JPH11235341A - Ultrasonograph - Google Patents

Ultrasonograph

Info

Publication number
JPH11235341A
JPH11235341A JP4082898A JP4082898A JPH11235341A JP H11235341 A JPH11235341 A JP H11235341A JP 4082898 A JP4082898 A JP 4082898A JP 4082898 A JP4082898 A JP 4082898A JP H11235341 A JPH11235341 A JP H11235341A
Authority
JP
Japan
Prior art keywords
received signal
signal
correlation coefficient
intensity
diagnostic apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4082898A
Other languages
Japanese (ja)
Other versions
JP4334032B2 (en
Inventor
Ryoichi Kanda
良一 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4082898A priority Critical patent/JP4334032B2/en
Publication of JPH11235341A publication Critical patent/JPH11235341A/en
Application granted granted Critical
Publication of JP4334032B2 publication Critical patent/JP4334032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonograph capable of reducing the effect on image quality of significant deflection of the received signals of some of vibrators in a bore due to refraction or multiple reflections, etc. SOLUTION: Excitation signals of plural vibrators aligned and received signals obtained when the vibrators receive ultrasonic waves reflected from a subject are individually given delay times to impart the directivity of transmission and reception to the ultrasonic waves and to scan the inside of the subject using the ultrasonic waves given directivity, thus obtaining an ultrasonogram. In that case, a received signal evaluating part 21 evaluating the deflection of the received signal for each vibrator and an aperture control part 23 controlling at least either the strength of the excitation signal or the amplification factor of the received signal according to the result of evaluation are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、遅延制御により送
信及び受信の指向性を超音波に付与し、この指向性を付
与した超音波で被検体内部を走査して超音波画像を得る
超音波診断装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic wave that imparts transmission and reception directivity to an ultrasonic wave by delay control, and scans the inside of a subject with the ultrasonic wave having the directivity to obtain an ultrasonic image. It relates to a diagnostic device.

【0002】[0002]

【従来の技術】超音波の医学的な応用としては種々の装
置があるが、その主流は超音波パルス反射法を用いて生
体の軟部組織の断層像を得る超音波診断装置である。こ
の超音波診断装置は無侵襲検査法で、組織の断層像を表
示するものであり、X線診断装置、X線CT装置、MR
Iおよび核医学診断装置などの他の診断装置に比べて、
リアルタイム表示が可能、装置が小型で安価、X線など
の被曝がなく安全性が高く、さらに超音波ドプラ法によ
り血流イメージングが可能であるなどの独自の特徴を有
している。
2. Description of the Related Art There are various medical applications of ultrasonic waves, and the mainstream is an ultrasonic diagnostic apparatus for obtaining a tomographic image of a soft tissue of a living body using an ultrasonic pulse reflection method. This ultrasonic diagnostic apparatus displays a tomographic image of a tissue by a non-invasive examination method, and includes an X-ray diagnostic apparatus, an X-ray CT apparatus, and an MR apparatus.
Compared to other diagnostic devices such as I and nuclear medicine diagnostic devices,
It has unique features such as real-time display, small and inexpensive device, high safety without exposure to X-rays, and blood flow imaging by ultrasonic Doppler method.

【0003】このため心臓、腹部、乳腺、泌尿器、およ
び産婦人科などでその活用範囲は広い。特に、超音波プ
ローブを体表から割り当てるだけの簡単な操作で心臓の
拍動や胎児の動きの様子がリアルタイム表示で得られ、
かつ安全性が高いため繰り返して検査が行えるほか、ベ
ッドサイドへ移動していっての検査も容易に行えるなど
簡便である。
[0003] Therefore, it is widely used in the heart, abdomen, mammary gland, urology, obstetrics and gynecology, and the like. In particular, with the simple operation of simply assigning the ultrasound probe from the body surface, the state of the heart beat and the movement of the fetus can be obtained in real time display,
In addition, the safety is high, so that the inspection can be repeated, and the inspection while moving to the bedside can be easily performed.

【0004】ところで、周知の通り、図17に示すよう
に超音波プローブ上には複数の振動子が1次元又は2次
元上に配列されており、これら複数の振動子から生体に
向けて超音波を送波させるための励振信号や、これらの
振動子が生体からの超音波反射波を受波して得られる受
信信号に、各振動子の幾何学的位置情報に応じて遅延時
間を個別に与え(いわゆる遅延制御)、各振動子からの
送信超音波及び受信信号において集束点を形成すること
がなされている。以下、送信時の励振の遅延操作、受信
時の整相加算操作をそれぞれ、送信ビーム形成、受信ビ
ーム形成と称する。
As is well known, a plurality of transducers are arranged one-dimensionally or two-dimensionally on an ultrasonic probe as shown in FIG. 17, and the ultrasonic transducers are directed toward a living body from these plural transducers. The delay time is individually set to the excitation signal for transmitting the ultrasonic wave and the reception signal obtained by these transducers receiving the ultrasonic reflected wave from the living body according to the geometric position information of each transducer. Given (so-called delay control), a focal point is formed in transmitted ultrasonic waves and received signals from each transducer. Hereinafter, the operation of delaying the excitation at the time of transmission and the operation of phasing addition at the time of reception are referred to as transmission beam formation and reception beam formation, respectively.

【0005】これら送信ビーム形成や受信ビーム形成を
全ての振動子を使って行うではなく、振動子を選択的に
使って行う場合があり、この場合、送受信の口径((送
受信に使われる振動子数)×振動子ピッチ)や口径内の
各振動子に割り当てるゲイン配分は、画像化する対象の
位置や、装置の最大駆動素子数、使用される超音波の周
波数帯域等に基づいて、装置開発者が最適と考える値に
予め設定されている。
In some cases, the transmission beam formation and the reception beam formation are performed not by using all the transducers but by selectively using the transducers. In this case, the transmission / reception aperture ((the transducer used for transmission / reception) is used. Number) × transducer pitch) and the distribution of gains to be assigned to each transducer in the aperture, based on the position of the object to be imaged, the maximum number of driving elements of the device, the frequency band of the ultrasonic wave used, etc. Is set in advance to a value that the user considers optimal.

【0006】例えば、図18に示すように、口径を大き
くすると、集束点でのビームはより細くなり、分解能の
高い画像が得られるようになるが、その反面、集束点以
外の所では逆にビームが広がってしてしまい、分解能が
悪くなってしまう。このようなビーム形成原理に基づい
て、送受信のビーム形成条件は事前に決定され、その条
件で装置が動作し画像が得られる。
For example, as shown in FIG. 18, when the aperture is increased, the beam at the focal point becomes narrower, and an image with high resolution can be obtained. The beam spreads out, resulting in poor resolution. Based on such a beam forming principle, beam forming conditions for transmission and reception are determined in advance, and the apparatus operates under these conditions to obtain an image.

【0007】このような事前に決定されるビーム形成の
動作条件は、生体中の音響的な特性が均一であることを
前提にして決定されている。しかし、生体中の媒体の音
響特性は均一ではなく、その不均一性により、実際の生
体中では、ビーム形成の動作条件から予想されるビーム
の形状よりも劣化したビームになってしまっていると予
想される。この点を裏付ける現象として、超音波画像の
画質が被検体によって良かったり悪くなったりする点が
指摘される。
[0007] Such operating conditions for beam forming determined in advance are determined on the assumption that acoustic characteristics in a living body are uniform. However, the acoustic characteristics of the medium in the living body are not uniform, and due to the non-uniformity, in an actual living body, the beam shape deteriorates from the beam shape expected from the operating conditions of beam forming. is expected. As a phenomenon supporting this point, it is pointed out that the image quality of the ultrasonic image is good or bad depending on the subject.

【0008】画質の依存性の原因には、振動子間での音
速の著しい不均一性があり、この原因に着目して、実際
の受信信号の受波タイミングを計測し、それにより送信
及び受信の遅延時間を補正する手法が提案されている。
[0008] The cause of the dependence of the image quality is the remarkable non-uniformity of the sound speed between the transducers. By paying attention to this cause, the actual reception timing of the received signal is measured, and the transmission and reception are thereby performed. Has been proposed for correcting the delay time of the data.

【0009】しかし、音速不均一性の程度が強くなれ
ば、各振動子への超音波の伝搬時間がバラツクだけでな
く、図19に示すように、音響インピーダンスの境界で
の屈折が強く表れるようになり、この屈折の影響によ
り、受信信号の波形が大きく歪み、それにより、整相加
算により得られるビームが劣化する場合も考えられる。
However, if the degree of non-uniformity of the sound velocity becomes strong, not only the propagation time of the ultrasonic wave to each transducer varies, but also the refraction at the boundary of the acoustic impedance appears strongly as shown in FIG. It is also conceivable that the waveform of the received signal is greatly distorted due to the influence of the refraction, thereby deteriorating the beam obtained by the phasing addition.

【0010】また、音速の不均一性だけでなく、図20
に示すように、心臓の検査を想定して、プローブを胸壁
上においた場合において、音響インピーダンスが周囲の
軟部組識と大きく異なる肋骨の存在により、プローブと
肋骨の間で多重反射が発生し、同様に受信信号の波形が
大きく歪んでしまう場合も考えられる。
In addition to the non-uniformity of sound speed, FIG.
As shown in the figure, when the probe is placed on the chest wall assuming a heart examination, multiple reflections occur between the probe and the ribs due to the presence of ribs whose acoustic impedance is significantly different from the surrounding soft tissue, Similarly, it is conceivable that the waveform of the received signal is greatly distorted.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、前者
の音速の著しいバラツキの補正ではなく、後者のように
屈折や多重反射等により、口径内の一部の振動子の受信
信号が著しく歪んでしまった場合に、その画質への影響
を低減することができる超音波診断装置を提供すること
にある。
SUMMARY OF THE INVENTION The object of the present invention is not to compensate for the remarkable variation in the sound speed of the former, but to remarkably cause the reception signals of some of the transducers within the aperture to be remarkable due to refraction or multiple reflection as in the latter. An object of the present invention is to provide an ultrasonic diagnostic apparatus that can reduce the influence on image quality when distortion occurs.

