加して、レーザーで蛍光剤を発光させるとい
うレーザ誘起蛍光法(LIF)が提案されている。この
レーザ誘起蛍光法は、レーザにより蛍光剤を誘起して蛍
光を計測する方法であるが、レーザー光強度に対して、
どれだけ蛍光が出てくるかという量子的な効率が雰囲気
温度に依存するため、温度分布差を伴う状態で定量的な
値を求めることが困難である。
As another optical measurement method, a laser-induced fluorescence (LIF) method in which a fluorescent agent is added to fuel and the fluorescent agent emits light with a laser has been proposed. This laser-induced fluorescence method is a method of measuring fluorescence by inducing a fluorescent agent with a laser.
Since the quantum efficiency of how much fluorescence is emitted depends on the ambient temperature, it is difficult to obtain a quantitative value in a state involving a temperature distribution difference.

【0004】特に、燃料が蒸発した状態でシリンダ内に
入ってくる通常のエンジンでは温度分布は比較的問題に
ならないが、シリンダ内で燃料を噴射した後にその蒸発
が進む火花点火式ガソリン筒内噴射エンジンでは、シリ
ンダ内に蒸発潜熱に基づく温度分布が生じ、その温度分
布の補正ができないことから、レーザ誘起蛍光法による
定量的な計測が困難となっていた。また、レーザをシリ
ンダ内に導入するための窓や蛍光を観測するための窓を
設ける必要があり、大幅に改造した可視化エンジンを用
いなければならない。
[0004] In particular, in a normal engine in which fuel enters the cylinder in a state where the fuel has evaporated, the temperature distribution is relatively insignificant, but the fuel is injected in the cylinder and then the evaporation proceeds after the fuel is injected. In the engine, a temperature distribution is generated in the cylinder based on latent heat of vaporization, and the temperature distribution cannot be corrected. Therefore, it has been difficult to perform a quantitative measurement by the laser-induced fluorescence method. Further, it is necessary to provide a window for introducing the laser into the cylinder and a window for observing the fluorescence, and a significantly modified visualization engine must be used.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術に鑑みてなされたものであり、光学的計測のためのエ
ンジンの大幅な改造が不要であり、シリンダ内の温度分
布にも影響を受け難く、スートが生成する条件にも適用
可能な、点火プラグ近傍の局所的な混合気濃度を計測で
きる光学的な計測法を提供することを目的とする。即
ち、本発明は、火花点火にともなう発光のスペクトル形
状が点火プラグ周辺の混合気濃度に依存することを利用
して、点火時期に点火プラグ周辺に存在する混合気の濃
度を求める新しい計測法を提案するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned prior art, and does not require a major modification of an engine for optical measurement, and does not affect the temperature distribution in the cylinder. It is an object of the present invention to provide an optical measurement method that can measure a local concentration of an air-fuel mixture in the vicinity of a spark plug, which is hard to receive and can be applied to conditions for generating soot. That is, the present invention provides a new measurement method for determining the concentration of the mixture present around the spark plug at the ignition timing by utilizing the fact that the spectral shape of the light emission accompanying spark ignition depends on the mixture concentration around the spark plug. It is a suggestion.

【0006】[0006]

【課題を解決するための手段】斯かる目的を達成する本
発明の請求項1に係る局所混合気濃度計測法は、点火発
光のスペクトル解析を行うことにより、点火時期に点火
プラグ周辺に存在する混合気の濃度を推定することを特
徴とする。また、上記目的を達成する本発明の請求項2
に係る局所混合気濃度計測法は、請求項1において、O
H band 及びCN band についてスペクトル解析を行う
ことを特徴とする。
According to a first aspect of the present invention, there is provided a method for measuring the concentration of a gaseous mixture in a fuel supply system, comprising: analyzing a spectrum of ignition light emission; It is characterized by estimating the concentration of the air-fuel mixture. Further, claim 2 of the present invention for achieving the above object.
The method for measuring the concentration of a local mixture in accordance with
It is characterized in that spectrum analysis is performed for H band and CN band.

