JPH11235600A - Method for reforming bottom mud - Google Patents

Method for reforming bottom mud

Info

Publication number
JPH11235600A
JPH11235600A JP10039201A JP3920198A JPH11235600A JP H11235600 A JPH11235600 A JP H11235600A JP 10039201 A JP10039201 A JP 10039201A JP 3920198 A JP3920198 A JP 3920198A JP H11235600 A JPH11235600 A JP H11235600A
Authority
JP
Japan
Prior art keywords
water
bottom mud
mud
gel
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10039201A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP10039201A priority Critical patent/JPH11235600A/en
Publication of JPH11235600A publication Critical patent/JPH11235600A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the method for reforming bottom mud without need for a large disposal area, without causing such a trouble as the disposal of separated water and by which the anaerobic state of the water bottom is changed into an aerobic state to restore the water bottom, and the elution of nutrient salts into the upper water from bottom mud is prevented. SOLUTION: The bottom mud 2 drawn up from the lakes, marshes, sea, etc., or the bottom mud 2 increased in SS concn. by a high molecular weight flocculant 6 in a solid-liq. separating means is admixed with water galss 4 and acid 5 and gelled, and the gell 11 is deposited on the water bottom. The drawn up bottom mud 2 is preferably admixed with an aluminous or ferrous inorg. flocculant 9 and temporarily flocculated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は底泥の改質方法に関
し、更に詳しくは例えば閉鎖性水域の水底などに堆積す
る底泥などの改質方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reforming bottom mud, and more particularly, to a method for reforming bottom mud deposited on the bottom of a closed water area.

【0002】[0002]

【従来の技術】湖沼、海、河川などで水の流れが悪く、
底泥(ヘドロ)などが堆積している水底は少なくない。
このような閉鎖性水域では、有機物が嫌気性分解によっ
て酸素を消費し、栄養塩類(リン、窒素)も溶出して富
栄養化していることが多い。例えば、ハマチなどの魚類
を養殖する水域では養殖魚が食べ残した餌が水底に沈殿
する。こうしたものが沈殿するとそれらは急激に底泥化
する。当該水域に流入させる水は、予め浄化処理するこ
とで、外部からの栄養塩類の流入を防ぐことはできて
も、底泥に窒素やリンを含む腐敗物質が堆積し、やがて
それが溶出してくれば、アオコや赤潮の発生は避けられ
ない。また、河川のダム湖(例えば黒部ダム)には落葉
が多量に堆積し、それが腐敗して湖底では底泥化してい
る。
2. Description of the Related Art Water flows in lakes, marshes, seas, rivers, etc. are poor.
There are not a few water bottoms where sludge is deposited.
In such closed water bodies, organic substances often consume oxygen by anaerobic decomposition, and nutrients (phosphorus, nitrogen) are also eluted and eutrophication occurs. For example, in waters where fish such as hamachi are cultivated, food left over by the cultivated fish sediments on the bottom of the water. When these settle, they rapidly become sediment. The water that flows into the water area, by purifying it in advance, can prevent the influx of nutrients from the outside, but putrefactive substances containing nitrogen and phosphorus accumulate in the sediment, and eventually elute If it comes, the occurrence of blue-green algae and red tide is inevitable. In addition, a large amount of fallen leaves are deposited on dam lakes (for example, Kurobe Dam), which rot and become muddy on the bottom of the lake.

【0003】従来、アオコや赤潮の発生防止対策として
は、腐敗底泥を浚渫除去し、系外へ排除する方法が主流
であつた。例えば、腐敗底泥を浚渫し、陸上で埋め立て
処分する。浚渫した底泥を脱水後これをケ一キにしてか
ら陸上に埋め立て処分する。あるいは、底泥層を大量の
砂で覆い(覆砂)、腐敗底泥から水域への栄養塩類の溶
出を防止するなどの方法が採用されていた。
Conventionally, as a countermeasure for preventing the occurrence of blue water and red tide, a method of dredging and removing septic bottom mud and removing it from the system has been the mainstream. For example, rotting mud is dredged and landfilled on land. After dewatering the dredged mud, it is caked and landfilled on land. Alternatively, a method has been adopted in which the bottom mud layer is covered with a large amount of sand (sand covering) to prevent the elution of nutrients from the putrefactive bottom mud into the water area.