【0012】[0012]

【課題を解決するための手段】本発明は、配列された複
数の振動子それぞれの励振信号及びこれらの振動子が被
検体からの超音波反射波を受波して得られた受信信号に
個別に遅延時間を与えることにより送信及び受信の指向
性を超音波に付与し、この指向性を付与した超音波で被
検体内部を走査して超音波画像を得る超音波診断装置に
おいて、前記受信信号の歪みを振動子ごとに評価する手
段と、その評価結果に従って前記励振信号の強度と前記
受信信号の増幅率との少なくとも一方を制御する手段と
を具備する。
According to the present invention, an excitation signal of each of a plurality of transducers arranged and a reception signal obtained by the transducers receiving an ultrasonic wave reflected from a subject are separately provided. In the ultrasonic diagnostic apparatus for giving the transmission and reception directivity to the ultrasound by giving a delay time to the ultrasound and scanning the inside of the subject with the ultrasound having the directivity to obtain an ultrasound image, the reception signal And a means for controlling at least one of the intensity of the excitation signal and the amplification factor of the received signal in accordance with the evaluation result.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して、本発明に
係る超音波診断装置を好ましい実施形態により説明す
る。本発明は、屈折や多重反射等による受信信号の歪み
の程度を、整相加算前の受信信号に基づいて振動子ごと
に評価し、そこである振動子に関して歪みが比較的大き
いと評価したとき、その振動子で受けた受信信号の増幅
率(以下、“受信増幅率”と称する)を、歪みが比較的
小さい他の振動子で得た受信信号より低下させたり、ま
たその振動子への励振信号の強度(以下、“励振強度”
と称する)を、歪みの程度が比較的小さい他の振動子よ
り低く抑えることにより、歪みの大きい受信信号が画質
を劣化するという悪影響を低減しようとするものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An ultrasonic diagnostic apparatus according to the present invention will be described below with reference to the drawings. The present invention evaluates the degree of distortion of a received signal due to refraction or multiple reflection, for each transducer based on the received signal before phasing addition, and when it is evaluated that the distortion is relatively large with respect to a certain transducer, The gain of the received signal received by the vibrator (hereinafter, referred to as “reception gain”) is made lower than the received signal obtained by another vibrator having relatively small distortion, or the excitation of the vibrator is performed. Signal strength (hereinafter “excitation strength”
This is intended to reduce the adverse effect that a received signal with large distortion degrades image quality by suppressing the degree of distortion to be lower than other vibrators having a relatively small degree of distortion.

【0014】すなわち、屈折や多重反射等に起因して波
形の歪みが大きい場合、その受信信号は受信ビーム形成
に好ましくないとして、その受信増幅率を他の受信増幅
率より低くして、その受信信号の歪みの画質への悪影響
をあまり受けないように制御するわけである。もちろん
受信増幅率を実質的にゼロにして、その受信信号を整相
加算から除外することで、その受信信号の悪影響を完全
に断つことができる。
That is, when the waveform distortion is large due to refraction, multiple reflection, etc., the received signal is regarded as unfavorable for the reception beam formation, and the reception amplification factor is set lower than the other reception amplification factors. The control is performed so that the signal distortion is not adversely affected on the image quality. Of course, by setting the reception amplification factor to substantially zero and excluding the received signal from the phasing addition, the adverse effect of the received signal can be completely eliminated.

【0015】また、受信信号が整相加算(受信ビーム形
成)に好ましくないということは、その振動子から送波
される超音波も、送信ビーム形成に好ましくないと予想
され、その振動子に対する励振強度を小さくする。もち
ろん、その振動子の励振強度をゼロにして、その振動子
を送信ビーム形成から除外することにより、同様にその
振動子での歪みの悪影響を完全になくすこともできる。
Further, the fact that the received signal is not preferable for phasing addition (receiving beam formation) means that the ultrasonic wave transmitted from the vibrator is also not preferable for transmission beam formation, and the excitation of the vibrator is not excited. Decrease strength. Of course, by setting the excitation intensity of the vibrator to zero and excluding the vibrator from transmission beam formation, the adverse effect of distortion in the vibrator can also be completely eliminated.

【0016】しかし一方で、受信増幅率を完全にゼロに
したり、励振強度を完全にゼロにすることは、口径の減
少をもたらすことと、制御が急激に変わることが画像に
違和感を与える可能性があることとを考え合わせると、
必ずしも良いとは限らない。そこで、受信信号の歪みが
大きくなる振動子の受信増幅率を完全にゼロにしたり、
励振強度を完全にゼロにするのではなく、受信増幅率や
励振強度をある程度の低下に止めることが好ましいとも
言える。
On the other hand, however, making the reception amplification factor completely zero or the excitation intensity completely zero results in a decrease in aperture, and a sudden change in control may give an unnatural feeling to an image. Considering that there is
It is not always good. Therefore, it is possible to completely reduce the reception amplification factor of the vibrator where the distortion of the reception signal becomes large,
It can be said that it is preferable not to completely reduce the excitation intensity to zero, but to reduce the reception amplification factor and the excitation intensity to some extent.

【0017】ところで、屈折や多重反射等による受信信
号波形の歪みの程度を評価する、つまり受信信号がビー
ム形成に好ましいか否かを評価するために、発明者は以
下の2通りの評価法を提案している。 (1)振動子間での受信信号波形の類似性 (2)受信信号のパワー 以下、それぞれの評価の意図する所を述べると共に実際
の評価方法について説明する。 (1)受信信号波形の類似性 図1は、口径中心線上に固定した点音源に対して、受信
ビームを少しずつ偏向していった場合の受信ビーム指向
性の角度依存性を示している。図1(b)の縦軸は、整
相加算信号の強度、例えば振幅を表している。また、図
1(b)の細線は、均一な媒質の場合の理想特性であ
り、伝搬媒質中に肋骨のような音響特性が極端に異なる
媒質が存在する場合には、太線で描いたように指向性に
乱れが生じてしまうと予想される。なお、図中、A点は
点音源と受信の集束点と一致しており、指向性は最大で
あり、B点は指向性上利得が小さくなることが望まれる
場所である。その詳細な過程を図2と図3を用いて定性
的に説明する。
In order to evaluate the degree of distortion of the received signal waveform due to refraction, multiple reflection, etc., that is, to evaluate whether the received signal is preferable for beam forming, the inventor uses the following two evaluation methods. is suggesting. (1) Similarity of received signal waveform between transducers (2) Power of received signal Hereinafter, the purpose of each evaluation will be described and an actual evaluation method will be described. (1) Similarity of Received Signal Waveform FIG. 1 shows the angle dependence of the receive beam directivity when the receive beam is deflected little by little with respect to a point sound source fixed on the aperture center line. The vertical axis in FIG. 1B represents the intensity of the phasing addition signal, for example, the amplitude. The thin line in FIG. 1B is an ideal characteristic in the case of a uniform medium. When a medium such as a rib having extremely different acoustic characteristics exists in the propagation medium, the thin line is drawn as a thick line. It is expected that the directivity will be disturbed. In the figure, point A coincides with the point sound source and the focal point of reception, the directivity is maximum, and point B is a place where it is desired to reduce the gain in directivity. The detailed process will be qualitatively described with reference to FIGS.

【0018】図2は、均一な媒質を超音波で伝搬してき
た場合を想定しており、口径内の各振動子で得られる受
信信号は、基本的に同じ波形で、伝搬時間に応じて時間
軸上の位置が少しずつ異なるという関係にある。集束の
ための受信遅延制御により、信号の時間軸上の位置を同
じに、つまり位相が揃うように制御され、加算される。
この操作がいわゆる整相加算といわれる操作である。
FIG. 2 is based on the assumption that a uniform medium is propagated by ultrasonic waves. The received signals obtained by the transducers within the aperture have basically the same waveform, and are time-dependent according to the propagation time. The relationship is that the position on the axis is slightly different. By the reception delay control for convergence, the signals are controlled so that the positions on the time axis are the same, that is, the phases are aligned and added.
This operation is an operation called so-called phasing addition.

【0019】この場合、全ての信号の位相があっている
ため(例えば信号の時間軸上で、正の頂点同士が同じ位
置にある)、加算により信号同士が強調され、A点にお
いては大きな利得が得られる。それに対して、B点にお
いては、受信の遅延操作はB点に集束するように行われ
ているので、点音源からの信号は位相が合わず、相互に
打ち消し合うように働くため、利得が低くなる。
In this case, since all the signals have the same phase (for example, the positive vertices are at the same position on the time axis of the signal), the signals are emphasized by the addition, and a large gain is obtained at the point A. Is obtained. On the other hand, at point B, the delay operation of reception is performed so as to converge on point B, so that the signals from the point sound sources do not match in phase and work so as to cancel each other out, so that the gain is low. Become.

【0020】このように、口径内の各振動子からの受信
信号の位相が揃っている所が強調され、それ以外の所で
は位相が打ち消しあう要素が強くなる程、利得が下がる
ことにより、図1に示すような指向性パターンが得られ
るわけである。
As described above, the places where the phases of the received signals from the respective transducers within the aperture are aligned are emphasized, and the gain is reduced as the elements whose phases cancel each other out become strong in other places. Thus, a directivity pattern as shown in FIG.

