JPH11236403A - Vulcanizing and molding of foamed vulcanized rubber - Google Patents

Vulcanizing and molding of foamed vulcanized rubber

Info

Publication number
JPH11236403A
JPH11236403A JP10039385A JP3938598A JPH11236403A JP H11236403 A JPH11236403 A JP H11236403A JP 10039385 A JP10039385 A JP 10039385A JP 3938598 A JP3938598 A JP 3938598A JP H11236403 A JPH11236403 A JP H11236403A
Authority
JP
Japan
Prior art keywords
vulcanization
vulcanized rubber
rubber
foamed
molding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10039385A
Other languages
Japanese (ja)
Inventor
Hidetoshi Matsuzawa
秀年 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP10039385A priority Critical patent/JPH11236403A/en
Publication of JPH11236403A publication Critical patent/JPH11236403A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vulcanizing and molding method of a highly foamed vulcanized rubber (e.g. a motocross tire tube) by which the productivity at the vulcanizing and molding process is extremely improved while keeping properties of a highly foamed massive rubber product. SOLUTION: A foamable non-vulcanized rubber is pressurized and heated with a mold as the primary vulcanization to provide a previously vulcanized rubber molding product, and the previously vulcanized rubber molding product is vulcanized by a high frequency dielectric heating as the secondary vulcanization in the method for vulcanizing and molding the foamed and vulcanized molding product. In the other aspect, the foamable non-vulcanized rubber is formed into the previously vulcanized rubber molding product by the high frequency dielectric heating, and the previously vulcanized rubber molding product is pressurized and heated by the mold to vulcanize the previously vulcanized rubber molding product as the secondary vulcanization.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はモトクロスタイヤチ
ューブのような厚肉高発泡加硫ゴム物品の加硫成形方法
に関し、詳しくは金型加硫と高周波誘電加熱を併用し
て、厚肉高発泡未加硫ゴムを加硫することにより、加硫
成形後におけるゴム物品は厚肉の表層部から中心部の全
厚さにわたり、加硫度(分布)が均一化され、所定の物
性(分布)、発泡率(分布)が均一化され、それに伴っ
て、表層近くのブロー防止、変形の均一化による乗り心
地及び耐久性に優れており、同時にこのゴム物品の加硫
成形では短時間の高能率な加硫成形を可能とし、この工
程全般にわたる生産性を大幅に向上させることに寄与す
る厚肉高発泡加硫ゴム物品の加硫成形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vulcanization molding method for a thick and highly foamed vulcanized rubber article such as a motocross tire tube. By vulcanizing the unvulcanized rubber, the degree of vulcanization (distribution) of the rubber article after vulcanization molding is uniform from the thick surface layer to the entire thickness of the central part, and the predetermined physical properties (distribution) In addition, the foaming rate (distribution) is made uniform, and accordingly, the prevention of blow near the surface layer, the uniformity of deformation and the riding comfort and durability are excellent, and at the same time, the vulcanization molding of this rubber article has a high efficiency in a short time. The present invention relates to a vulcanization molding method for a thick-walled high-foamed vulcanized rubber article that enables highly vulcanization molding and contributes to greatly improving the productivity throughout this process.

【0002】[0002]

【従来の技術】モトクロスタイヤ等のチューブはノーパ
ンクが必要であるがそのノーパンク性能を得る方法とし
て、高発泡チューブを使用することが知られている。こ
のような高発泡チューブは厚肉であるので、これを加硫
する前の押出し後の未加硫ゴムは厚肉となる。
2. Description of the Related Art It is known that a tube such as a motocross tire requires no puncture, and as a method of obtaining the no puncture performance, a highly foamed tube is used. Since such a highly foamed tube is thick, the unvulcanized rubber after extrusion before vulcanization becomes thick.

【0003】この厚肉高発泡未加硫ゴムをその表面から
の熱伝導のみに依存して加硫成形する従来一般の方法、
例えば金型加硫方法、金型加硫後オープン加硫方法では
加熱される表層部から中心部へ行くに従って、ゴム特有
の著しく小さい熱伝導率のため表層部に比し中心部の温
度上昇が大幅に遅れるが慣例として、この難昇温の中心
部が適正加硫度(期待し得る最も望ましい物性を示す加
硫度)に達するまで加硫成形のための加熱を継続する必
要があった。
[0003] A conventional general method of vulcanizing and molding this thick, highly foamed unvulcanized rubber only by heat conduction from its surface,
For example, in the mold vulcanization method and the open vulcanization method after the mold vulcanization, the temperature rise in the central part is higher than that in the surface part due to the remarkably small thermal conductivity inherent in rubber from the heated surface part to the center part. As a rule, it is necessary to continue heating for vulcanization molding until the center of the difficult temperature rise reaches a proper degree of vulcanization (a degree of vulcanization exhibiting the most desirable physical properties that can be expected).

【0004】その場合、難昇温の中心部から表層部に向
かうにつれて、次第に加硫度が増大するので表層部に、
より近い部分ほど著しい過加硫状態を示す。すなわち、
表層部と中心部で加硫度が大幅に異なり、これに応じ
て、厚さ方向に物性及び発泡率に不均一分布が生じ、例
えば表層部が軟化し、表層部分の走行時のひずみが著し
くなり、その部分の耐久性が劣る結果となる。
In this case, the degree of vulcanization gradually increases from the center of the difficult temperature rise to the surface layer.
The closer part shows a remarkable over-vulcanization state. That is,
The degree of vulcanization is significantly different between the surface layer and the center, and accordingly, uneven distribution of physical properties and foaming ratio occurs in the thickness direction, for example, the surface layer is softened, and the distortion of the surface layer during running is remarkable. As a result, the durability of the portion is deteriorated.