【0004】[0004]

【発明が解決しようとする課題】しかしこうした底泥の
処理、処分方法は多くの難題を抱えている。埋め立て処
分には広大な面積の埋め立て処分地が必要である。とこ
ろが陸上にそのような広大な処分地を確保することは極
めて困難であるという問題点がある。埋め立て処分しな
いで浚渫底泥を土壌改良材、培土、土木資材へ再利用す
るという方法でも検討が進められてきてはいるが、十分
な需要が顕在化しないため、実際問題としては行きづま
っている。また広範囲の水域での覆砂には、大量の砂が
必要となりコストが高くなるという問題もある。
However, methods for treating and disposing of such bottom mud have many difficulties. Landfill requires a large landfill site. However, there is a problem that it is extremely difficult to secure such a vast landfill on land. Although studies have been conducted to reuse the dredged bottom mud as soil improvement material, cultivation soil, and civil engineering material without landfill disposal, the actual problem has been stalled because sufficient demand has not been realized. I have. In addition, there is a problem that a large amount of sand is required for covering sand in a wide area of water and the cost is high.

【0005】本発明はこのような問題点を解決するた
め、広大な処分地を必要とすることがなく、分離水の処
分という解決の難しい問題も引き起こすことがなく、嫌
気化している水域底部を好気性状態に変化させて水底の
環境を蘇らせ、底泥からの栄養塩類の上層水への溶出も
抑制できる新たな底泥の改質方法を提供することを目的
とする。
[0005] In order to solve such problems, the present invention does not require a vast disposal site, does not cause a difficult problem of disposal of separated water, and reduces the bottom of the anaerobic water area. It is an object of the present invention to provide a new method of reforming bottom sediment that can be changed to an aerobic state to revive the environment of the water bottom and suppress elution of nutrients from the bottom mud into the upper water.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
め、本発明は以下の手段を採った。 (1)湖沼、海などからくみ上げた底泥又は該底泥を固
液分離手段でSS濃度を高めた底泥に対し、水ガラス及
び酸を添加してゲル化させた後、該ゲル化物を水底に沈
積させることを特徴とする底泥の改質方法。 (2)くみ上げた底泥にアルミニウム系又は鉄系無機凝
集剤を添加することを特徴とする前記(1)に記載の底
泥の改質方法。
In order to solve the above problems, the present invention employs the following means. (1) Water glass and an acid are added to the bottom mud pumped from a lake, a marsh, the sea, or the like or the bottom mud whose SS concentration is increased by solid-liquid separation means to cause gelation. A method for reforming bottom mud, comprising depositing on the water bottom. (2) The method for modifying bottom mud as described in (1) above, wherein an aluminum-based or iron-based inorganic coagulant is added to the collected bottom mud.

【0007】くみ上げた底泥を固液分離しても、水ガラ
ス、酸を添加せずにそのまま水底に戻すと、水底で再び
微粒化して水底は元の底泥状態に戻る。ところが、嫌気
的底泥微粒子を、極めて簡単な操作で砂のような強固な
粗大粒子に変換させることができれば、その粒子性状、
物理化学的、生物学的状況は根本的に改善され、栄養塩
類の溶出を抑制することができる。そして、水底の環境
は、嫌気性状態から粗大粒子が沈積した好気性環境に変
わるのである。
[0007] Even if the collected bottom mud is separated into solid and liquid, if it is returned to the bottom without adding water glass and acid, the bottom is again atomized and the water bottom returns to its original state. However, if anaerobic bottom mud fine particles can be converted into strong coarse particles such as sand by an extremely simple operation, their particle properties,
The physicochemical and biological conditions are fundamentally improved and the elution of nutrients can be suppressed. The environment at the bottom of the water changes from an anaerobic state to an aerobic environment in which coarse particles are deposited.