【0021】図3では、口径の一端付近に存在する肋骨
の影響で主に多重反射により、この一端付近の振動子で
得られる受信信号の波形が、他の振動子の受信信号の波
形と比べて極端に歪んでしまった様子を示している。こ
のような場合、たとえA点に集束を行っても、一端の振
動子の受信信号が歪んで他の振動子の受信信号と波形が
異なっているため、整相加算しても受信信号同士で必ず
しも強調しあわなくなり、利得としては低下してしま
う。また、B点に集束する場合では、逆に、波形に相違
により、位相の打ち消しがうまくいかず、意に反して、
利得は見かけ上大きくなってしまう。
In FIG. 3, the waveform of the received signal obtained by the vibrator near this one end is compared with the waveform of the received signal of the other vibrator mainly due to the multiple reflection mainly due to the influence of the rib existing near one end of the aperture. It shows that it has been extremely distorted. In such a case, even if focusing is performed at point A, the received signal of one vibrator is distorted and the waveform is different from the received signal of the other vibrator. The emphasis is not always on each other, and the gain is reduced. On the other hand, in the case of focusing on the point B, conversely, due to the difference in the waveform, the phase cannot be canceled well,
The gain is apparently large.

【0022】このように、波形の類似性が失われること
は、伝搬時間がバラツクことにより遅延時間が適切でな
くなることと同様に、シャープなビーム形成を損なって
しまう。本発明の主旨は、これらの歪んだ波形の受信信
号を、ビーム形成のための整相加算から除外する、もし
くは受信増幅率を低くして整相加算に参加させることで
その画質への悪影響を低減しようとするものである。
Loss of similarity in the waveforms impairs sharp beam formation, as well as inadequate delay times due to variations in propagation times. The gist of the present invention is to remove the distorted received signal from the phasing addition for beam forming, or to reduce the reception amplification factor and participate in the phasing addition to reduce the adverse effect on the image quality. We are trying to reduce it.

【0023】一般に信号間の類似性を評価する場合、相
関関数ρxy(Z)のピークの値(最大値)を用いる。但
し、以下、相関関数のピーク値のことを単に“相関係
数”と称するものとする。以下に、相関関数の定義式を
記す。
In general, when evaluating the similarity between signals, the peak value (maximum value) of the correlation function ρ xy (Z) is used. However, hereinafter, the peak value of the correlation function is simply referred to as “correlation coefficient”. The definition formula of the correlation function is described below.

【0024】[0024]

【数1】 (Equation 1)

【0025】図4を参照して、この類似性が意味すると
ころを説明する。2つ受信信号の波形の類似性が高いと
き、相関関数のピークの位置が2つの波形の時間ずれを
表し、そのピーク値が両波形の間の類似性を反映してい
る。つまり、完全に同じ波形間で相関関数を導出した場
合には、両者の位相が不一致でも、そのピーク値は、最
大の類似性を示す“1.0”になる。一方、波形の類似
性が低い場合には、ピーク値は低くなる。
Referring to FIG. 4, what this similarity means will be described. When the similarity of the waveforms of the two received signals is high, the position of the peak of the correlation function indicates the time lag between the two waveforms, and the peak value reflects the similarity between the two waveforms. That is, when a correlation function is derived between completely the same waveforms, the peak value is “1.0” indicating the maximum similarity even if the phases do not match. On the other hand, when the similarity of the waveforms is low, the peak value is low.

【0026】このような意味合いのあるピーク値、つま
り相関係数を用いて、ビーム形成に好ましいか否かを振
動子ごとに評価しようという訳であるが、ここで問題と
なるのは、どのような位置関係にあるペアの振動子の間
で相関係数を求めるのかということである。この点に関
して、最初に明記しておかないといけないのが、口径内
で得られる2つの受信信号の類似性は、それらを得た振
動子の間隔が広くなるほど低下するということである。
基本的には、2つの振動子の受信信号の類似性は、これ
ら2つの振動子の間隔が広くなる程低下していき(相関
係数が低くなり)、しかも、その程度は、送信ビームが
太いほど低下は急速に進むという性質がある。そしてあ
る程度離れると受信信号同士はまったく無相関になって
しまう(相関係数がゼロに近似する)。
Using such a meaningful peak value, that is, a correlation coefficient, whether or not it is preferable for beam formation is to be evaluated for each transducer. The question is whether a correlation coefficient is to be obtained between a pair of transducers having an appropriate positional relationship. In this regard, it must first be specified that the similarity of the two received signals obtained within the aperture decreases as the distance between the transducers from which they are obtained is increased.
Basically, the similarity of the received signals of the two transducers decreases as the distance between the two transducers increases (the correlation coefficient decreases), and moreover, the degree to which the transmission beam Thickness has the property that the decrease proceeds rapidly. When the signals are separated to some extent, the received signals become completely uncorrelated (the correlation coefficient approaches zero).

【0027】図5には、口径内の中心振動子と他の振動
子それぞれとの間で求めた相関係数を、当該他の振動子
の位置にプロットして求めた相関係数の位置分布を概念
的に示している。例えば中心振動子(A)と、振動子
(B)との間で得た相関係数を、振動子(B)の位置に
プロットする。この図5から分かることは、相関係数
は、中心振動子からの距離に対して非常に強く依存する
ことである。このことより、例えば口径の中心にある振
動子の受信信号と、他の振動子の受信信号との間で相関
係数を求めることは、好ましくないことがわかる。
FIG. 5 shows the position distribution of the correlation coefficient obtained by plotting the correlation coefficient obtained between the central oscillator within the aperture and each of the other oscillators at the position of the other oscillator. Is conceptually shown. For example, the correlation coefficient obtained between the center oscillator (A) and the oscillator (B) is plotted at the position of the oscillator (B). It can be seen from FIG. 5 that the correlation coefficient is very strongly dependent on the distance from the central oscillator. From this, it can be seen that it is not preferable to obtain a correlation coefficient between a received signal of a vibrator at the center of the aperture and a received signal of another vibrator, for example.

【0028】また、あまり近接した振動子間、例えば隣
接した振動子間で相関係数を求めても、生体内構造物に
よる波形の変化が極端に急に起こる場合を除いては、殆
どの相関係数が“1.0”に近似してしまい、屈折や多
重反射の影響を捉えることができないということも予想
される。
Further, even when the correlation coefficient is obtained between transducers that are too close together, for example, between adjacent transducers, most of the phases are obtained except when the waveform change due to the in-vivo structure occurs extremely abruptly. It is also expected that the relationship number will be close to "1.0" and the effects of refraction and multiple reflections cannot be captured.

【0029】この点を考慮すると、送信条件、観測点の
深さ等から予想される理論上の相関係数のパターンよ
り、相関係数が適当に分散するように振動子間隔を選ぶ
ことが良い。適切な間隔がいくつであるかについては、
多分に経験的な蓄積が必要になるであろうし、被検体に
よっても異なってくるであろうし、従ってここでは特定
値に限定はできない。もちろん、相関係数の理論値とは
無関係に経験的に最適な振動子間隔を決定してもよい
が、理論値を用いた方が理論的に振動子間隔を決定でき
る。
In consideration of this point, it is preferable to select the interval between the oscillators so that the correlation coefficient is appropriately dispersed from the theoretical correlation coefficient pattern expected from the transmission conditions, the depth of the observation point, and the like. . As for how many intervals are appropriate,
Probably empirical accumulation will be required and will vary from subject to subject, and thus cannot be limited to specific values here. Of course, the optimum oscillator interval may be determined empirically irrespective of the theoretical value of the correlation coefficient, but the theoretical interval can be theoretically determined by using the theoretical value.

【0030】このように経験的又は理論的に決定した振
動子間隔で、受信信号間の相関係数を求め、その相関係
数の値を両振動子の中央の位置に当てはめる。この作業
を、振動子のペアを、1つずつシフトさせて繰り返すこ
とで、図6に一例を示すような相関係数の口径上の位置
分布を得ることができる。もちろん、口径の端部におい
ては、所定の振動子間隔を確保できないので、振動子間
隔を随時狭める等の特殊な操作が必要になる。
The correlation coefficient between the received signals is determined at the transducer interval determined empirically or theoretically as described above, and the value of the correlation coefficient is applied to the center position of both transducers. By repeating this operation while shifting the pair of transducers one by one, it is possible to obtain a position distribution on the aperture of the correlation coefficient as shown in an example in FIG. Of course, at the end of the aperture, a predetermined interval between the transducers cannot be secured, so that a special operation such as reducing the interval between the transducers as needed is required.

【0031】このように得られた相関係数の分布を用い
て、どのように受信増幅率や、送信時の励振強度を制御
するかについては、様々な方法が考えられる。ひとつの
方法としては、図6に示すように、上記の均一媒質を想
定した導出した理論値に基づいて閾値を決定し、相関係
数がこの閾値以下の振動子を対象に、その受信増幅率や
励振強度を実質的にゼロにしたり、或いはその相関係数
の値に応じて連続的に変化させても良い。
Various methods are conceivable as to how to control the reception amplification factor and the excitation intensity at the time of transmission by using the distribution of the correlation coefficient thus obtained. As one method, as shown in FIG. 6, a threshold value is determined based on a theoretical value derived assuming the above-described uniform medium, and a receiver having a correlation coefficient equal to or less than the threshold value has a reception amplification factor. Or the excitation intensity may be made substantially zero, or may be continuously changed according to the value of the correlation coefficient.

【0032】(2)受信信号の強度又はパワー 以上、受信信号の類似性を考慮する方式についてのべた
が、この相関係数を用いる方法は計算量が多い。この点
を考慮し、計算量を減らして、より簡便にして、しか
も、ある程度の効果を維持できる方法として、受信信号
の強度(振幅)やパワー(振幅の二乗を時間積分して、
その値を単位時間で規格化した値)に基づく方式も考え
られる。なお、ここでは、パワーとして説明する。
(2) Intensity or Power of Received Signal As described above, the method considering the similarity of the received signals has been described. The method using the correlation coefficient requires a large amount of calculation. In consideration of this point, as a method of reducing the amount of calculation, simplifying the operation, and maintaining a certain effect, the intensity (amplitude) and power (square of the amplitude of the received signal are integrated over time,
A method based on the value standardized in unit time) is also conceivable. Here, the description will be made as power.