【0007】(作用)本発明は、火炎ではなく、スパー
ク放電(絶縁破壊)の瞬間のスペクトルの特性に基づい
て混合気の濃度を推定するものであり、従来の光学的計
測法が、燃料が燃焼する際の発光のスペクトルを分析す
る方法であるのと異なっている。即ち、シリンダ内で火
炎がまだ生成されず、燃料である炭化水素と酸素と窒素
が存在するなかに高電圧を掛けて、絶縁破壊が起こった
ときに、何らかの化学生成物(化学種)が生成するの
で、それの発光を検出し、混合気の濃度を推測するもの
である。
(Function) The present invention estimates the concentration of an air-fuel mixture based on the characteristics of the spectrum at the moment of spark discharge (dielectric breakdown) instead of the flame. This is different from the method of analyzing the spectrum of light emission when burning. That is, when a flame is not yet generated in the cylinder and a high voltage is applied in the presence of hydrocarbons, oxygen and nitrogen as fuel, and a dielectric breakdown occurs, some chemical product (chemical species) is generated. Therefore, the light emission is detected and the concentration of the air-fuel mixture is estimated.

【0008】そのスペクトル解析の一例を図1(a)
(b)に示す。混合気中のスパーク光は、主にOH ban
d とCH band のピーキィなスペクトルとNO2の生成
に基づくブロードなスペクトルによって構成されてい
る。図1(a)は点火発光のスパーク光のスペクトルを
示すグラフ、図1(b)はエンジンに均一な混合気を供
給した場合の混合気濃度とCN強度/OH強度の関係を
示すグラフである。なお、混合気濃度は、理論空燃比に
対する空燃比の割合である当量比(Equivalence Ratio
)で示してある。図1(a)は、スペクトル形状は時
間とともに変化するが、CN band の発光強度が最大に
なる時間のデータを示している。また、スパーク光の強
度には、サイクル変動があるので、NO2のスペクトル
用いて、発光強度を正規化してある。図1(a)は、横
軸が波長(Wavelength nm)、縦軸が分光器の出力(Outp
ut of OMA)である。また、混合気濃度は、下段に行くほ
ど濃度が濃くなる。
FIG. 1A shows an example of the spectrum analysis.
(B). The spark light in the mixture is mainly OH ban
It is composed of a peaky spectrum of d and CH band and a broad spectrum based on generation of NO 2 . FIG. 1A is a graph showing a spectrum of spark light of ignition light emission, and FIG. 1B is a graph showing a relationship between a mixture concentration and a CN intensity / OH intensity when a uniform mixture is supplied to an engine. . Note that the mixture concentration is an equivalence ratio (Equivalence Ratio) which is a ratio of an air-fuel ratio to a stoichiometric air-fuel ratio.
). FIG. 1A shows data of a time when the emission intensity of the CN band is maximized, while the spectrum shape changes with time. Further, since the intensity of the spark light has a cycle variation, the emission intensity is normalized using the NO 2 spectrum. In FIG. 1A, the horizontal axis represents the wavelength (Wavelength nm), and the vertical axis represents the output (Outp) of the spectroscope.
ut of OMA). Further, the concentration of the air-fuel mixture becomes higher as it goes down.

【0009】ここで、混合気濃度が高くなるほど、波長
306nmにおけるOH band の発光強度は低くなるの
に対し、波長390nmにおけるCN band の発光強度
は高くなっている。
Here, as the mixture concentration increases, the emission intensity of the OH band at a wavelength of 306 nm decreases, whereas the emission intensity of the CN band at a wavelength of 390 nm increases.

【0010】従って、OH band 及びCN band の発光
強度と混合気濃度との間に何らかの一定の関係があり、
これを利用すれば、混合気濃度が推定されると理解され
る。
Therefore, there is a certain relation between the emission intensity of the OH band and the CN band and the mixture concentration,
It is understood that the mixture concentration is estimated by using this.

【0011】そこで、OH band 及びCN band の発光
強度から裾野部分のNO2の発光強度を除去した値を、
CN強度(CN intensity)とOH強度(OH intensi
ty)とそれぞれ定義し、その比を取って、図1(b)に
示すように混合気濃度と比較した。その結果から明らか
なように、混合気濃度の割合が高くなるに従って、CN
強度/OH強度の比が大きくなる傾向にある。
Therefore, the value obtained by removing the emission intensity of NO 2 at the foot from the emission intensity of the OH band and the CN band is
CN intensity and OH intensi
ty), and their ratios were taken and compared with the mixture concentration as shown in FIG. 1 (b). As is clear from the results, as the ratio of the mixture concentration becomes higher, the CN becomes higher.
The ratio of strength / OH strength tends to increase.