【0005】厚肉高発泡未加硫ゴムの従来の加硫成形方
法において、さらに付言すれば、一次金型予備加硫の後
では加硫ゴムはすでに発泡体になっているため、オープ
ン熱加硫において、熱伝導はさらに低くなっている。結
果として、オープン熱加硫で、中心部まで熱を到達させ
るためには長時間を要し、表層部はかなり過加硫状態と
なり、例えば空気雰囲気下では、表層部の熱老化がかな
り進行するという問題がある。また、厚肉高発泡未加硫
ゴムの従来の他の加硫成形方法において、上記オープン
熱加硫を実施せず、金型加硫のみで加硫成形する方法で
も、表層部の過加硫状態及びそれに伴う性能の低下が問
題となり、さらに、生産性向上のため、より高温の金型
加硫を実施しようとする場合にはこの傾向は一層顕著と
なる。上記にような性能低下を最小限に止めるには低温
長時間の加硫成形が余儀なくされるため、生産性が著し
く損なわれる問題が生じ、よってこれら過加硫及び生産
性低下の同時改善が従来から強く求められてきた。
[0005] In the conventional vulcanization molding method of thick-wall high-foamed unvulcanized rubber, it is further added that after the primary mold pre-vulcanization, the vulcanized rubber is already in the form of a foam, so that open heat vulcanization is performed. In sulfur, the thermal conductivity is even lower. As a result, in open heat vulcanization, it takes a long time to reach heat to the center, and the surface layer becomes considerably over-vulcanized.For example, under an air atmosphere, thermal aging of the surface layer considerably progresses There is a problem. Also, in another conventional vulcanization molding method of a thick-wall high-foamed unvulcanized rubber, the vulcanization molding using only the mold vulcanization without performing the above-mentioned open heat vulcanization also involves overvulcanization of the surface layer portion. The problem of deterioration of the state and the resulting performance is a problem, and this tendency becomes more remarkable when vulcanizing the mold at a higher temperature to improve productivity. In order to minimize the performance deterioration as described above, vulcanization molding at a low temperature and for a long time is inevitable, resulting in a problem that productivity is significantly impaired. Has been strongly sought after.

【0006】この改善の最も簡便な手段として、室温よ
り高いが、加硫温度に比し大幅に低い雰囲気とした予備
加熱室内にて、厚肉高発泡未加硫ゴムを全体にわたり、
ほぼ均一な温度に達するまで加熱する方法が採られた。
しかし、この方法は、加熱の設定温度を高め過ぎると厚
肉高発泡未加硫ゴムの表層部の加硫が進行し過ぎる不具
合を招くため温度を低く押さえる必要があり、その結
果、難昇温の中心部を所定の温度レベルまで高めるには
長時間を要するうえ加熱の度合いも低く、結局、加硫成
形工程全般にわたる生産性改善が不十分となるのは止む
を得ず、加えて過加硫問題の解決には至らなかった。
[0006] The simplest means of this improvement is to use a thick-wall highly foamed unvulcanized rubber as a whole in a preheating chamber in which the atmosphere is higher than room temperature but significantly lower than the vulcanization temperature.
The method of heating until reaching a substantially uniform temperature was adopted.
However, in this method, if the set temperature of the heating is too high, the vulcanization of the surface layer portion of the thick-walled high-foamed unvulcanized rubber proceeds excessively, so that it is necessary to keep the temperature low. It takes a long time to raise the temperature of the core to a predetermined temperature level, and the degree of heating is low. As a result, it is inevitable that the productivity improvement over the entire vulcanization molding process will be insufficient. The sulfur problem was not solved.

【0007】また、加硫成形前のタイヤ等の厚肉未加硫
ゴム物品の高周波誘電加熱を含む加硫成形方法で、生産
性を大幅に向上させ、ゴム物品全体にわたる適正なゴム
の加硫度の下で要求性能に対し充足した所期のゴム物性
を有するゴム物品が得られることが本発明者らにより、
特開平5−301231、特開平6−344510、特
開平8−335496等に提案された。しかし、上記の
ような発泡しない通常ゴムを使用するゴム物品とは、ゴ
ム成分、配合剤等が大幅に異なり、さらに新規に発泡が
必要となることも異なる、モトクロタイヤチューブのよ
うな厚肉高発泡加硫ゴム物品を得るのに高周波誘電加熱
を適用した加硫成形方法は知られていない。例えば、か
かる厚肉高発泡未加硫ゴムに高周波誘電加熱のみを施す
加硫方法では、厚さ全体にわたる加硫度の均一性に欠け
ると同時に、得られるゴム物品は形状安定性が劣り、実
用上利用可能なゴム物品とはなり得ない。
In addition, a vulcanization molding method including high-frequency dielectric heating of a thick unvulcanized rubber article such as a tire before vulcanization molding greatly improves the productivity and appropriately vulcanizes the rubber throughout the rubber article. By the present inventors that it is possible to obtain a rubber article having the desired rubber properties satisfying the required performance under the degree.
It has been proposed in JP-A-5-301231, JP-A-6-344510, JP-A-8-335496, and the like. However, it differs from a rubber article using ordinary rubber which does not foam as described above in that the rubber component, compounding agent, etc. are significantly different, and that foaming is newly required. A vulcanization molding method using high-frequency dielectric heating to obtain a foamed vulcanized rubber article is not known. For example, in a vulcanization method in which only high-frequency dielectric heating is applied to such a thick-walled highly foamed unvulcanized rubber, the resulting rubber article lacks uniformity in the degree of vulcanization over the entire thickness, and the obtained rubber article has inferior shape stability. It cannot be a usable rubber article.

【0008】[0008]

【発明が解決しようとする課題】そこで、厚肉高発泡未
加硫ゴム物品に高周波誘電加熱、特にマイクロ波加熱と
金型加硫を組合わせて施す加硫成形方法により、製品が
その全体にわたる適正なゴムの加硫度の下で要求性能に
対し充足した所期のゴム物性を発揮すること並びに加硫
成形工程全般にわたる生産性を大幅に向上させることが
可能な厚肉高発泡加硫ゴムの加硫成形方法を提供するの
が本発明の目的である。
Accordingly, a vulcanization molding method for applying high-frequency dielectric heating, in particular, microwave heating and mold vulcanization in combination to a thick-walled highly foamed unvulcanized rubber article allows the product to be entirely covered. Thick, highly foamed vulcanized rubber that can exhibit the desired rubber properties that meet the required performance under the appropriate degree of vulcanization of the rubber and can greatly improve the productivity throughout the vulcanization molding process It is an object of the present invention to provide a vulcanization molding method.

【0009】[0009]

【課題を解決するための手段】本発明者は厚肉高発泡未
加硫ゴムや厚肉高発泡予備加硫ゴムの特性及び高周波誘
電加硫等の各種加硫成形方法の特性に着目し、鋭意検討
の結果、下記の手段により、上記目的を達成することが
可能であることを見出し、本発明を完成するに至った。
The inventor of the present invention has focused on the characteristics of thick and highly foamed unvulcanized rubber and thick and highly foamed prevulcanized rubber, and the characteristics of various vulcanization molding methods such as high-frequency dielectric vulcanization. As a result of intensive studies, they have found that the above objects can be achieved by the following means, and have completed the present invention.