【0033】図7は、心臓を経胸壁的に検査する状況を
想定している。同図(a)、(b)に示すように、口径
の右端(図中領域B)は、その下に肺が入り込んでお
り、その影響で領域B内に位置する振動子の受信信号は
ビーム形成に好ましくない程度まで歪んでいる。この不
適切は、先の相関係数を用いる方式で辿り着くことがで
きると考えられる。しかし、受信信号のパワーも肺によ
る散乱により低下していると仮定すると、振動子それぞ
れの受信信号やパワーを口径軸上に分布させることによ
り、図6と同様な分布を得ることができる。このような
パワーの位置分布を得た後は、相関係数を用いた場合と
同様に、パワーが、均一媒質を想定した導出した理論値
に基づいて決定した閾値以下を示す振動子を対象に、そ
の受信増幅率や励振強度を実質的にゼロにしたり、或い
はその相関係数の値に応じて連続的に変化させるのであ
る。
FIG. 7 assumes a situation in which the heart is examined transthoracically. As shown in FIGS. 7A and 7B, the right end of the aperture (region B in the drawing) has a lung underneath, and the received signal of the transducer located in the region B is a beam due to the influence. Distorted to an undesirable degree for formation. It is considered that this inappropriateness can be reached by the method using the correlation coefficient. However, assuming that the power of the received signal is also reduced due to the scattering by the lungs, by distributing the received signal and power of each transducer on the diameter axis, a distribution similar to that in FIG. 6 can be obtained. After obtaining such a position distribution of power, as in the case of using the correlation coefficient, a target whose power is equal to or less than a threshold determined based on a theoretical value derived assuming a uniform medium is targeted. The reception amplification factor and the excitation intensity are made substantially zero, or are continuously changed according to the value of the correlation coefficient.

【0034】ところで、受信信号のパワーが小さいの
で、その画質への悪影響は小さいと考えがちだが、超音
波画像のダイナミックレンジは、40−80dBとかな
り広く、パワーが小さからといって、画質への悪影響も
少ないとは限らないのである。
By the way, it is easy to think that the adverse effect on the image quality is small because the power of the received signal is small, but the dynamic range of the ultrasonic image is quite wide, 40-80 dB, and the power is small, so The adverse effects are not always small.

【0035】このように受信信号の類似性やパワーを取
り扱う場合に共通する問題として、受信信号の全部を使
ってこれらの値を求めるようにすると、その相関係数は
過度に低下しすぎたり、またパワーが過度に高くなって
しまうので、これらの値が良好に分散しなくなり、適当
な評価ができなくなってしまうという問題がある。従っ
て、受信信号の一部分を使って、相関係数やパワーを求
める必要がある。
As described above, a common problem in handling the similarity and power of received signals is that if these values are obtained by using all of the received signals, the correlation coefficient is excessively reduced, Further, since the power becomes excessively high, these values do not disperse satisfactorily, and there is a problem that an appropriate evaluation cannot be performed. Therefore, it is necessary to obtain a correlation coefficient and power using a part of the received signal.

【0036】図8(a)は、心臓の超音波画像を描いた
ものであるが、心空内部からは基本的に信号を得ること
はできず、その心空内部に相当する深さの受信信号の一
部分を用いて評価すると、電気的ノイズの類似性を評価
してしまう結果となって、当然、相関係数は低下してし
まう。この場合、殆どの振動子が図6に示した閾値以下
となってしまい、走査不能という事態に陥ってしまいか
ねない。
FIG. 8A shows an ultrasonic image of the heart. However, basically, no signal can be obtained from the inside of the heart, and the reception of a depth corresponding to the inside of the heart is performed. When the evaluation is performed using a part of the signal, the similarity of the electrical noise is evaluated, and the correlation coefficient naturally decreases. In this case, most of the vibrators are lower than the threshold value shown in FIG. 6, which may lead to a situation where scanning is impossible.

【0037】このような事態を回避するため、評価に用
いる受信信号の一部分を生体内臓器からの反射で構成さ
れている適切な領域に設定することを必要がある。図8
にはその方法を記している。
In order to avoid such a situation, it is necessary to set a part of the received signal used for the evaluation in an appropriate area constituted by the reflection from the organ in the living body. FIG.
Describes how to do this.

【0038】まず、適切な領域の選択には、整相加算後
の信号を用いる。1フレーム前の信号を用いるのが、実
際の装置構成から信号処理の流れを考えると良いと思わ
れる。図8(b)に、同図(a)の画像中に太線で示さ
れている走査線に対応する整相加算後の信号波形を示し
た。この整相加算信号に対し、まず検波によって振幅を
抽出し(包絡線を検出し)、さらに細かなスペックル変
動の影響をなくすために、時間方向にスムージングす
る。このスムージング後の包絡線を同図(c)に細線で
示している。
First, a signal after phasing and addition is used for selecting an appropriate area. It is considered to be better to use the signal of one frame before, considering the flow of signal processing from the actual device configuration. FIG. 8B shows a signal waveform after phasing addition corresponding to the scanning line indicated by the thick line in the image of FIG. The amplitude of the phasing addition signal is first extracted by detection (envelope detection), and smoothing is performed in the time direction in order to eliminate the influence of fine speckle fluctuation. The envelope after smoothing is shown by a thin line in FIG.

【0039】この包絡線に、生体内での減衰の深度依存
性を補正するために、平均的な生体減衰量に相当する量
を増幅量として作用させる(減衰補正)。この減衰補正
後の包絡線を、図8(c)に太線で示している。
In order to correct the depth dependence of attenuation in a living body, an amount corresponding to an average biological attenuation is made to act on this envelope as an amplification amount (attenuation correction). The envelope after the attenuation correction is shown by a thick line in FIG.

【0040】この包絡線に対し、ある閾値を越える複数
の領域を候補として選び、この候補の中から予め設定し
てある基準深度に最も近い領域を選択する。つまり、各
振動子からの受信信号の中の選択された領域に対応する
部分を用いて、相関係数やパワーを求める。
With respect to this envelope, a plurality of regions exceeding a certain threshold are selected as candidates, and a region closest to a preset reference depth is selected from the candidates. That is, the correlation coefficient and the power are obtained by using the portion corresponding to the selected area in the received signal from each transducer.

【0041】なお、評価及び口径の制御は、前記のよう
な1箇所の信号のみを用いて行う必要はなく、同様に複
数の領域に対して、評価を行い、その結果に基づいて、
送信受信の制御を行っても良い。
The evaluation and the control of the aperture need not be performed using only one signal as described above. Similarly, evaluation is performed on a plurality of regions, and based on the results,
Transmission and reception may be controlled.

【0042】このような原理は次の実施形態の記述か
ら、より理解が深まると思われる。 (第1実施形態)図9に第1実施形態に係る超音波診断
装置の構成を示す。超音波プローブ1は、電気信号を扱
う側と、超音波に振幅変調や周波数変調をかけて内部情
報を付与する被検体側との間を媒介するために、その先
端部分に複数の振動子を配列している。なお、このプロ
ーブ1の形態としては、セクタ対応、リニア対応、コン
ベックス対応等のいずれでもよいが、ここではセクタを
例にとって説明する。
Such a principle will be better understood from the description of the following embodiment. (First Embodiment) FIG. 9 shows a configuration of an ultrasonic diagnostic apparatus according to a first embodiment. The ultrasonic probe 1 is provided with a plurality of transducers at its distal end in order to mediate between a side that handles electric signals and a subject side that applies amplitude modulation or frequency modulation to ultrasonic waves to give internal information. They are arranged. The form of the probe 1 may be any of a sector correspondence, a linear correspondence, a convex correspondence, and the like. Here, the sector will be described as an example.

【0043】このプローブ1には送信用駆動部3と受信
用増幅器6とが、送受信切替器2によって送信時と受信
時とで択一的に接続される。送信用駆動部3は、クロッ
ク回路、レートパルス発生器、送信遅延回路、パルサと
から一般的に構成されている。クロック回路から発振さ
れたクロックを分周してレートパルス発生器で超音波の
送信レート(毎秒送信回数)を決定するためのレートパ
ルスが作られる。このレートパルスは、例えば100チ
ャネルに分配されて、送信遅延回路に送られ、そこで超
音波の指向性を決めるために必要な遅延時間を個別に与
えられ、パルサに供給される。パルサは、いわゆる電力
増幅器であり、レートパルスを増幅してプローブ1の振
動子それぞれに印加する。
A transmission drive unit 3 and a reception amplifier 6 are selectively connected to the probe 1 by a transmission / reception switch 2 at the time of transmission and at the time of reception. The transmission driver 3 is generally composed of a clock circuit, a rate pulse generator, a transmission delay circuit, and a pulser. The clock oscillated from the clock circuit is frequency-divided, and a rate pulse is generated by the rate pulse generator to determine the transmission rate of ultrasonic waves (the number of transmissions per second). The rate pulse is distributed to, for example, 100 channels and sent to a transmission delay circuit, where a delay time necessary for determining the directivity of the ultrasonic wave is individually given and supplied to the pulser. The pulser is a so-called power amplifier, which amplifies a rate pulse and applies it to each transducer of the probe 1.