【0012】この結果を利用し、CN強度/OH強度の
比と混合気濃度の割合との関係を予め求めてマップ化
し、或いは、その関数を求めておけば、図1(a)に示
すスペクトルを計測することにより、縦軸であるCN強
度/OH強度の比から横軸である混合気濃度を推定でき
ることになる。また、図1(a)に示すように、NO2
の発光を用いてスペクトル強度を正規化しておけば、O
H band 又はCN band の発光強度の何れか一方のみを
利用しても、混合気濃度を推定することも可能である
が、OH band の発光強度(OH強度)は発光強度の変
動がCN band の発光強度(CN強度)に比較して小さ
いため、CN band の発光強度を利用することが望まし
いと言える。
If the relationship between the ratio of the CN intensity / OH intensity and the ratio of the gas-fuel mixture concentration is determined in advance and mapped, or if its function is determined, the spectrum shown in FIG. Is measured, the mixture concentration on the horizontal axis can be estimated from the ratio of CN intensity / OH intensity on the vertical axis. Further, as shown in FIG. 1 (a), NO 2
If the spectral intensity is normalized using the emission of
It is possible to estimate the mixture concentration by using only one of the emission intensity of the H band and the CN band. However, the emission intensity (OH intensity) of the OH band has a variation in the emission intensity of the CN band. Since the emission intensity is smaller than the emission intensity (CN intensity), it can be said that it is desirable to use the emission intensity of the CN band.

【0013】スペクトル形状は、時間変化するため、C
Nの発光が最大となるタイミングで、しかも、燃焼が起
こらず放電が起こっている間のスペクトル解析すること
が必要である。尚、CN band 又はOH band と表現し
たのは、CN又はOHであるとは分光学的に同定できな
いが、CN又はOHと推定されることからこのような表
現とした。
Since the spectrum shape changes with time, C
It is necessary to analyze the spectrum at the timing when the emission of N is maximum and while the combustion is occurring and the discharge is occurring. The expression CN band or OH band cannot be spectroscopically identified as CN or OH, but is expressed as CN or OH because it is presumed to be CN or OH.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の態様につい
て、図面を参照して具体的に説明する。本発明の一実施
例に係る局所混合気濃度計測方法は図2に示す装置によ
り実施される。
Embodiments of the present invention will be specifically described below with reference to the drawings. The local gas mixture concentration measuring method according to one embodiment of the present invention is implemented by the apparatus shown in FIG.

【0015】この装置は、点火発光のスペクトル解析を
行うことにより、点火時期に点火プラグ周辺に存在する
混合気の濃度を求めるものである。即ち、点火プラグ1
00の放電瞬間における点火発光を回折格子200で回
折し、分光検出器300でそのスペクトルを検出する。
This device determines the concentration of the air-fuel mixture present around the spark plug at the ignition timing by performing a spectrum analysis of the ignition light emission. That is, the spark plug 1
The ignition light emission at the discharge instant of 00 is diffracted by the diffraction grating 200, and the spectrum is detected by the spectral detector 300.

【0016】点火プラグ100は、エンジンのシリンダ
内に装着されるので、シリンダには窓を設けて、光ファ
イバ等の光学系を介して回折格子200、分光検出器3
00へ導く必要がある。シリンダ内の改造の度合は必要
最低限で良い。
Since the spark plug 100 is mounted in the cylinder of the engine, the cylinder is provided with a window, and the diffraction grating 200 and the spectral detector 3 are provided through an optical system such as an optical fiber.
Need to lead to 00. The degree of modification in the cylinder is the minimum required.

【0017】分光分析器300で検出された値は、アン
プ400で増幅され、メモリ500で記憶された後、演
算器600にてNO2の発光を用いて正規化され、CN
強度/OH強度の比を求める。
The value detected by the spectrometer 300 is amplified by the amplifier 400, stored in the memory 500, normalized by the calculator 600 using the emission of NO 2 , and
Determine the ratio of strength / OH strength.

【0018】なお、OH強度とCN強度は裾野部分のN
2の発光強度を除去した値を用いる。その値は、図1
(a)に示すように、混合気濃度に依存して変化してい
る。そこで、そのCN強度/OH強度の比と混合気濃度
を、図1(b)に示すように予め求めておけば、点火プ
ラグ近傍における混合気濃度を推定することが可能とな
る。
The OH intensity and CN intensity are determined by the N
A value obtained by removing the emission intensity of O 2 is used. The values are shown in FIG.
As shown in (a), it changes depending on the mixture concentration. Therefore, if the ratio of the CN intensity / OH intensity and the mixture concentration are obtained in advance as shown in FIG. 1B, the mixture concentration in the vicinity of the ignition plug can be estimated.