【0008】[0008]

【発明の実施の形態】以下、発明の実施の形態を説明す
るが、本発明はこれに限定されない。図1は、本発明の
底泥の改質方法の流れの一例を示す概略図である。図1
を参照しながら本発明を説明する。海、河川、湖沼など
の水底1に堆積する底泥2をポンプアッブし、これをゲ
ル化槽3に導入する。固形分を導入したゲル化槽3には
水ガラス4と、酸アルカリ性状がほぼ中性になるように
酸5を添加して撹拌する。これによって水ガラス4のシ
リカを重合反応させ、瞬間的にゲル化させる。底泥がゲ
ル化する理由は水ガラス4の中の珪酸が重合し3次元構
造体を形成するためである。
Embodiments of the present invention will be described below, but the present invention is not limited thereto. FIG. 1 is a schematic diagram showing an example of the flow of the method for reforming bottom mud according to the present invention. FIG.
The present invention will be described with reference to FIG. The bottom mud 2 deposited on the water bottom 1 of the sea, river, lake, etc. is pumped up and introduced into the gelling tank 3. A water glass 4 and an acid 5 are added to the gelling tank 3 into which the solid content has been introduced, and the mixture is stirred so that the acid-alkali property becomes substantially neutral. This causes the silica of the water glass 4 to undergo a polymerization reaction and instantaneously gel. The reason why the bottom mud is gelled is that the silicic acid in the water glass 4 is polymerized to form a three-dimensional structure.

【0009】水ガラス4の添加量は、これを珪酸(Si
2)に重量換算して、2〜5%(w/v、対底泥容積)
が適切である。水ガラス4の添加量が少なすぎるとゲル
化が起きなかったり、ゲル強度が弱くなりすぎて余り好
ましくない。多すぎると逆に無意味なコス卜アップを招
いて余り好ましくない。酸5は、底泥と水ガラスの混合
物が、好ましくはpH5〜8程度の中性領域に達するま
で添加する。このようにするとゲル化速度が速まってよ
い。
The addition amount of the water glass 4 is determined by adding the water glass 4 to silicic acid (Si
2-5% (w / v, volume of bottom mud) in terms of weight in terms of O 2 )
Is appropriate. If the added amount of the water glass 4 is too small, gelation does not occur or the gel strength becomes too weak, which is not preferable. On the other hand, if it is too much, it is not preferable because it leads to meaningless cost increase. The acid 5 is added until the mixture of bottom mud and water glass reaches a neutral region, preferably at a pH of about 5-8. This may increase the gelation rate.

【0010】くみ上げる底泥のSS(不溶性固形成分)
濃度は、底泥の無機質の量が多いほど高く、有機物の量
が多いほど低い。通常は3〜15wt%程度である。くみ
上げた底泥のSS濃度が約5wt%未満と少ない場合は、
高分子凝集剤6を添加して底泥を凝集させ、例えば目開
き2mm程度のスクリン7でフロックと水に分離し、底泥
の固形物濃度を高めてゲル化槽3に導入するとよい。底
泥SS濃度が少ない場合には、いったん凝集させたフロ
ックを水ガラスでゲル化させる方が、水ガラスの所要量
が少なくなるので好適である。高分子凝集剤6として
は、例えばボリアクリルアミド系高分子凝集剤などを挙
げることができる。
[0010] Pumped bottom mud SS (insoluble solid component)
The concentration is higher as the amount of inorganic matter in the bottom mud is larger, and lower as the amount of organic matter is larger. Usually, it is about 3 to 15% by weight. If the SS concentration of the collected bottom mud is as low as less than about 5 wt%,
It is preferable to add the polymer flocculant 6 to coagulate the bottom mud, separate it into floc and water with, for example, a screen 7 having a mesh size of about 2 mm, increase the solid content of the bottom mud, and introduce it into the gelling tank 3. If the bottom mud SS concentration is low, it is preferable to gel the floc once aggregated with water glass since the required amount of water glass is reduced. Examples of the polymer flocculant 6 include a polyacrylamide polymer flocculant.