【0044】送信遅延回路で各チャネルのレートパルス
に与える遅延時間は、超音波パルスが1回又は所定回数
送信されるごとに少しずつ変化される。これにより送信
ビームの向きが少しずつ動いていく。このような遅延制
御は、送信用遅延制御部4により行われている。
The delay time given to the rate pulse of each channel by the transmission delay circuit is changed little by little when the ultrasonic pulse is transmitted once or a predetermined number of times. Thereby, the direction of the transmission beam moves little by little. Such delay control is performed by the transmission delay control unit 4.

【0045】また、パルサでのレートパルスの増幅率
は、チャネルごとに送信用口径制御部5で任意に制御さ
れる。この送信用口径制御部5は、振動子列の中の端側
の幾つかの振動子に対応するレートパルスの増幅率を極
端に小さくして、その振動子から超音波が実質的に出な
いようにすることにより、口径を任意に変えることがで
きる。本実施形態では、この口径制御を流用して、上述
したような相関係数やパワーに応じた励振強度の制御を
行っている。
The amplification rate of the rate pulse in the pulser is arbitrarily controlled by the transmission aperture control unit 5 for each channel. The transmission aperture control unit 5 makes the amplification rate of the rate pulse corresponding to some of the vibrators on the end side in the vibrator row extremely small so that substantially no ultrasonic wave is emitted from the vibrator. By doing so, the aperture can be arbitrarily changed. In the present embodiment, the control of the excitation intensity according to the correlation coefficient and the power as described above is performed by using the aperture control.

【0046】プローブ1の振動子はこの励振信号により
励振され、超音波を発生する。この超音波は生体内を伝
播し、その途中にある音響インピーダンスの不連続面で
次々と反射する。この反射強度は音響インピーダンスの
差に主に依存していることから、この動きは振幅変調に
近いものと言える。また、超音波は心臓壁や血球でも反
射するが、これら移動体での反射には、そのドップラ効
果による周波数変調の動きが含まれている。
The transducer of the probe 1 is excited by the excitation signal, and generates an ultrasonic wave. The ultrasonic wave propagates in the living body, and is reflected one after another at a discontinuous surface of acoustic impedance in the middle of the ultrasonic wave. Since this reflection intensity mainly depends on the difference in acoustic impedance, it can be said that this movement is close to amplitude modulation. Ultrasound waves are also reflected on the heart wall and blood cells, and the reflections on these moving bodies include movement of frequency modulation due to the Doppler effect.

【0047】このような反射波はプローブ1に返ってき
て、各振動子を振動する。これにより、振動子それぞれ
から、微弱な受信信号が発生する。これらの受信信号
は、受信用増幅器6で個別に増幅された後、アナログデ
ィジタルコンバータ(A/D)7を介して整相加算処理
部8と適応口径制御部20とに送られる。
Such a reflected wave returns to the probe 1 and vibrates each vibrator. As a result, a weak reception signal is generated from each of the vibrators. After these received signals are individually amplified by the receiving amplifier 6, they are sent to the phasing addition processing section 8 and the adaptive aperture control section 20 via the analog-to-digital converter (A / D) 7.

【0048】受信用増幅器6での受信信号の増幅率は、
チャネルごとに受信用口径制御部9で任意に制御され
る。この受信用口径制御部9は、振動子列の中の端側の
幾つかの振動子からの受信信号の増幅率を極端に小さく
して、口径を任意に変えることができる。この口径制御
は、主として、反射深度に応じて口径を動的に変えるい
わゆるダイナミックアパーチャーや、ビームのサイドロ
ーブレベルを下げるための重み付け処理、いわゆるアポ
タイゼイション処理に用いられている。本実施形態で
は、この口径制御を流用して、上述したような相関係数
やパワーに応じた受信増幅率の制御を行っている。
The amplification factor of the received signal in the receiving amplifier 6 is
It is arbitrarily controlled by the reception aperture control unit 9 for each channel. The reception aperture control unit 9 can change the aperture arbitrarily by extremely reducing the amplification factor of the reception signals from some of the transducers on the end side in the transducer row. This aperture control is mainly used for a so-called dynamic aperture that dynamically changes the aperture according to the reflection depth, and a weighting process for lowering the side lobe level of the beam, that is, a so-called apotization process. In the present embodiment, the aperture control is performed in accordance with the correlation coefficient and the power as described above using the aperture control.

【0049】整相加算処理部8は、受信遅延回路と加算
器とから一般的に構成されている。増幅された受信信号
は、受信遅延回路に送られ、そこで超音波の受信指向性
を決めるために必要な遅延時間を個別に与えられ、加算
器で加算される。受信遅延回路で各受信信号に与える遅
延時間は、送信遅延制御に同期して少しずつ変化され
る。これにより送信ビームに従って受信ビームの向きが
少しずつ動いていき、セクタ走査が実現されるのであ
る。このような遅延制御は、送信用遅延制御部4により
行われている。遅延時間を与えられた受信信号は加算器
で加算される。
The phasing addition processing section 8 is generally composed of a reception delay circuit and an adder. The amplified reception signal is sent to a reception delay circuit, where a delay time necessary for determining the reception directivity of the ultrasonic wave is individually given, and added by an adder. The delay time given to each reception signal by the reception delay circuit is changed little by little in synchronization with the transmission delay control. As a result, the direction of the reception beam moves little by little according to the transmission beam, and sector scanning is realized. Such delay control is performed by the transmission delay control unit 4. The received signal given the delay time is added by an adder.

【0050】この整相加算信号は、Bモード用処理部1
1とカラーフローマッピング(CFM)用処理部12と
スペクトラムドプラ用処理部13の他に、新規的な適応
口径制御部20にも送り込まれる。Bモード用処理部1
1は、検波回路と対数増幅器とから一般的に構成され
る。まず、検波回路で整相加算信号の包絡線を検波し、
その次に対数増幅器で対数増幅する。
The phasing addition signal is supplied to the B mode processing unit 1
1 and a processing unit 12 for color flow mapping (CFM) and a processing unit 13 for spectrum Doppler as well as a new adaptive aperture control unit 20. B-mode processing unit 1
1 generally comprises a detection circuit and a logarithmic amplifier. First, the detection circuit detects the envelope of the phasing addition signal,
Then, logarithmic amplification is performed by a logarithmic amplifier.

【0051】カラーフローマッピング用処理部12は、
ミキサとローパスフィルタとMTIフィルタと自己相関
器と演算部とから一般的に構成されている。ミキサとロ
ーパスフィルタとは直交位相検波回路を構成し、送信周
波数と同じ中心周波数の参照信号とそれから90゜移相
した参照信号とをそれぞれ個別に整相加算信号に掛け合
わせ、そしてこの掛け合わせにより得られた信号それぞ
れから高周波成分を除去することにより、偏移周波数成
分を取り出し、これをドプラ信号として出力する。な
お、このドプラ信号には、主に血球等の速い移動体での
反射により周波数変調を受けた高周波成分と、主に心臓
壁等の遅い移動体での反射により周波数変調を受けた低
周波成分とが含まれている。
The color flow mapping processing unit 12
It generally includes a mixer, a low-pass filter, an MTI filter, an autocorrelator, and a calculation unit. The mixer and the low-pass filter constitute a quadrature phase detection circuit. The reference signal having the same center frequency as the transmission frequency and the reference signal shifted by 90 ° from the reference signal are individually multiplied with the phasing addition signal, and the multiplication is performed. By removing the high frequency component from each of the obtained signals, the shift frequency component is extracted and output as a Doppler signal. The Doppler signal includes a high-frequency component that is mainly frequency-modulated by reflection from a fast moving body such as blood cells, and a low-frequency component that is mainly frequency-modulated by reflection from a slow moving body such as a heart wall. And are included.

【0052】MTIフィルタはハイパスフィルタとして
機能し、主に血球等の速い移動体での反射により周波数
変調を受けた高周波成分(血流成分)だけを通過し、主
に心臓壁等の遅い移動体での反射により周波数変調を受
けた低周波成分(クラッタ成分)を除去する。そして、
この血流成分だけになったドプラ信号を自己相関器によ
り周波数解析して、血球による偏移周波数を求める。こ
の偏移周波数に基づいて、演算部では血流速度(平均速
度)と、その分散と、主に血流量を反映しているパワー
(ドプラ信号の振幅の二乗)とを演算する。
The MTI filter functions as a high-pass filter, passes only high-frequency components (blood flow components) which are mainly frequency-modulated by reflection from a fast moving body such as blood cells, and mainly passes through a slow moving body such as a heart wall. The low-frequency component (clutter component) that has been frequency-modulated by the reflection at is removed. And
The Doppler signal containing only the blood flow component is frequency-analyzed by an autocorrelator to determine a shift frequency due to blood cells. Based on the shift frequency, the calculation unit calculates the blood flow velocity (average velocity), its variance, and the power mainly reflecting the blood flow (square of the Doppler signal amplitude).

【0053】スペクトラムドプラ用処理部13は、ミキ
サとローパスフィルタとサンプルホールド回路と帯域フ
ィルタと周波数分析器とから一般的に構成されている。
カラーフローマッピング用処理部12の場合と同様に、
ミキサとローパスフィルタとで整相加算信号から偏移周
波数成分を取り出し、このドプラ信号から指定されたサ
ンプルボリュームの深度に相当する一部分を切り出し、
この一部分の信号から帯域フィルタで高周波成分(血流
成分)だけを取り出し、そして、この血流成分だけにな
ったドプラ信号を高速フーリエ変換(FFT)により周
波数解析して、血球による偏移周波数を求める。
The spectrum Doppler processing section 13 generally comprises a mixer, a low-pass filter, a sample-and-hold circuit, a band-pass filter, and a frequency analyzer.
As in the case of the color flow mapping processing unit 12,
The shift frequency component is extracted from the phasing addition signal by the mixer and the low-pass filter, and a part corresponding to the depth of the designated sample volume is cut out from the Doppler signal,
Only a high-frequency component (blood flow component) is extracted from this part of the signal by a bandpass filter, and the Doppler signal that has been converted to only the blood flow component is subjected to frequency analysis by fast Fourier transform (FFT) to determine the shift frequency due to blood cells. Ask.