【0019】このようにして求めた混合気濃度は、出力
や燃費との関係において最適となるように調整される。
特に、火花点火式ガソリン筒内噴射エンジンにおいて
は、噴射時期を変えると混合気濃度を変えられるので、
点火プラグ近傍に適切な濃度の混合気を形成することが
重要であるが、上述したように混合気濃度を計測するこ
とができれば、精度の高いエンジン制御に応用可能とな
る。
The mixture concentration thus obtained is adjusted so as to be optimal in relation to the output and fuel consumption.
In particular, in a spark ignition gasoline cylinder injection engine, changing the injection timing can change the mixture concentration,
It is important to form an air-fuel mixture having an appropriate concentration in the vicinity of the spark plug. However, if the air-fuel mixture concentration can be measured as described above, it can be applied to highly accurate engine control.

【0020】尚、上述した実施例では、OH強度とCN
強度の比を用いるが、NO2の発光を用いてスペクトル
強度を正規化しておけば、OH強度又はCN強度の何れ
か一方を用いても混合気濃度を検出可能である。
In the above embodiment, the OH intensity and CN
Although the intensity ratio is used, if the spectral intensity is normalized using the emission of NO 2 , the mixture concentration can be detected using either the OH intensity or the CN intensity.

【0021】以上の実施例では、各発光強度における裾
野部分を除去した値を用いているが、厳密性よりも簡便
性を重視すれば、裾野部分を除去せずに、混合気濃度を
推定しても良い。この場合、分光器を用いてスペクトル
の形を完全に求める必要がなくなり、OH band とCN
band の中心波長と、NO2 band の代表的な波長のバ
ンドパスフィルターを用いて光電素子でスペクトル強度
を求めれば良い。即ち、代表的なスペクトル強度だけ求
めれば良い。NO2 band の代表的なスペクトル強度は
データの正規化のために用いられる。
In the above embodiment, the value obtained by removing the tail portion in each light emission intensity is used. However, if importance is placed on simplicity rather than strictness, the mixture concentration is estimated without removing the tail portion. May be. In this case, there is no need to completely determine the shape of the spectrum using a spectroscope, and the OH band and CN
The spectral intensity may be obtained by a photoelectric element using a band-pass filter having a center wavelength of the band and a typical wavelength of the NO 2 band. That is, only the representative spectrum intensity needs to be obtained. The typical spectral intensity of NO 2 band is used for data normalization.

【0022】[0022]

【発明の効果】以上、詳細に説明したように、本発明は
点火発光のスペクトル解析するので、火炎発光をスペク
トル解析する従来技術に比較して極めて簡単な計測法で
ある。特に、点火発光を計測するため、エンジンに窓を
設ける必要があるが、改造の度合は極めて小さいという
利点がある。また、蛍光剤の蛍光を測定しないため、シ
リンダ内における温度分布があった場合にも、正確な混
合気濃度の推定が可能となる。また、OH band 及びC
N band について、スペクトル解析を行い、裾野部分を
除去した発光強度の比と混合気濃度との関係から混合気
濃度を推定することにより、スパークによる変動や分光
器の感度の依存性による影響を排除して精度の高い計測
が可能となる。
As described above in detail, the present invention analyzes the spectrum of ignition light emission, so that it is a much simpler measurement method than the conventional technique of spectrum analysis of flame light emission. Particularly, in order to measure ignition light emission, it is necessary to provide a window in the engine, but there is an advantage that the degree of modification is extremely small. Further, since the fluorescence of the fluorescent agent is not measured, it is possible to accurately estimate the mixture concentration even when there is a temperature distribution in the cylinder. Also, OH band and C
By analyzing the spectrum of N band and estimating the mixture concentration from the relationship between the emission intensity ratio and the mixture concentration with the tail removed, the effects of fluctuations due to sparks and dependence on the sensitivity of the spectrometer are eliminated. As a result, highly accurate measurement becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)は、エンジンの混合気濃度とCN強
度/OH強度の関係を示すグラフ、図1(b)は典型的
なスパーク光のスペクトルを示すグラフである。
FIG. 1A is a graph showing the relationship between the mixture concentration of an engine and CN intensity / OH intensity, and FIG. 1B is a graph showing a typical spark light spectrum.

【図2】本発明の一実施例に係る局所混合気濃度計測法
に係る装置を示すブロック図である。
FIG. 2 is a block diagram showing an apparatus according to a local gas mixture concentration measuring method according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