【0011】高分子凝集剤6を添加する場合、先に無機
凝集剤9を添加してから高分子凝集剤6を加えると、固
液分離がよりしやすいフロックが形成される。底泥に加
える無機凝集剤9としては、例えばアルミニウム系又は
鉄系無機凝集剤が好ましい。アルミニウム系凝集剤とし
ては、例えば、硫酸アルミニウム、ポリ塩化アルミニウ
ムを挙げることができる。鉄系凝集剤としては、例え
ば、塩化第2鉄、ポリ硫酸第2鉄を挙げることができ
る。無機凝集剤9を高分子凝集剤6と併用すると、リン
酸イオンが化学的に不溶化し底泥中のリン酸イオンがさ
らに強固に固定化されてよい。この場合、リン酸イオン
がゲル粒子からまったく溶出しなくなることが本発明者
らによって判明した。
When the polymer flocculant 6 is added, if the inorganic flocculant 9 is added first and then the polymer flocculant 6 is added, a floc is formed, which makes solid-liquid separation easier. As the inorganic coagulant 9 to be added to the bottom mud, for example, an aluminum-based or iron-based inorganic coagulant is preferable. Examples of the aluminum-based coagulant include aluminum sulfate and polyaluminum chloride. Examples of the iron-based coagulant include ferric chloride and ferric polysulfate. When the inorganic coagulant 9 is used in combination with the polymer coagulant 6, the phosphate ions may be chemically insolubilized and the phosphate ions in the sediment may be more firmly fixed. In this case, the present inventors have found that phosphate ions are not eluted from the gel particles at all.

【0012】ゲル化した底泥は、好ましくは破砕機10
で粒径5〜20mmに破砕し、粗大粒子状ゲル11でな
る小石状の粒子を得、再び水底に沈積させる。粗大粒子
状ゲル11にしてあれば、元の水底に戻しても急速に沈
降させることができる。嫌気的な底泥微細粒子を含んで
いても、それはゲル内に強固に閉じ込められた状態に変
化している。水底に沈積させてもリン、窒素などの富栄
養化原因物質が溶出することはほとんどない。またこの
粒状ゲル化物は、そのまま未改質底泥の覆砂用として用
いることができる。
The gelled bottom mud is preferably crushed by a crusher 10.
Crushed to a particle size of 5 to 20 mm to obtain pebble-like particles composed of the coarse-particle gel 11, which is again deposited on the water bottom. If the coarse particulate gel 11 is used, it can be quickly settled even if it returns to the original water bottom. Even though it contains anaerobic sediment fines, it has been transformed into a tightly confined state within the gel. Almost no eutrophication-causing substances such as phosphorus and nitrogen elute even when deposited on the water bottom. Further, the granular gelled material can be used as it is for covering unmodified bottom mud with sand.

【0013】くみ上げた底泥を濃縮する方法としては、
高分子凝集剤とスクリン分離を併用する方法に代えて、
遠心分離機などの固液分離手段を適用することもでき
る。この場合は大きなフロックを形成させる必要がな
く、高分子凝集剤の添加を省略できるという効果もあ
る。
[0013] As a method of concentrating the collected bottom mud,
Instead of using a polymer flocculant and screening together,
Solid-liquid separation means such as a centrifuge can also be applied. In this case, it is not necessary to form a large floc, and there is also an effect that the addition of the polymer flocculant can be omitted.

【0014】[0014]

【実施例】以下、実施例を説明するが、本発明はこれに
限定されるものではない。 〔実施例1〕茨城県K湖からエアリフ卜ポンプで底泥を
くみ上げ、水質を測定した。SS濃度52g/リットル、酸
化還元電位−330mV、極めて嫌気性で腐敗臭が認めら
れ、SS粒径は数〜数十ミク口ン、リン酸イオン濃度は
2.4mg/リットルであった。くみ上げた底泥にポリアクリ
ルアミド系高分子凝集剤をSSあたり1wt%添加して撹
拌したところ、速やかに大きなフロックが形成された。
次いで、目開き2mmのウエッジワイヤスクリンを使用し
たところ、フロックと水とを容易に分離できた。得られ
たスクリン分離底泥のSS濃度は約9%であつた。pH
は8.1だった。
EXAMPLES Examples will be described below, but the present invention is not limited to these examples. [Example 1] Sediment was pumped up from Lake K in Ibaraki Prefecture with an airlift pump, and the water quality was measured. The SS concentration was 52 g / liter, the oxidation-reduction potential was -330 mV, the odor was very anaerobic and putrefaction odor was observed, the SS particle size was several to several tens of microliters, and the phosphate ion concentration was 2.4 mg / liter. When a polyacrylamide polymer flocculant was added to the pumped bottom mud at 1 wt% per SS and stirred, large flocs were quickly formed.
Then, when a wedge wire screen having a mesh size of 2 mm was used, flocs and water could be easily separated. The SS concentration of the obtained screened sediment was about 9%. pH
Was 8.1.