【0010】すなわち、(1)本発明の発泡加硫ゴムの
加硫成形方法は、一次加硫として、押出し後の発泡性未
加硫ゴムを金型にて加圧加熱により、予備加硫ゴム成形
体を得て、次に二次加硫として、この予備加硫ゴム成形
体を高周波誘電加熱により、加硫することを特徴とす
る。
That is, (1) In the vulcanization molding method of the foamed vulcanized rubber of the present invention, as the primary vulcanization, the foamed unvulcanized rubber after extruding is pre-vulcanized by pressing and heating in a mold. A molded product is obtained, and then, as a secondary vulcanization, the pre-vulcanized rubber molded product is vulcanized by high-frequency dielectric heating.

【0011】(2)本発明の発泡加硫ゴムの加硫成形方
法は、一次加硫として、押出し後の発泡性未加硫ゴムを
高周波誘電加熱により、予備加硫ゴム体を得て、次に二
次加硫として、この予備加硫ゴム体を金型にて加圧加熱
により、加硫することを特徴とする。
(2) In the vulcanization molding method for foamed vulcanized rubber according to the present invention, as a primary vulcanization, a foamed unvulcanized rubber after extrusion is subjected to high frequency dielectric heating to obtain a pre-vulcanized rubber body. The secondary vulcanization is characterized in that the pre-vulcanized rubber body is vulcanized by heating under pressure in a mold.

【0012】(3)本発明の発泡加硫ゴムの加硫成形方
法は、前(1)項又は(2)項において、前記発泡加硫
ゴムの発泡率が50〜1200%であることを特徴とす
る。
(3) The vulcanization molding method for foamed vulcanized rubber according to the present invention is characterized in that in the above item (1) or (2), the foamed vulcanized rubber has a foaming ratio of 50 to 1200%. And

【0013】[0013]

【発明の実施の形態】以下この発明を図面に基づき一層
詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the drawings.

【0014】図2及び図3は厚肉高発泡加硫ゴム物品の
一例として、加硫成形後にモトクロスタイヤチューブと
なる環状の厚肉高発泡加硫ゴム10の加硫成形方法の例
を示す。
FIGS. 2 and 3 show an example of a method of vulcanizing and molding an annular thick-walled high-vulcanized rubber 10 which becomes a motocross tire tube after vulcanization as an example of a thick-wall high-vulcanized rubber article.

【0015】本発明の1つの態様である加硫成形方法は
図2の加硫成形方法(II)に示すように、一次加硫と
して金型12に、押出し後の高発泡性未加硫ゴム10を
セットし、加圧加硫により、予備加硫ゴム成形体10を
得て、次に二次加硫として、この予備加硫ゴム成形体1
0を高周波誘電加熱装置を用いて高周波誘電加熱によ
り、加硫を行う。
As shown in the vulcanization molding method (II) in FIG. 2, the vulcanization molding method according to one embodiment of the present invention is a highly vulcanized unvulcanized rubber after extrusion into a mold 12 as primary vulcanization. 10 and vulcanization under pressure to obtain a pre-vulcanized rubber molded body 10, which is then subjected to secondary vulcanization.
Vulcanization is performed by high-frequency dielectric heating using a high-frequency dielectric heating apparatus.

【0016】これに対して、従来例の加硫成形方法
(I)が図1に示される。すなわち、一次加硫として、
金型12に、押出し後の高発泡性未加硫ゴム10をセッ
トし、加圧加硫により、予備加硫ゴム成形体を得た後、
二次加硫として、この予備加硫ゴム成形体10を加硫室
14に入れ、オープン加硫を行う方法である。ゴムの低
熱伝導性に加えて、オープン加硫の段階では加硫ゴムは
高発泡体であるため、熱伝導性はさらに低下し、中心部
まで昇温するには一層長時間を要し、表層部はかなり過
加硫状態となる。過加硫のため、表層部が軟化し、走行
時のひずみが大きくなり、耐久性に劣るなど性能面から
も問題となる。このことは図4A,Bの○−○線で示さ
れるように厚物の中心部に対して、表層部の加硫度が顕
著に大きくなり、またやわらかく、つまり低圧縮ひずみ
となることからも容易に理解される。さらにオープン加
硫を空気雰囲気下で行うと表層部が熱老化するなど所期
の要求特性を得ることができない。
On the other hand, a conventional vulcanization molding method (I) is shown in FIG. That is, as primary vulcanization,
The extruded highly foamable unvulcanized rubber 10 is set in the mold 12 and, after pressure vulcanization, a pre-vulcanized rubber molded body is obtained.
As the secondary vulcanization, this pre-vulcanized rubber molded body 10 is placed in a vulcanization chamber 14 and subjected to open vulcanization. In addition to the low thermal conductivity of rubber, in the stage of open vulcanization, the thermal conductivity further decreases because the vulcanized rubber is a high foam, and it takes a longer time to raise the temperature to the center, The part is considerably overvulcanized. Due to overvulcanization, the surface layer is softened, distortion during running becomes large, and durability is inferior. This is because the degree of vulcanization of the surface layer is remarkably increased with respect to the center of the thick material as shown by the ○-○ line in FIGS. It is easily understood. Further, if the open vulcanization is performed in an air atmosphere, desired characteristics such as heat aging of the surface layer cannot be obtained.

【0017】金型予備加硫後に、上記従来の方法のオー
プン加硫の代わりに高周波誘電加硫を用いる本発明の加
硫成形方法(II)では金型加硫による加硫ゴムが低熱
伝導性であり、高周波誘電加熱により、高発泡体である
にも拘わらず、厚物の中心部が短時間で昇温され、表層
部にわたって均一に加硫が起こり、また表層部に近くな
るにつれて、硬くなる。このことは図4A,Bの□−□
線で示されるように中心部から表層部にわたって、ほぼ
加硫度の均一性が得られ,さらに表層部にいくにつれて
圧縮ひずみが高くなることからもわかる。このように、
本発明の加硫成形方法によれば、従来の方法の表層部過
加硫、生産性の低下、物性の劣化等の問題が同時に解決
される。
[0017] In the vulcanization molding method (II) of the present invention in which high frequency dielectric vulcanization is used instead of the open vulcanization of the above-mentioned conventional method after the mold preliminary vulcanization, the vulcanized rubber obtained by the mold vulcanization has low thermal conductivity. Despite being a high-foam, high-frequency dielectric heating raises the temperature of the center of the thick material in a short time, and vulcanization occurs uniformly over the surface layer, and becomes harder as it approaches the surface layer. Become. This is shown in FIG.
As can be seen from the line, almost uniform degree of vulcanization was obtained from the center to the surface layer, and the compressive strain increased toward the surface layer. in this way,
According to the vulcanization molding method of the present invention, the problems of the conventional method such as overvulcanization of the surface layer, reduction in productivity, deterioration in physical properties, and the like can be simultaneously solved.