【0054】これら各処理部11,12,13からの出
力信号は表示系14で1画面に適当に合成され、またT
V走査方式に並び替えられ、モニタ15に供給され、断
層組織像(濃淡画像)、血流画像(カラー画像)、血流
Mモード像として表示される。
The output signals from the processing units 11, 12, and 13 are appropriately combined into one screen by the display system 14, and T
The images are rearranged into the V-scan system, supplied to the monitor 15, and displayed as a tomographic tissue image (density image), a blood flow image (color image), and a blood flow M-mode image.

【0055】適応口径制御部20は、送信用口径制御部
5及び受信用口径制御部9を制御して、生体内組識によ
り好ましくない影響を受ける振動子に対して励振強度や
受信増幅率を制御して、その歪みによる画質への悪影響
を小さくするために設けられ、評価領域選択部21と受
信信号評価部22と口径制御部23とから構成されてい
る。
The adaptive aperture control section 20 controls the transmission aperture control section 5 and the reception aperture control section 9 to adjust the excitation intensity and the reception amplification factor for the vibrator which is undesirably affected by the tissue in the living body. It is provided to control and reduce the adverse effect on the image quality due to the distortion, and includes an evaluation area selection unit 21, a reception signal evaluation unit 22, and an aperture control unit 23.

【0056】基本的な動作を簡単に説明する。まず、整
相加算信号を使って評価領域選択部21で、受信信号間
の相関係数を求めるのに最適な領域を選択する。この選
択された最適な領域に関する情報は一旦メモリに格納さ
れ、次のフレームの受信信号の評価に用いられる。そし
て、受信信号評価部22では、現フレームの受信信号を
用いて上述したように振動子間で相関係数を計算し、そ
の結果に従って口径制御部23で励振強度と受信増幅率
の制御を行う。
The basic operation will be briefly described. First, the evaluation area selection unit 21 uses the phasing addition signal to select an optimum area for obtaining a correlation coefficient between received signals. Information on the selected optimum area is temporarily stored in a memory and used for evaluating a received signal of the next frame. Then, the received signal evaluation unit 22 calculates the correlation coefficient between the transducers using the received signal of the current frame as described above, and controls the excitation intensity and the reception amplification factor in the aperture control unit 23 according to the calculation result. .

【0057】図10に評価領域選択部22の詳細構成を
示している。簡便のため、1フレームに限った操作につ
いて説明するが、各フレームで同様の操作が繰り返され
る。整相加算信号が、各走査線において随時、検波部2
11に入力され、この整相加算信号の振幅成分が抽出さ
れる。振幅信号はローパスフィルタ212で時間方向
(深さ方向)にスムージング処理され、細かな変動が平
らに均される。さらにこの信号に対して増幅器213に
て、平均的な生体内減衰を補正するために、増幅が行わ
れる。但し、この生体内減衰を補正するための増幅量
は、Bモード画像の輝度を合わせるために操作者が行
う、深さごとの増幅率制御いわゆるSTCの値に応じて
変化させて、減衰の深さ依存性を補正するようにしても
よい。
FIG. 10 shows the detailed configuration of the evaluation area selection unit 22. For simplicity, the operation limited to one frame will be described, but the same operation is repeated in each frame. The phasing addition signal is supplied to the detector 2 at any time in each scanning line.
11, and the amplitude component of the phasing addition signal is extracted. The amplitude signal is subjected to smoothing processing in the time direction (depth direction) by the low-pass filter 212, and fine fluctuations are leveled out evenly. Further, the signal is amplified by the amplifier 213 in order to correct the average in-vivo attenuation. However, the amplification amount for correcting the in-vivo attenuation is changed according to the value of the so-called STC, which is an amplification factor control for each depth, which is performed by an operator to adjust the brightness of the B-mode image. The dependency may be corrected.

【0058】閾値判定部214では、減衰量の補正を行
われた振幅信号を予め設定されている閾値に比較し、振
幅信号の中の閾値を越える複数の領域を、相関係数を求
める部分の候補として抽出する。領域決定部215で
は、これら抽出された複数の領域の中から、評価予定領
域(基準深度)に最も近い領域を選択する。領域記憶部
216では、この選択された領域に関する情報を、当該
フレームに含まれる全ての走査線ごとに記憶し、この情
報を次のフレームで受信信号評価部22に供給する。も
ちろん、整相加算前の各振動子の受信信号を最低1走査
線分記憶するようにすれば、通常の整相加算処理を行っ
たあと、この評価領域選択部で領域を決定し、受信信号
の評価を行った後、再度同一走査線に対して口径の制御
をして表示画像用の整相加算処理を行うこともできる。
The threshold value determination section 214 compares the amplitude signal whose attenuation has been corrected with a preset threshold value, and determines a plurality of areas in the amplitude signal exceeding the threshold value in a portion for obtaining a correlation coefficient. Extract as candidates. The area determination unit 215 selects an area closest to the area to be evaluated (reference depth) from the plurality of extracted areas. The area storage unit 216 stores the information on the selected area for every scanning line included in the frame, and supplies this information to the received signal evaluation unit 22 in the next frame. Of course, if the received signals of the transducers before the phasing addition are stored for at least one scanning line, the area is determined by the evaluation area selection unit after the normal phasing addition processing, and the received signal is stored. After the evaluation of (1), the aperture control for the same scanning line can be performed again to perform the phasing addition processing for the display image.

【0059】図11に、受信信号評価部22と口径制御
部23の詳細構成を示している。バッファメモリ221
は、1走査線(1本の超音波ビーム)を形成するために
駆動される振動子数分用意されており、それぞれ対応す
る振動子からの受信信号を記憶する容量があるメモリ要
素を2つ有して、これらをトグル的に切り替えること
で、振動子からの信号の書き込みと、相関演算部222
へ1つ前の走査線の受信信号を供給するための読み出し
とを同時に行えるようにしている。この相関演算部22
2も、バッファメモリ221と同様に、1走査線(1本
の超音波ビーム)を形成するために駆動される振動子数
分用意されており、振動子ごとに相関係数を求めること
ができるようになっている。
FIG. 11 shows a detailed configuration of the received signal evaluation unit 22 and the aperture control unit 23. Buffer memory 221
Are prepared for the number of transducers driven to form one scanning line (one ultrasonic beam), and two memory elements each having a capacity for storing a reception signal from the corresponding transducer are provided. By switching these in a toggle manner, the signal writing from the oscillator and the correlation operation unit 222 are performed.
And the reading for supplying the received signal of the immediately preceding scanning line to the scanning line. This correlation operation unit 22
Similarly to the buffer memory 221, the number 2 is prepared for the number of transducers driven to form one scanning line (one ultrasonic beam), and a correlation coefficient can be obtained for each transducer. It has become.

【0060】相関演算部222へは、ある振動子の受信
信号がバッファメモリ221から直接的に供給され、ま
た他の振動子の受信信号がスイッチ223を介して供給
される。このスイッチ223の切替によって、相関係数
演算の対象とする振動子の間隔を任意に変えることがで
きるようになっている。この図11ではこの間隔を0か
ら3個の中で選択できる構成で書かれている。
A received signal of a certain transducer is directly supplied from the buffer memory 221 to the correlation calculating section 222, and a received signal of another transducer is supplied via the switch 223. By switching the switch 223, the interval between the transducers to be subjected to the correlation coefficient calculation can be arbitrarily changed. In FIG. 11, the interval is written in a configuration that can be selected from 0 to 3.

【0061】相関係数演算部222は、バッファメモリ
221の読み出し制御の機能も持っており、評価領域選
択部21で選択した領域に従って、相関係数演算に用い
る信号部分を受信信号から切り出して、相関係数を演算
する。得られた各相関係数は口径制御部23に送られ
る。
The correlation coefficient calculating section 222 also has a function of controlling the reading of the buffer memory 221. According to the area selected by the evaluation area selecting section 21, a signal portion used for the correlation coefficient calculation is cut out from the received signal. Calculate the correlation coefficient. The obtained correlation coefficients are sent to the aperture control unit 23.

【0062】口径制御部23では、まず、パラレルシリ
アル変換部231で、通常100以上ある相関係数演算
部222からパラレルに出力される相関係数値をシリア
ルに変換する。その後、安定化処理部232で相関係数
値を安定化させるような処理、例えば、 (1)周囲の数点で平均する処理 (2)周囲の数点を用いてメディアンフィルタ処理 を行う。この様子を図12に示す。図中、細線で表して
いるのが、安定化処理前の相関係数値の位置分布であ
る。受信信号の統計的変動やノイズのために、相関係数
値に変動が強く表れている様子が伺える。このままで
は、歪みが少なくて好ましい振動子であってもその相関
係数が閾値以下となり、その振動子の励振強度や受信増
幅率が下げられてしまったり、また歪みが大きくて好ま
しくない振動子であってもその相関係数が閾値を超えて
しまって、その振動子の励振強度や受信増幅率が下げず
に基準値に維持されてしまう事態が起こり良好な制御が
できない可能性がある。これに対し、相関係数を安定化
させるために、周囲の数点を用いて平均等のローパスフ
ィルタ処理をかけたり、メディアンフィルタ処理をかけ
たりすることで、太線に示すような係数分布を得ること
ができ、良好な口径制御が可能となる。
In the aperture control unit 23, first, the parallel-serial conversion unit 231 serially converts the correlation coefficient values output in parallel from the correlation coefficient calculation unit 222, which is usually 100 or more. After that, the stabilization processing unit 232 stabilizes the correlation coefficient value, for example, (1) averages over several surrounding points, and (2) performs median filter processing using several surrounding points. This is shown in FIG. In the drawing, the position distribution of the correlation coefficient value before the stabilization processing is represented by a thin line. It can be seen that the fluctuation of the correlation coefficient value strongly appears due to the statistical fluctuation and noise of the received signal. In this state, even if the oscillator has a small distortion, the correlation coefficient is less than or equal to the threshold value, and the excitation intensity and the reception amplification factor of the oscillator are lowered, or the oscillator having a large distortion is not preferable. Even so, there is a possibility that the correlation coefficient exceeds the threshold value and the excitation intensity or the reception amplification factor of the vibrator is maintained at the reference value without lowering, so that good control cannot be performed. On the other hand, in order to stabilize the correlation coefficient, a low-pass filter process such as averaging using several surrounding points or a median filter process is performed to obtain a coefficient distribution as shown by a thick line. And good diameter control becomes possible.