【0015】こうして得られたスクリン分離底泥に水ガ
ラスをSiO2として4%濃度になるように添加し、さ
らに硫酸を添加してpHを6に調整したところ、2分後
に底泥全体が強固にゲル化した。このゲルを回転刃式破
砕機で破砕したところ粒径10mm程度の粗大な粒子状ゲ
ルが得られた。こうして得られたゲル粒子を、水道水を
満たした水深2mのカラムの底部に30cmの厚さで堆積
させ、10ケ月放置した。10ケ月後、ゲル堆積層の1
0cm上部から採水してその部分のリン濃度を分析した。
濃度は0.11mg/リットルで、ゲル粒子からのリンの溶出
は極めてわずかであることが分かった。ゲル堆積層の酸
化還元電位は+12mVで好気性であることもかった。当
初、腐敗臭、硫化水素臭を帯びていた底泥は、本処理の
結果、無臭に変化していることも分かった。
Water glass was added to the thus obtained sediment separated mud so as to have a concentration of 4% as SiO 2 , and sulfuric acid was further added to adjust the pH to 6, and after 2 minutes, the whole sediment became firm. It gelled. When this gel was crushed by a rotary blade crusher, a coarse particulate gel having a particle size of about 10 mm was obtained. The gel particles thus obtained were deposited in a thickness of 30 cm on the bottom of a column at a depth of 2 m filled with tap water and allowed to stand for 10 months. Ten months later, one of the gel deposits
Water was sampled from the top of 0 cm, and the phosphorus concentration in that portion was analyzed.
At a concentration of 0.11 mg / liter, it was found that very little phosphorus was eluted from the gel particles. The redox potential of the gel deposit was also aerobic with +12 mV. Initially, it was found that the bottom mud that had a rotten odor and a hydrogen sulfide odor changed to odorless as a result of this treatment.

【0016】[0016]

【発明の効果】本発明は、底泥をゲル化させた後、水底
に沈積させるため、広大な処分地を必要とすることがな
く、嫌気化している水域底部を好気性状態に変化させて
水底の環境を蘇らせ、底泥からの栄養塩類の上層水への
溶出も抑制できる。作業は極めて簡単で、しかも低コス
トで行なうことができる。嫌気的底泥微粒子を砂のよう
な強度の大きい粗大粒子に変換させれば効果は大きい。
底泥微粒子自体を利用して砂のような粒子に変換するの
で、未改質の底泥の覆砂用としても利用できる。水底の
嫌気的底泥を好気性状態で長期間維持でき、栄養塩類の
溶出も抑制できる。従来必要とされていた覆砂用の砂も
不要になる。
According to the present invention, since the bottom mud is gelled and settled on the water bottom, a vast disposal site is not required, and the bottom of the anaerobic water area is changed to an aerobic state. It revives the environment on the bottom of the water and can also suppress the elution of nutrients from the bottom mud into the upper water. The operation is very simple and can be performed at low cost. The effect is great if the anaerobic bottom mud fine particles are converted into coarse particles having high strength such as sand.
Since the bottom mud fine particles themselves are converted into particles such as sand using the bottom mud itself, it can also be used for covering unmodified bottom mud. The anaerobic bottom mud on the water bottom can be maintained in an aerobic state for a long time, and the elution of nutrients can be suppressed. Sand for covering sand, which has been required in the past, becomes unnecessary.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の底泥の改質方法の一例を示す概略図で
ある。
FIG. 1 is a schematic view showing an example of a method for reforming bottom mud according to the present invention.