【0018】本発明の他の態様である加硫成形方法は図
3の加硫成形方法(III)に示すように、一次加硫と
して、押出し後の高発泡性未加硫ゴム10を高周波誘電
加熱装置を用いて、高周波誘電加熱により、予備加硫ゴ
ム体10を得て、次に二次加硫として、この予備加硫ゴ
ム体10を金型12にセットし、加圧加熱により、加硫
を行う。
In the vulcanization molding method according to another embodiment of the present invention, as shown in the vulcanization molding method (III) in FIG. Using a heating device, a pre-vulcanized rubber body 10 is obtained by high-frequency dielectric heating, and then, as secondary vulcanization, the pre-vulcanized rubber body 10 is set in a mold 12 and heated by pressurizing and heating. Perform sulfuric acid.

【0019】これに対して、上記オープン加硫を実施せ
ず、金型加硫のみを用いる従来の方法では、厚物の中心
部まで昇温するにはかなりの長時間を要し、表層部は過
加硫状態となる。このことは図5A,Bの○−○線で示
されるように、厚物の中心部に対して、表層部の加硫度
が大きくなり、また、やわらかく、つまり低圧縮ひずみ
となることからも理解できる。
On the other hand, in the conventional method using only the mold vulcanization without performing the above-mentioned open vulcanization, it takes a considerably long time to raise the temperature to the center of the thick material, Becomes overvulcanized. This is because the degree of vulcanization of the surface layer is larger than the center of the thick material and is softer, that is, lower compression strain, as shown by the ○-○ lines in FIGS. 5A and 5B. It can be understood.

【0020】厚物、高発泡性未加硫ゴムを金型加硫の前
に高周波誘電加熱を行う本発明の加硫成形方法では厚物
の中心部が短時間に昇温され、表層部にわたって均一に
加硫が起こり、また硬くなる。このことは図5A,Bの
□−□線で示されるように中心部から表層部にわたっ
て、ほぼ加硫度の均一性が保たれ、さらに圧縮ひずみの
低下が抑制され、均一性に優れることからもわかる。こ
のような加硫成形方法は、本発明の前記態様の加硫成形
方法と同様に従来の方法の多くの問題が同時に解決され
る。
In the vulcanization molding method of the present invention, in which high-frequency dielectric heating is performed on a thick material and a highly foamable unvulcanized rubber before vulcanizing the mold, the temperature of the central portion of the thick material is increased in a short time, and the surface portion is heated. Vulcanization occurs uniformly and becomes hard. This is because, as shown by the □-□ lines in FIGS. 5A and 5B, the uniformity of the degree of vulcanization is substantially maintained from the center to the surface layer, and furthermore, the reduction of the compression strain is suppressed and the uniformity is excellent. I understand. Such a vulcanization molding method simultaneously solves many problems of the conventional method, similarly to the vulcanization molding method of the above aspect of the present invention.

【0021】このように本発明の各種態様で示した加硫
成形方法により得られた厚物高発泡加硫ゴム物品、例え
ばモトクロスタイヤの高発泡チューブはチューブの表層
部分の硬さが保持され、むしろ中心部が軟らかいバラン
スのとれたものとなる。このため、チューブの走行中の
変形が表層部に限定されることなく、中心部まで変形す
るようになる。表層近くのブロー防止、さらには変形が
均一化されるため、乗り心地において、ゴツゴツ感がな
くなる。
As described above, the thick foamed foamed rubber article obtained by the vulcanization molding method shown in various aspects of the present invention, for example, the highly foamed tube of a motocross tire, maintains the hardness of the surface layer portion of the tube, Rather, the center is soft and well-balanced. For this reason, the deformation of the tube during traveling is not limited to the surface layer portion, but deforms to the center portion. Since the blow near the surface layer is prevented and the deformation is made uniform, the ride comfort is not lumpy.

【0022】本発明に用いられる高周波誘電加熱として
は、例えばマイクロ波加熱が好ましく使用される。
As the high-frequency dielectric heating used in the present invention, for example, microwave heating is preferably used.

【0023】被加熱物にて消費するマイクロ波電力ロス
Pは、下記式にて与えられる。
The microwave power loss P consumed by the object to be heated is given by the following equation.

【0024】[0024]

【数1】P=(1/1.8)fv2×ε・tanδ×10-10(W/m3) (式中、fは発振周波数(Hz)を表し、vは電界の大
きさ(V/m)を表す。) ここに上式の右辺中、発振周波数fは被加熱物である厚
肉高発泡ゴム物品に最適となるように固定するのが合理
的であり、電界の大きさvについては、被加熱部の損失
係数ε・tanδにより異なるが、過大な加熱部分が生
じるうれいを回避するため所定の限度内に抑える必要が
ある。
P = (1 / 1.8) fv 2 × ε · tan δ × 10 -10 (W / m 3 ) (where f represents the oscillation frequency (Hz), and v represents the magnitude of the electric field (V / m Here, in the right side of the above equation, it is reasonable to fix the oscillation frequency f so as to be optimal for the thick-walled high-foam rubber article to be heated. Varies depending on the loss coefficient ε · tan δ of the heated portion, but must be kept within a predetermined limit in order to avoid the possibility of generating an excessively heated portion.

【0025】ここに一般には単一の配合組成になる被加
熱ゴムなどの誘電体に対するマイクロ波の浸透深さは発
振周波数fに反比例するとされているが、昇温現象は、
例えば厚肉体の形状、大きさ、ゴム配合組成などに応
じ、難昇温の中心部近傍にてマイクロ波を重複作用させ
得るようなマイクロ波周波数fを適宜選択することによ
り得られる。
Here, it is generally considered that the penetration depth of microwaves into a dielectric such as rubber to be heated, which has a single compounding composition, is inversely proportional to the oscillation frequency f.
For example, it can be obtained by appropriately selecting a microwave frequency f that allows the microwaves to overlap in the vicinity of the center of the difficult temperature rise according to the shape, size, rubber compounding composition, and the like of the thick body.

【0026】工業的に使用できるマイクロ波の発振周波
数fは2450MHzと915MHzであるがマイクロ
波の浸透深さは915MHzの方が2450MHzより
3倍深い。本発明の例では高発泡加硫ゴム物品の肉厚が
5cm以上であるので、周波数は915MHzが好適で
あるが、これに限定されない。
The microwave oscillation frequencies f which can be used industrially are 2450 MHz and 915 MHz, but the penetration depth of the microwave is three times deeper at 915 MHz than at 2450 MHz. In the example of the present invention, since the thickness of the highly foamed vulcanized rubber article is 5 cm or more, the frequency is preferably 915 MHz, but is not limited thereto.