【0063】安定化された相関係数の位置分布を用い、
送信及び受信に対する口径制御を行うのがそれぞれ送信
用口径補正部233A及び受信用口径補正部233Bで
ある。口径制御は例えば図13に示すような予め決めら
れている相関係数と励振強度や受信増幅率の基準値に対
する補正係数との関係により行われ、この間系は例えば
テーブル化されて口径補正部233A,Bに保持されて
いる。
Using the stabilized correlation coefficient position distribution,
The aperture control for transmission and reception is performed by the aperture corrector for transmission 233A and the aperture corrector for reception 233B, respectively. The aperture control is performed by, for example, a relationship between a predetermined correlation coefficient as shown in FIG. 13 and a correction coefficient for a reference value of the excitation intensity or the reception amplification factor. , B.

【0064】なお、横軸は、相関係数値でも良いし、送
信条件や相関係数演算に用いた振動子の間隔等により求
められる理論値で計測値を割って規格化してもよい。後
者の場合、送信条件等により、テーブルの内容を変える
必要がないと予想され、より簡便に制御可能である。縦
軸は元々設定されている受信の増幅率や、送信の励振信
号の強度に対して、どの程度の補正を行うかという係数
である。例えばこの係数が0.5と決定された振動子に
対しては、受信信号の増幅率を半分にするわけである。
図中、細線は係数を0又は1.0にする。つまりON/
OFF動作をさせる制御を示してあり、太線は連続的に
相関係数を評価する場合である。
The horizontal axis may be a correlation coefficient value, or may be normalized by dividing a measured value by a theoretical value obtained based on transmission conditions, the interval between transducers used for the correlation coefficient calculation, and the like. In the latter case, it is expected that there is no need to change the contents of the table due to transmission conditions and the like, and control can be performed more easily. The vertical axis is a coefficient indicating how much correction is to be performed on the originally set reception amplification factor and transmission excitation signal strength. For example, for a transducer whose coefficient is determined to be 0.5, the gain of the received signal is halved.
In the figure, the thin line sets the coefficient to 0 or 1.0. In other words, ON /
The control for performing the OFF operation is shown, and the thick line indicates the case where the correlation coefficient is continuously evaluated.

【0065】このようにして得られた口径制御情報は、
随時それぞれ図9に示す送信用口径制御部5及び受信用
口径制御部9に直接的に送られてもよいし、図11に示
すようにメモリ234A,234Bに一旦1フレーム分
の口径補正データを格納してから、次のフレームの最初
に転送しても良い。いずれにしても、受信信号を評価し
た次のフレームで実際の口径は制御される。
The aperture control information thus obtained is
At any time, the data may be sent directly to the transmission aperture control unit 5 and the reception aperture control unit 9 shown in FIG. 9 or the aperture correction data for one frame is temporarily stored in the memories 234A and 234B as shown in FIG. After storing, it may be transferred at the beginning of the next frame. In any case, the actual aperture is controlled in the next frame after the evaluation of the received signal.

【0066】このように本実施形態によると、受信信号
間の相関係数により屈折や多重反射等による歪みの程度
を評価し、そしてこの求めた相関係数に従って、相関係
数が閾値より低いときには、励振強度や受信増幅率を基
準値より低くし、相関係数が閾値より高いときには、励
振強度や受信増幅率を基準値で維持するように、励振強
度と受信増幅率の少なくとも一方を制御することによ
り、歪みの画質への悪影響を低減することができる。
As described above, according to the present embodiment, the degree of distortion due to refraction or multiple reflection is evaluated based on the correlation coefficient between received signals, and when the correlation coefficient is lower than the threshold value according to the obtained correlation coefficient. When the excitation intensity or the reception amplification factor is lower than the reference value and the correlation coefficient is higher than the threshold value, at least one of the excitation intensity and the reception amplification ratio is controlled so that the excitation intensity or the reception amplification ratio is maintained at the reference value. As a result, it is possible to reduce the adverse effect of the distortion on the image quality.

【0067】本実施形態では相関係数で歪みの程度を評
価したが、受信信号のパワーに基づいてこの評価を行っ
てもよいのは上述した通りである。次の実施形態では、
受信信号のパワーに基づいて歪みの程度を評価するもの
である。
In this embodiment, the degree of distortion is evaluated by the correlation coefficient. However, the evaluation may be performed based on the power of the received signal as described above. In the following embodiment,
The degree of distortion is evaluated based on the power of the received signal.

【0068】(第2実施形態)この第2実施形態は、受
信信号の歪みの評価に相関係数の代わりに、受信信号の
パワーを求めて評価しようとするものであり、ここでは
第1実施形態とその構成が相違する受信信号評価部22
と口径制御部23についてのみ説明し、第1実施形態と
その構成が同じ部分については説明を省略する。
(Second Embodiment) In the second embodiment, the power of the received signal is obtained instead of the correlation coefficient in the evaluation of the distortion of the received signal. Received signal evaluation section 22 having different form and configuration
Only the aperture control unit 23 will be described, and description of the same components as those in the first embodiment will be omitted.

【0069】図14に、本実施形態の受信信号評価部2
2と口径制御部23の構成を詳細に示している。信号パ
ワー演算部222では、受信信号の評価領域内の部分の
パワーを次式により計算する。
FIG. 14 shows the received signal evaluation unit 2 of this embodiment.
2 shows the configuration of the aperture control unit 23 in detail. The signal power calculator 222 calculates the power of the portion of the received signal in the evaluation area by the following equation.

【0070】[0070]

【数2】 (Equation 2)

【0071】このパワー値は、口径制御部23において
は、第1実施形態と同様に、パラレルシリアル変換部2
31でシリアルに並べ替えられた後、安定化処理部23
2に送られそこで平滑化される。また、パワー値は、平
均演算部235にも送られ、そこでパワーの平均値を求
める。これら各振動子のパワー値とその平均値との2つ
の情報より、送信口径部233A及び受信用口径補正部
233Bで口径制御を決定するわけである。まず、以下
の式により各振動子のパワーを、平均値と指向性パラメ
ータとで規格化してから、図15の関係に従って補正係
数を振動子ごとに決定する。
The power value is stored in the aperture controller 23 in the same manner as in the first embodiment.
After being serially rearranged at 31, the stabilization processing unit 23
2 and smoothed there. The power value is also sent to the average calculation unit 235, where the average value of the power is obtained. The aperture control is determined by the transmission aperture 233A and the reception aperture corrector 233B based on the two pieces of information of the power value and the average value of these transducers. First, the power of each transducer is normalized by the average value and the directivity parameter according to the following equation, and then a correction coefficient is determined for each transducer according to the relationship shown in FIG.

【0072】各振動子のパワー/(パワーの平均値×各
振動子の指向性パラメータ) パワーの平均値を用いるのは、対象とする領域からの信
号強度を規格化のファクタとして用いる必要があるため
であり、それに各振動子の指向性を用いるのは、振動子
と焦点の位置関係によって、受信信号のパワーが振動子
単体の指向性の影響を受けるのを補正するためである。
Power of each vibrator / (average value of power × directivity parameter of each vibrator) To use the average value of power, it is necessary to use the signal strength from a target area as a factor for normalization. The reason why the directivity of each transducer is used is to correct that the power of the received signal is affected by the directivity of the transducer alone depending on the positional relationship between the transducer and the focal point.

【0073】本実施形態では、信号のパワーを用いてい
るが、たとえば信号振幅のような同様の情報を用いても
良い。その他の動作は基本的に第1実施形態と同様であ
る。この第2実施形態によっても、第1実施形態と同様
に、各振動子の受信信号のパワーに従って歪みの程度を
評価し、この歪みが強いものに関しては励振強度や受信
増幅率を低下させることにより、歪みの画質への悪影響
を低減することができる。しかも、このための処理量
は、相関係数を求める第1実施形態より格段に少なくて
済む。
In this embodiment, the power of the signal is used, but similar information such as the signal amplitude may be used. Other operations are basically the same as those of the first embodiment. According to the second embodiment, similarly to the first embodiment, the degree of distortion is evaluated in accordance with the power of the received signal of each transducer, and for those having strong distortion, the excitation intensity and the reception amplification factor are reduced. In addition, it is possible to reduce the adverse effect of the distortion on the image quality. In addition, the processing amount for this is significantly smaller than that in the first embodiment for obtaining the correlation coefficient.

【0074】なお、第1実施形態や第2実施形態は、図
17に示したようなプローブ上に振動子が1次元的に並
んでいる場合、2次元的に並んでいる場合に限らず適応
できる。しかし、上記2つの実施形態は、2次元アレイ
に特異な制御方法に関して説明していないので、この点
に関して以下の第3、第4実施形態で詳述する。
The first and second embodiments are not limited to the case where the transducers are arranged one-dimensionally on the probe as shown in FIG. it can. However, the above two embodiments do not describe a control method peculiar to a two-dimensional array, and this will be described in detail in the following third and fourth embodiments.