【符号の説明】[Explanation of symbols]

1 水底 2 底泥 3 ゲル化槽 4 水ガラス 5 酸 6 高分子凝集剤 7 スクリン 8 分離水 9 無機凝集剤 10 破砕機 11 粗大粒子状ゲル DESCRIPTION OF SYMBOLS 1 Water bottom 2 Bottom mud 3 Gelation tank 4 Water glass 5 Acid 6 Polymer coagulant 7 Screen 8 Separation water 9 Inorganic coagulant 10 Crusher 11 Coarse-particle gel

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 湖沼、海などからくみ上げた底泥又は該
底泥を固液分離手段でSS濃度を高めた底泥に対し、水
ガラス及び酸を添加してゲル化させた後、該ゲル化物を
水底に沈積させることを特徴とする底泥の改質方法。
1. A method of adding water glass and an acid to a bottom mud pumped from a lake, a sea or the like, or a bottom mud having an increased SS concentration by solid-liquid separation means, to form a gel. A method of improving bottom sediment, comprising depositing a compound on a water bottom.
【請求項2】 くみ上げた底泥にアルミニウム系又は鉄
系無機凝集剤を添加することを特徴とする請求項1記載
の底泥の改質方法。
2. The method according to claim 1, wherein an aluminum-based or iron-based inorganic coagulant is added to the collected bottom mud.
JP10039201A 1998-02-20 1998-02-20 Method for reforming bottom mud Withdrawn JPH11235600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10039201A JPH11235600A (en) 1998-02-20 1998-02-20 Method for reforming bottom mud

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10039201A JPH11235600A (en) 1998-02-20 1998-02-20 Method for reforming bottom mud

Publications (1)

Publication Number Publication Date
JPH11235600A true JPH11235600A (en) 1999-08-31

Family

ID=12546525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10039201A Withdrawn JPH11235600A (en) 1998-02-20 1998-02-20 Method for reforming bottom mud

Country Status (1)

Country Link
JP (1) JPH11235600A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509804A (en) * 2004-08-13 2008-04-03 トーマス・クライザク Apparatus, system and method for removal of contamination
JP2012019749A (en) * 2010-07-15 2012-02-02 Chugoku Electric Power Co Inc:The Method of suppressing growth of water bloom

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8337695B2 (en) 2003-09-03 2012-12-25 Environmental Luchbox Technology LLC Environmental remediation system
JP2008509804A (en) * 2004-08-13 2008-04-03 トーマス・クライザク Apparatus, system and method for removal of contamination
US8940161B2 (en) 2004-08-13 2015-01-27 Air & Earth Llc Apparatus, system, and method for remediation of contamination
JP2012019749A (en) * 2010-07-15 2012-02-02 Chugoku Electric Power Co Inc:The Method of suppressing growth of water bloom

Similar Documents

Publication Publication Date Title
Poon et al. The use of ferric chloride and anionic polymer in the chemically assisted primary sedimentation process
US4721569A (en) Phosphorus treatment process
CA1084639A (en) Two-stage activated sludge process
CN108299573A (en) The method of comprehensive utilization of casing factory waste water
CN1405101A (en) Method for treatment of waste mud-slurry of oil-field well-drilling
CN110386730A (en) A kind of processing method of landfill leachate
Hutchison High‐Rate Direct Filtration
JPH11235600A (en) Method for reforming bottom mud
JP4144952B2 (en) Purification methods for rivers and lakes
Hedberg et al. Upgrading of waterworks with a new biooxidation process for removal of manganese and iron
JPH09206800A (en) Treatment of water-area bottom mud
JP3797296B2 (en) Purification method of bottom sludge
JPH10277307A (en) Adsorption flocculant and water treating method
JP2000218296A (en) Improved treatment of bottom sediment
JPH1057999A (en) Purifying method of sewage or sludge
JPH05305300A (en) Dehydrating agent for sludge
CA1054728A (en) Coal-base landfill, leachate treatment
JP2005007250A (en) Sludge treatment apparatus and sludge treatment method
JP4225844B2 (en) Muddy water treatment method
CA1336623C (en) Aqueous stream treatment process
JP4509048B2 (en) Method for reforming alkaline recycled soil
El Hafiane et al. Subsurface-horizontal flow constructed wetland for polishing high rate ponds effluent
AU595491B2 (en) Process for the treatment and purification of water by the flocculation of suspended particles in a fluidized bed
JPH078969A (en) Treatment of muddy water
JPH08173991A (en) Sludge treatment method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040929

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060629