【0027】本発明の例のように、肉厚が5cm以上の
高発泡性ゴム体を915MHzのマイクロ波にて加熱す
ると、表層部より中心部が加熱される特性を有するとい
う新知見に基づいて、本発明が完成された。この特性は
従来の加熱成形方法(例えば金型加硫方法や金型加硫後
オープン加硫方法)のように、表層部からの熱伝導によ
る加熱とは逆の加熱特性であり、この特性により本発明
では高周波誘電加硫と金型加硫とを組合わせることによ
り、得られる厚肉高発泡加硫ゴム物品は全厚みにわたり
均一な温度分布、すなわち均一な加硫度が得られ、また
表層部が内部より硬くなる分布を有するため乗り心地が
改善される。
Based on the new finding that when a highly foamable rubber body having a thickness of 5 cm or more is heated by a 915 MHz microwave as in the example of the present invention, the central portion is heated from the surface layer. Thus, the present invention has been completed. This characteristic is a heating characteristic opposite to that of heating by heat conduction from the surface layer, as in a conventional heat molding method (for example, a mold vulcanization method or an open vulcanization method after mold vulcanization). In the present invention, by combining high-frequency dielectric vulcanization and mold vulcanization, the obtained thick-walled and highly foamed vulcanized rubber article has a uniform temperature distribution over the entire thickness, that is, a uniform degree of vulcanization, and a surface layer. The riding comfort is improved because the part has a distribution that is harder than the inside.

【0028】本発明に用いられる発泡加硫ゴムのゴム成
分としては、例えばブチルゴム、天然ゴム、スチレン−
ブタジエンゴム、ブタジエンゴム等を挙げることができ
るが気体保持性の効果の点からブチルゴムが好ましい。
As the rubber component of the foamed vulcanized rubber used in the present invention, for example, butyl rubber, natural rubber, styrene-
Butadiene rubber, butadiene rubber and the like can be mentioned, but butyl rubber is preferred from the viewpoint of the gas retaining effect.

【0029】本発明に用いられる発泡加硫ゴムの発泡剤
としては、例えば、ジニトロソペンタメチレンテトラア
ミン(DPT)、アゾジカルボンアミド(ADCA)、
ジニトロソペンタスチレンテトラミンやベンゼンスルフ
ォニルヒドラジド誘導体、オキシビスベンゼンスルフォ
ニルヒドラジド(OBSH)、二酸化炭素を発生する重
炭酸アンモニウム、重炭酸ナトリウム、炭酸アンモニウ
ム、窒素を発生するニトロソスルホニルアゾ化合物、
N,N’−ジメチル−N,N’−ジニトロソフタルアミ
ド、トルエンスルホニルヒドラジド、P−トルエンスル
ホニルセミカルバジド、P,P’−オキシービス(ベン
ゼンスルホニルセミカルバジド)等が挙げられる。これ
らは、1種単独で使用してもよいし、2種以上を併用し
てもよい。
Examples of the foaming agent for the foamed vulcanized rubber used in the present invention include dinitrosopentamethylenetetraamine (DPT), azodicarbonamide (ADCA),
Dinitrosopentastyrenetetramine, benzenesulfonylhydrazide derivative, oxybisbenzenesulfonylhydrazide (OBSH), ammonium bicarbonate that generates carbon dioxide, sodium bicarbonate, ammonium carbonate, nitrososulfonylazo compound that generates nitrogen,
N, N′-dimethyl-N, N′-dinitrosophthalamide, toluenesulfonylhydrazide, P-toluenesulfonylsemicarbazide, P, P′-oxy-bis (benzenesulfonylsemicarbazide) and the like. These may be used alone or in combination of two or more.

【0030】これらの発泡剤の中でも、ジニトロソペン
タメチレンテトラアミン(DPT)、アゾジカルボンア
ミド(ADCA)が好ましく、特にアゾジカルボンアミ
ド(ADCA)が好ましい。
Among these foaming agents, dinitrosopentamethylenetetraamine (DPT) and azodicarbonamide (ADCA) are preferable, and azodicarbonamide (ADCA) is particularly preferable.

【0031】前記発泡助剤としては、例えば、尿素、ス
テアリン酸亜鉛、ベンゼンスルフィン酸亜鉛や亜鉛華
等、通常、発泡製品の製造に用いる発泡助剤等が挙げら
れる。これらは、1種単独で使用してもよいし、2種以
上を併用してもよい。これらの中でも、尿素、ステアリ
ン酸亜鉛、ベンゼンスルフィン酸亜鉛等が好ましい。
Examples of the foaming auxiliary include urea, zinc stearate, zinc benzenesulfinate, zinc white, and the like, which are usually used in the production of foamed products. These may be used alone or in combination of two or more. Among these, urea, zinc stearate, zinc benzenesulfinate and the like are preferable.

【0032】本発明に用いられる発泡加硫ゴムのゴム組
成物は前記ゴム成分、発泡剤の他に、補強用充填剤、軟
化剤、老化防止剤、加硫剤、加硫促進剤等の通常ゴム工
業で使用される配合剤を適宜配合することができる。
The rubber composition of the foamed vulcanized rubber used in the present invention may contain a reinforcing filler, a softening agent, an antioxidant, a vulcanizing agent, a vulcanization accelerator and the like in addition to the rubber component and the foaming agent. Compounding agents used in the rubber industry can be appropriately compounded.

【0033】ゴム組成物は、ロール、インターナルミキ
サー、バンバリーミキサー等の混練機を用いて混練りす
ることによって得られ、これを本発明の加硫成形方法に
より、所望の例えばモトクロスタイヤ用チューブのよう
な厚肉高発泡加硫ゴム物品が得られる。
The rubber composition is obtained by kneading using a kneading machine such as a roll, an internal mixer, a Banbury mixer, and the like, and this is vulcanized by the vulcanization molding method of the present invention into a desired material such as a motocross tire tube. Such a thick, highly foamed vulcanized rubber article is obtained.

【0034】本発明における発泡加硫ゴムの発泡率は5
0〜2000%が好ましく、さらに100〜1000%
がより好ましい。発泡率が50%未満では重量及び無発
泡ソリッドタイヤまたはそれに近いタイヤとなる点で、
また2000%を越えるとパンクの点で好ましくない。
The foaming rate of the foamed vulcanized rubber in the present invention is 5
0-2000% is preferable, and further 100-1000%
Is more preferred. When the foaming ratio is less than 50%, the tire becomes a weight and a non-foamed solid tire or a tire close thereto,
If it exceeds 2000%, it is not preferable in terms of puncture.