100 点火プラグ 200 回折格子 300 分光検出器 400 アンプ 500 メモリ 600 演算器 Reference Signs List 100 spark plug 200 diffraction grating 300 spectral detector 400 amplifier 500 memory 600 arithmetic unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 点火発光のスペクトル解析を行うことに
より、点火時期に点火プラグ周辺に存在する混合気の濃
度を推定することを特徴とする局所混合気濃度計測法。
1. A local air-fuel mixture concentration measuring method characterized by estimating the concentration of an air-fuel mixture present around an ignition plug at an ignition timing by performing spectrum analysis of ignition light emission.
【請求項2】 前記スペクトル解析は、OH band 及び
CN band について行うことを特徴とする請求項1記載
の局所混合気濃度計測法。
2. The local mixed gas concentration measuring method according to claim 1, wherein the spectrum analysis is performed on OH band and CN band.
JP3828598A 1998-02-20 1998-02-20 Measuring method for local concentration air-fuel mixture Withdrawn JPH11237315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3828598A JPH11237315A (en) 1998-02-20 1998-02-20 Measuring method for local concentration air-fuel mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3828598A JPH11237315A (en) 1998-02-20 1998-02-20 Measuring method for local concentration air-fuel mixture

Publications (1)

Publication Number Publication Date
JPH11237315A true JPH11237315A (en) 1999-08-31

Family

ID=12521048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3828598A Withdrawn JPH11237315A (en) 1998-02-20 1998-02-20 Measuring method for local concentration air-fuel mixture

Country Status (1)

Country Link
JP (1) JPH11237315A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528607B2 (en) 2005-02-15 2009-05-05 Southwest Research Institute Measurement of CN emissions from engine spark igniter for characterization of spark igniter energy
JP2010071271A (en) * 2008-09-22 2010-04-02 Imagineering Inc Fuel concentration measuring device, fuel concentration measuring method, and method of preparing calibration curve therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528607B2 (en) 2005-02-15 2009-05-05 Southwest Research Institute Measurement of CN emissions from engine spark igniter for characterization of spark igniter energy
JP2010071271A (en) * 2008-09-22 2010-04-02 Imagineering Inc Fuel concentration measuring device, fuel concentration measuring method, and method of preparing calibration curve therefor

Similar Documents

Publication Publication Date Title
Phuoc et al. Laser-induced spark for measurements of the fuel-to-air ratio of a combustible mixture
Ferioli et al. Laser-induced breakdown spectroscopy for on-line engine equivalence ratio measurements
Yamada et al. Kinetic measurements in homogeneous charge compression of dimethyl ether: role of intermediate formaldehyde controlling chain branching in the low-temperature oxidation mechanism
Tripathi et al. A comparison of multivariate LIBS and chemiluminescence-based local equivalence ratio measurements in premixed atmospheric methane–air flames
US7619742B2 (en) High-speed spectrographic sensor for internal combustion engines
Joshi et al. Laser-induced breakdown spectroscopy for in-cylinder equivalence ratio measurements in laser-ignited natural gas engines
Phuoc Laser-induced spark for simultaneous ignition and fuel-to-air ratio measurements
Letty et al. Comparison of electrical and laser spark emission spectroscopy for fuel concentration measurements
Bengtsson et al. Vibrational CARS thermometry in sooty flames: quantitative evaluation of C2 absorption interference
Zhang et al. Influence of the pressure and temperature on laser induced breakdown spectroscopy for gas concentration measurements
Alessandretti et al. Thermometry by CARS in an automobile engine
Bengtsson et al. Combined vibrational and rotational CARS for simultaneous measurements of temperature and concentrations of fuel, oxygen, and nitrogen
Sandrowitz et al. Flame emission spectroscopy for equivalence ratio monitoring
Qi et al. A three-color absorption/scattering imaging technique for simultaneous measurements on distributions of temperature and fuel concentration in a spray
Li et al. Strategy for single-shot CH3 imaging in premixed methane/air flames using photofragmentation laser-induced fluorescence
Aizawa et al. Investigation of early soot formation process in a diesel spray flame via excitation—emission matrix using a multi-wavelength laser source
Wermuth et al. Absorption and fluorescence data of acetone, 3-pentanone, biacetyl, and toluene at engine-specific combinations of temperature and pressure
EP3441750A1 (en) Method for isotopic measurement
JP5150824B2 (en) Fuel concentration measuring device, fuel concentration measuring method, and calibration curve preparing method therefor
JPH11237315A (en) Measuring method for local concentration air-fuel mixture
Merer et al. Spark spectroscopy for spark ignition engine diagnostics
Jamette et al. Laser induced fluorescence detection of NO in the combustion chamber of an optical GDI engine with AX (0, 1) excitation
Knapp et al. Quantitative in-cylinder NO LIF measurements with a KrF excimer laser applied to a mass-production SI engine fueled with isooctane and regular gasoline
JP2004019517A (en) Cylinder inside observing device of internal combustion engine
Brüggemann et al. CARS spectroscopy for temperature and concentration measurements in a spark ignition engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510