【0035】上記発泡率Vsは、下記の式で表される。The foaming ratio Vs is represented by the following equation.

【0036】[0036]

【数2】 Vs= {( ρo - ρg )/( ρl - ρg )-1 }×100 (%) ・・・(1) (式中、ρl は発泡ゴムの密度(g/cm3 )、ρo
発泡ゴムの固相ゴム部の密度(g/cm3 )、ρg は発
泡ゴムの気泡内のガス部の密度(g/cm3 )であ
る。) ところで、気泡内のガス部の密度ρg は極めて小さく、
ほぼ零に近く、かつ固相ゴム部の密度ρo に対して極め
て小さいので、式(1)は、下記の式
Vs = {(ρ og ) / (ρ lg ) -1} × 100 (%) (1) (where, ρ l is the density (g / cm 3 ), ρ o is the density (g / cm 3 ) of the solid phase rubber portion of the foamed rubber, and ρ g is the density (g / cm 3 ) of the gas portion in the bubbles of the foamed rubber.) The density ρ g of the gas part of
Since it is almost zero and extremely small with respect to the density ρ o of the solid phase rubber part, the equation (1) is

【0037】[0037]

【数3】 Vs= ( ρo /ρl -1)×100 (%) ・・・(2) とほぼ同等となる。Vs = (ρ o / ρ l −1) × 100 (%) (2)

【0038】[0038]

【実施例】後述する実施例1及び実施例2に共通するマ
イクロ波加熱の例につき、図2及び図3を用いて説明す
る。
EXAMPLE An example of microwave heating common to Examples 1 and 2 described later will be described with reference to FIGS.

【0039】図2に記載のマイクロ波加熱の装置は金型
による予備加硫ゴム成形体10に、また図3に記載のマ
イクロ波加熱の装置は発泡性未加硫ゴム体10にそれぞ
れマイクロ波加熱を施す装置を示す概略構成図である。
これらの装置はマイクロ波発生装置16、マイクロ波の
導波管18、上記ゴム成形体10にマイクロ波照射を施
すアプリケーター20、アプリケーター内のマイクロ波
を反射攪拌するスターラ(回転翼)22、好ましくはマ
イクロ波を透過するポリプロピレンなどの合成樹脂から
なる回転支持台24からなっている。
The microwave heating device shown in FIG. 2 is applied to the pre-vulcanized rubber molded body 10 using a mold, and the microwave heating device shown in FIG. It is a schematic structure figure showing the device which performs heating.
These devices include a microwave generator 16, a microwave waveguide 18, an applicator 20 for applying microwave irradiation to the rubber molded body 10, a stirrer (rotary wing) 22 for reflecting and stirring the microwave in the applicator, and preferably. The rotary support 24 is made of a synthetic resin such as polypropylene that transmits microwaves.

【0040】発泡率は厚肉高発泡加硫ゴムからブロック
状の試料を切り出し、その密度ρ1(g/cm3 )を測
定し、一方無発泡ゴムの密度ρ0 を測定し、前記式
(2)を用いて求めた。 (実施例1)図2の加硫成形方法IIのように、発泡性
未加硫ゴムを金型にて予備加硫後、得られた予備加硫ゴ
ム成形体をマイクロ波加熱によりモトクロスタイヤチュ
ーブ用高発泡加硫ゴムを得る実験例である。
The foaming rate was determined by cutting a block-shaped sample from a thick-walled highly foamed vulcanized rubber and measuring its density ρ 1 (g / cm 3 ), while measuring the density ρ 0 of the non-foamed rubber, It was determined using 2). (Example 1) As in the vulcanization molding method II of FIG. 2, after foaming unvulcanized rubber is pre-vulcanized in a mold, the obtained pre-vulcanized rubber molded body is subjected to microwave heating to obtain a motocross tire tube. Is an experimental example of obtaining a highly foamed vulcanized rubber for use.

【0041】発泡性未加硫ゴムの配合組成は表1に示す
通りであり、この未加硫ゴムを145°×80分の加硫
条件で金型加硫を行い、得られた成形体を915MHz
×1KW×85分の条件、詳しくは915MHz×1K
Wで5分照射を行い、その後1分照射−9分停止を繰り
返す条件で、マイクロ波加熱を実施すると、チューブ材
質直径5cm、環状チューブ外径30cm、容積154
1cm3 の未加硫ゴムが、発泡率800%、チューブ材
質直径10cmのモトクロスタイヤチューブとなる。
The composition of the foamable unvulcanized rubber is as shown in Table 1. This unvulcanized rubber was subjected to mold vulcanization under vulcanization conditions of 145 ° × 80 minutes. 915 MHz
X1KW x 85min conditions, more specifically 915MHz x 1K
When irradiation with W was performed for 5 minutes, and then irradiation for 1 minute and stop for 9 minutes were repeated, microwave heating was performed. As a result, the tube material diameter was 5 cm, the annular tube outer diameter was 30 cm, and the volume was 154.
A 1 cm 3 unvulcanized rubber becomes a motocross tire tube having a foaming ratio of 800% and a tube material diameter of 10 cm.

【0042】この発泡チューブのセンター、中間(2.
5cm)及び表面(5.0cm)の各部の加硫度を測定
した結果が図4Aの□−□線に示される。このチューブ
は中心部から表層部にわたり、加硫度の均一性に優れて
いることがわかる。また、圧縮ひずみを測定し、その結
果を図4Bの□−□線に示すが表層部が内部よりも硬い
分布となる。 (比較例1)図1の従来の加硫成形方法(I)のよう
に、マイクロ波加硫の代わりにオープン加硫を行う以
外、実施例1と同様にして発泡加硫ゴムを得る実験例で
ある。
The center and the middle (2.
The results of measuring the degree of vulcanization of each part of the surface (5 cm) and the surface (5.0 cm) are shown by the □-□ lines in FIG. 4A. It can be seen that this tube has excellent uniformity of vulcanization degree from the center to the surface layer. Further, the compressive strain was measured, and the result is shown by the line □-□ in FIG. 4B, but the surface layer has a harder distribution than the inside. (Comparative Example 1) Experimental example of obtaining a foamed vulcanized rubber in the same manner as in Example 1 except that open vulcanization was performed instead of microwave vulcanization as in the conventional vulcanization molding method (I) of FIG. It is.

【0043】実施例1と同様に金型加硫を行い、得られ
た成形体を145℃×80分の加硫条件でオープン加硫
を実施すると、実施例1と同形状、発泡率800%、チ
ューブ材質直径10cmのモトクロスタイヤチューブが
得られる。
Mold vulcanization was carried out in the same manner as in Example 1, and the obtained molded product was subjected to open vulcanization under vulcanization conditions of 145 ° C. × 80 minutes. Thus, a motocross tire tube having a tube material diameter of 10 cm is obtained.

【0044】実施例1と同様に,このチューブの各部の
加硫度を測定した結果が図4Aの○−○線に示される。
このチューブは中心部から表層部にわたり、加硫度が大
幅に増大する、すなわち加硫度は不均一であることが明
らかである。また、圧縮ひずみを図4Bの○−○線に示
すが、表層部の加硫度に対応して、表層部がやわらかい
分布となる。 (実施例2)図3の加硫成形方法IIIのように、発泡
性未加硫ゴムを、マイクロ波加熱により予備加硫後、得
られた予備加硫ゴム体を、金型加硫により、モトクロス
タイヤチューブ用高発泡加硫ゴムを得る実験例である。
As in Example 1, the result of measuring the degree of vulcanization of each part of the tube is shown by the line −- ○ in FIG. 4A.
It is apparent that the degree of vulcanization of this tube is greatly increased from the center to the surface layer, that is, the degree of vulcanization is not uniform. The compressive strain is shown by the line − in FIG. 4B, and the surface portion has a soft distribution corresponding to the degree of vulcanization of the surface portion. (Example 2) As in the vulcanization molding method III in FIG. 3, the foamable unvulcanized rubber was pre-vulcanized by microwave heating, and the obtained pre-vulcanized rubber body was subjected to mold vulcanization. This is an experimental example of obtaining a highly foamed vulcanized rubber for a motocross tire tube.

【0045】発泡性未加硫ゴムの配合組成は表1に示す
通りであり、この未加硫ゴムを915MHz×1KW×
5分の条件でマイクロ波加熱を行い、得られた発泡体を
160℃×40分の加硫条件で金型加硫を実施すると、
実施例1に対し、発泡率580%とそれに対応する形状
(チューブ材質直径9cm)のモトクロスタイヤチュー
ブが得られる。
The composition of the foamable unvulcanized rubber is as shown in Table 1, and the unvulcanized rubber was 915 MHz × 1 KW ×
When microwave heating is performed under the conditions of 5 minutes, and the obtained foam is subjected to mold vulcanization under the vulcanization conditions of 160 ° C. × 40 minutes,
As compared with Example 1, a motocross tire tube having a foaming ratio of 580% and a shape corresponding to the foaming ratio (tube material diameter: 9 cm) is obtained.

【0046】実施例1と同様に、このチューブの各部の
加硫度を測定した結果が図5Aの□−□線に示される。
このチューブは中心部から表層部にわたり、加硫度の均
一性に優れていることがわかる。その結果として、圧縮
ひずみの分布も図5Bの□−□線のとおり、均一性に優
れた分布となる。 (比較例2)マイクロ波加硫を用いない(金型加硫のみ
の加熱成形方法)以外、実施例2と同様にして、発泡加
硫ゴムを得る実験例である。
As in Example 1, the results of measuring the degree of vulcanization of each part of the tube are shown by the lines □-□ in FIG. 5A.
It can be seen that this tube has excellent uniformity of vulcanization degree from the center to the surface layer. As a result, the distribution of the compressive strain is also excellent in uniformity as shown by the line □-□ in FIG. 5B. (Comparative Example 2) This is an experimental example in which a foamed vulcanized rubber is obtained in the same manner as in Example 2 except that microwave vulcanization is not used (a heat molding method using only mold vulcanization).

【0047】この方法により、実施例2と同形状、発泡
率580%のモトクロスタイヤチューブが得られる。
According to this method, a motocross tire tube having the same shape as in Example 2 and a foaming ratio of 580% is obtained.

【0048】実施例2と同様に、このチューブの各部の
加硫度を測定した結果が図5Aの○−○線に示される。
このチューブは中心部から表層部にわたり、加硫度の均
一性に劣ることがわかる。圧縮ひずみの分布も図5Bの
○−○線のとおり、均一性に劣る分布となる。
As in Example 2, the results of measuring the degree of vulcanization of each part of this tube are shown by the circles in FIG. 5A.
It can be seen that this tube has poor uniformity of the degree of vulcanization from the center to the surface. The distribution of the compressive strain is also inferior to the uniformity as shown by the ○-○ line in FIG. 5B.

【0049】[0049]

【表1】 [Table 1]

【0050】冒頭にて述べた適正加硫度を100とする
指数にて表せば、比較例1及び2は100〜440にわ
たる範囲の分布を有し、これに対し、実施例1及び2は
100〜170の範囲内に収まり、かつ得られた高発泡
加硫ゴム成形体は所望の優れた性能が得られる。
In terms of an index with the appropriate degree of vulcanization being 100 as described at the beginning, Comparative Examples 1 and 2 have a distribution ranging from 100 to 440, whereas Examples 1 and 2 have a distribution of 100. And the obtained highly foamed vulcanized rubber molded product has desired excellent performance.

【0051】なお、試みに、各実施例1及び2が示す加
硫度の範囲内に収まるように、比較例1及び2に低温加
硫成形を施してみようとしても不可能であった。
Incidentally, it was impossible to perform low-temperature vulcanization molding on Comparative Examples 1 and 2 so as to fall within the range of the degree of vulcanization shown in each of Examples 1 and 2.

【0052】[0052]

【発明の効果】この発明によれば、金型加硫と高周波誘
電加熱、なかでもマイクロ波加熱を組合わせることによ
って、加硫成形後における製品が要求性能に対し、十分
対応できる適正なゴム物性を備えることができ、同時に
加硫成形工程全般にわたる生産性を大幅に向上すること
を可能とする厚肉高発泡加硫ゴム物品の加硫成形方法を
提供することができる。
According to the present invention, by combining mold vulcanization and high-frequency dielectric heating, especially microwave heating, the product after vulcanization molding has adequate rubber properties that can sufficiently meet the required performance. The present invention can provide a vulcanization molding method for a thick, highly foamed vulcanized rubber article that can greatly improve productivity throughout the vulcanization molding step.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の加硫成形方法の一例を示す。FIG. 1 shows an example of a conventional vulcanization molding method.

【図2】本発明の実施例1の加硫成形方法を示す。FIG. 2 shows a vulcanization molding method according to Example 1 of the present invention.

【図3】本発明の実施例2の加硫成形方法を示す。FIG. 3 shows a vulcanization molding method according to Example 2 of the present invention.

【図4】Aは本発明の加硫成形方法と従来の加硫成形方
法のそれぞれで得られる、高発泡加硫ゴムの中心部から
表層部の加硫度を示す。Bは高発泡加硫ゴムの中心部か
ら表層部の圧縮ひずみを示す。
FIG. 4A shows the degree of vulcanization from the center to the surface layer of the highly foamed vulcanized rubber obtained by the vulcanization molding method of the present invention and the conventional vulcanization molding method. B shows the compression strain from the center to the surface layer of the highly foamed vulcanized rubber.

【図5】Aは本発明の他の加硫成形方法と従来の他の加
硫成形方法のそれぞれで得られる、高発泡加硫ゴムの中
心部から表層部の加硫度を示す。Bは高発泡加硫ゴムの
中心部から表層部の圧縮ひずみを示す。
FIG. 5A shows the degree of vulcanization from the center to the surface layer of a highly foamed vulcanized rubber obtained by each of the other vulcanization molding methods of the present invention and another conventional vulcanization molding method. B shows the compression strain from the center to the surface layer of the highly foamed vulcanized rubber.

【符号の説明】[Explanation of symbols]

10 高発泡性未加硫ゴム、予備加硫ゴム成形体また
は高発泡加硫ゴム
10 Highly foamable unvulcanized rubber, pre-vulcanized rubber molded product or highly foamed vulcanized rubber

フロントページの続き (51)Int.Cl.6 識別記号 FI // B29C 35/12 B29C 67/22 B29K 105:04 105:24 Continued on the front page (51) Int.Cl. 6 Identification symbol FI // B29C 35/12 B29C 67/22 B29K 105: 04 105: 24

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発泡加硫ゴムの加硫成形方法であって、 一次加硫として、押出し後の発泡性未加硫ゴムを金型に
て加圧加熱により、予備加硫ゴム成形体を得て、次に二
次加硫として、この予備加硫ゴム成形体を高周波誘電加
熱により、加硫することを特徴とする発泡加硫ゴムの加
硫成形方法。
1. A vulcanization molding method for a foamed vulcanized rubber, wherein as a primary vulcanization, a foamed unvulcanized rubber after extrusion is heated under pressure in a mold to obtain a pre-vulcanized rubber molded body. And vulcanizing the pre-vulcanized rubber molded article by high-frequency dielectric heating as secondary vulcanization.
【請求項2】 発泡加硫ゴムの加硫成形方法であって、 一次加硫として、押出し後の発泡性未加硫ゴムを高周波
誘電加熱により、予備加硫ゴム体を得て、次に二次加硫
として、この予備加硫ゴム体を金型にて加圧加熱によ
り、加硫することを特徴とする発泡加硫ゴムの加硫成形
方法。
2. A vulcanization molding method of a foamed vulcanized rubber, wherein a pre-vulcanized rubber body is obtained as a primary vulcanization by extruding an extrudable foamable unvulcanized rubber by high-frequency dielectric heating. A vulcanization molding method for foamed vulcanized rubber, comprising vulcanizing the pre-vulcanized rubber body by pressurizing and heating in a mold as the next vulcanization.
【請求項3】 前記発泡加硫ゴムの発泡率が50〜20
00%であることを特徴とする請求項1又は2記載の発
泡加硫ゴムの加硫成形方法。
3. The foamed vulcanized rubber has a foaming ratio of 50 to 20.
The vulcanization molding method for a foamed vulcanized rubber according to claim 1 or 2, wherein the content is 00%.
JP10039385A 1998-02-20 1998-02-20 Vulcanizing and molding of foamed vulcanized rubber Pending JPH11236403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10039385A JPH11236403A (en) 1998-02-20 1998-02-20 Vulcanizing and molding of foamed vulcanized rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10039385A JPH11236403A (en) 1998-02-20 1998-02-20 Vulcanizing and molding of foamed vulcanized rubber

Publications (1)

Publication Number Publication Date
JPH11236403A true JPH11236403A (en) 1999-08-31

Family

ID=12551551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10039385A Pending JPH11236403A (en) 1998-02-20 1998-02-20 Vulcanizing and molding of foamed vulcanized rubber

Country Status (1)

Country Link
JP (1) JPH11236403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000506A (en) * 2013-06-14 2015-01-05 株式会社ブリヂストン Method for heating green tire, and apparatus used therein
KR102113071B1 (en) * 2019-06-28 2020-05-21 한국타이어앤테크놀로지 주식회사 Method for manufacturing electronic device in integral form

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000506A (en) * 2013-06-14 2015-01-05 株式会社ブリヂストン Method for heating green tire, and apparatus used therein
KR102113071B1 (en) * 2019-06-28 2020-05-21 한국타이어앤테크놀로지 주식회사 Method for manufacturing electronic device in integral form

Similar Documents

Publication Publication Date Title
JP2855009B2 (en) Method for foaming thermoplastic elastomer composition
US7803862B2 (en) Composition for polyolefin resin foam, foam of the same, and process for producing foam
US3803274A (en) Process for manufacturing foamed elastomeric materials having an interior foamed cellular structure covered with a non-foamed skin layer
EP1188785B1 (en) Polyolefin foam and polyolefin resin composition
CN108424571A (en) Manufacture the method for midsole and the midsole of this method manufacture and the particle for manufacturing the midsole
JPS6011329A (en) Continuous manufacture of crosslinked and foamed body
KR920009943B1 (en) Method of crosslinking rubber and plastic molding
JPH11193335A (en) Foam rubber extrudate
JPH11236403A (en) Vulcanizing and molding of foamed vulcanized rubber
JP3675159B2 (en) Foam rubber manufacturing method and foam rubber
JPH11235724A (en) Manufacture of reclaimed rubber molded body
JPH04224831A (en) Production of rubber foam
JP3355242B2 (en) Foam rubber composition for tire
JP6372610B2 (en) Pneumatic tire
JP4782306B2 (en) Open-cell cross-linked polyolefin foam and method for producing the same
JP2004045510A (en) Conductive foaming rubber roller for electrophotography and its manufacturing method
JPS62101203A (en) Production of shoes having shoe sole with microfoam structure
JPS60248747A (en) Production of foamed rubber
KR0180693B1 (en) Method for improving crosslinking density
JPH0388832A (en) Foamed rubber composition and pneumatic tire using thereof
JPS61283630A (en) Production of sponge article
JP2779227B2 (en) Foamed rubber composition and pneumatic tire using the same
JPS5914496B2 (en) Method for manufacturing vulcanized rubber molded products
JP5271589B2 (en) Method for producing polyolefin foam hot-press molded product
JP2010274531A (en) Tire