【0075】(第3実施形態)この第3実施形態では、
2次元アレイに対する制御を、相関係数を用いて行う場
合に関している。1次元アレイと2次元アレイの相違点
は、2次元アレイにおいて、受信信号の評価に対するグ
ループ分けの方法がさまざまに考えられる点である。図
17を再度参照されたい。1次元アレイでは、振動子は
1列に図中X軸の方向だけに並んでおり、その方向に、
振動子ごとに相関係数で歪みを評価すればよかった。し
かし、2 次元アレイにおいては、X軸、Y軸さらには、
斜めに振動子を評価していくことも可能である。ここ
で、評価していく方向とは、相関係数の場合には、相関
係数演算に用いる振動子ペアの並びの方向を意味してい
る。
(Third Embodiment) In the third embodiment,
This relates to a case where control for a two-dimensional array is performed using a correlation coefficient. The difference between the one-dimensional array and the two-dimensional array is that in the two-dimensional array, various methods of grouping the evaluation of the received signal can be considered. Please refer to FIG. 17 again. In the one-dimensional array, the transducers are arranged in one row only in the direction of the X-axis in the figure, and in that direction,
It suffices to evaluate the distortion by the correlation coefficient for each transducer. However, in a two-dimensional array, the X-axis, Y-axis, and
It is also possible to evaluate the vibrator obliquely. Here, in the case of a correlation coefficient, the direction in which evaluation is performed means the direction in which transducer pairs are used for calculating the correlation coefficient.

【0076】2 次元的な評価に対しては、いくつか方法
が考えられる。以下に例をあげる。 (方法1)2 次元的な評価はせず、1 次元アレイがY軸
にいくつか並んでいるだけと考え、口径制御はそれぞれ
の1 次元アレイで行った結果をそのまま用いる。
There are several methods for two-dimensional evaluation. An example is given below. (Method 1) Two-dimensional evaluation is not performed, and it is considered that only one-dimensional arrays are arranged on the Y-axis, and the aperture control uses the result of each one-dimensional array as it is.

【0077】(方法2)X軸方向、Y軸方向に1 次元ア
レイとして評価し、その評価結果の値の平均値を用い
る。または、どちらかの結果をより重視する場合には、
重みづけ平均を次の式により行っても良い。
(Method 2) Evaluation is performed as a one-dimensional array in the X-axis direction and the Y-axis direction, and the average value of the evaluation results is used. Or, if you want to focus on either result,
The weighted average may be calculated by the following equation.

【0078】α・ρx +(1−α)・ρy α:重み付け係数 ρx :当該振動子に対するx方向の相関係数 ρy :当該振動子に対するy方向の相関係数 (第4実施形態)評価パラメータとして、受信信号の振
幅やパワーを用いる場合にはより簡単に評価できる。図
14に示す平均値の演算を2次元的に行いその結果を第
2実施形態と同様に用いて制御すれば良い。
Α · ρ x + (1−α) · ρ y α: Weighting coefficient ρ x : Correlation coefficient in the x direction with respect to the vibrator ρ y : Correlation coefficient in the y direction with respect to the vibrator (fourth embodiment Mode) When the amplitude or power of the received signal is used as the evaluation parameter, the evaluation can be performed more easily. The calculation of the average value shown in FIG. 14 may be performed two-dimensionally and the result may be used and controlled in the same manner as in the second embodiment.

【0079】(第5実施形態)本発明の主旨は、屈折や
多重反射等で波形が歪んでしまい、前述の伝搬時間のバ
ラツキの補正を行っても画像が十分解決しないような場
合に、好ましくない振動子の影響をビーム形成から低減
または削除することである。つまり、本発明により波形
の歪みが大きい振動子の影響が低減または削除できれ
ば、残りの振動子に対して、伝搬時間のバラツキの補正
を行うことでより大きな改善効果を得ることができると
期待される。伝搬バラツキの補正方法は、従来の技術を
流用できる。もちろん、その他の手法を用いても差し支
えない。
(Fifth Embodiment) The gist of the present invention is preferable when the waveform is distorted due to refraction, multiple reflection, etc., and an image cannot be sufficiently solved even after the above-described correction of the variation in the propagation time. The goal is to reduce or eliminate the effects of no oscillator from beamforming. That is, if the effect of the vibrator having a large waveform distortion can be reduced or eliminated according to the present invention, it is expected that a larger improvement effect can be obtained by correcting the variation of the propagation time with respect to the remaining vibrators. You. Conventional techniques can be used for the method of correcting the propagation variation. Of course, other methods may be used.

【0080】図16に第5実施形態による超音波診断装
置の構成を示している。適応口径制御部20の情報が、
送信受信の口径制御部5、9に伝えられると同時に伝搬
時間のバラツキを補正するための適応遅延制御部30の
情報が送信及び受信の遅延制御部に伝えられ、生体内の
情報を用いて、最適な口径制御並びに遅延制御が行われ
る。
FIG. 16 shows the configuration of an ultrasonic diagnostic apparatus according to the fifth embodiment. The information of the adaptive aperture control unit 20 is
The information of the adaptive delay control unit 30 for correcting variations in the propagation time at the same time as being transmitted to the aperture control units 5 and 9 for transmission and reception is transmitted to the transmission and reception delay control units, and using the information in the living body, Optimal aperture control and delay control are performed.

【0081】本発明は、上述してきたような実施形態に
限定されることなく、種々変形して実施可能であること
は言うまでもない。
It is needless to say that the present invention is not limited to the embodiments described above, but can be implemented in various modifications.

【0082】[0082]

【発明の効果】本発明によれば、屈折や多重反射等によ
って受信信号の波形が歪んでしまって画質が劣化してし
まう場合にも、良好な超音波ビームを得ることができ、
被検体の体質によらず常に良好な画像を提供することが
できる。
According to the present invention, a good ultrasonic beam can be obtained even when the waveform of a received signal is distorted due to refraction or multiple reflection and the image quality is degraded.
A good image can always be provided regardless of the constitution of the subject.

【図面の簡単な説明】[Brief description of the drawings]

【図1】セクタ走査における受信指向性の角度依存性を
示す図。
FIG. 1 is a diagram showing the angle dependence of reception directivity in sector scanning.

【図2】整相加算処理の一連の流れとその処理により受
信指向性が得られる原理説明図。
FIG. 2 is a diagram illustrating a series of phasing addition processing and the principle by which reception directivity is obtained by the processing;

【図3】肋骨に起因する受信信号波形の歪みと、その歪
みが整相加算処理に与える影響とを示す図。
FIG. 3 is a diagram showing a distortion of a received signal waveform caused by a rib and an influence of the distortion on a phasing addition process.

【図4】2つの受信信号波形の類似性と相関関数との関
係を示す図。
FIG. 4 is a diagram showing a relationship between similarity of two received signal waveforms and a correlation function.

【図5】口径内の中心振動子と他の振動子との間で求め
た相関係数の位置依存性を示す図。
FIG. 5 is a diagram showing the position dependence of a correlation coefficient obtained between a central oscillator within an aperture and another oscillator.

【図6】適正な間隔を隔てた2つの振動子間で求めた相
関係数の口径上の位置分布を示す図。
FIG. 6 is a diagram showing a position distribution on a caliber of a correlation coefficient obtained between two transducers spaced at appropriate intervals.

【図7】肺の受信信号波形への影響に関する説明図。FIG. 7 is an explanatory diagram relating to the effect of the lung on the received signal waveform.

【図8】歪み評価に用いる深度領域の適正化に関する説
明図。
FIG. 8 is an explanatory diagram regarding optimization of a depth region used for distortion evaluation.

【図9】本発明の第1実施形態に係る超音波診断装置の
構成を示すブロック図。
FIG. 9 is a block diagram showing a configuration of the ultrasonic diagnostic apparatus according to the first embodiment of the present invention.

【図10】図9の評価領域選択部の構成を示すブロック
図。
FIG. 10 is a block diagram illustrating a configuration of an evaluation area selection unit in FIG. 9;

【図11】図9の受信信号評価部と口径制御部の構成を
示すブロック図。
FIG. 11 is a block diagram showing a configuration of a reception signal evaluation unit and a diameter control unit in FIG. 9;

【図12】図11の安定化処理部で安定化処理された相
関係数の位置分布と安定化処理前の相関係数の位置分布
との比較図。
12 is a comparison diagram of the position distribution of the correlation coefficient subjected to the stabilization processing by the stabilization processing unit of FIG. 11 and the position distribution of the correlation coefficient before the stabilization processing.

【図13】図11の送信用口径補正部や受信用口径補正
部において相関係数に対して割り当てられる励振強度や
受信増幅率の補正係数を示す図。
13 is a diagram showing excitation intensity and reception amplification factor correction coefficients assigned to correlation coefficients in the transmission aperture correction unit and the reception aperture correction unit of FIG. 11;

【図14】本発明の第2実施形態に係る超音波診断装置
の受信信号評価部と口径制御部の構成を示すブロック
図。
FIG. 14 is a block diagram showing a configuration of a reception signal evaluation unit and a diameter control unit of the ultrasonic diagnostic apparatus according to the second embodiment of the present invention.

【図15】図14の送信用口径補正部や受信用口径補正
部において相関係数に対して割り当てられる励振強度や
受信増幅率の補正係数を示す図。
FIG. 15 is a diagram illustrating excitation intensity and reception amplification factor correction coefficients assigned to correlation coefficients in the transmission aperture correction unit and the reception aperture correction unit of FIG. 14;

【図16】第5実施形態に係る超音波診断装置の構成を
示すブロック図。
FIG. 16 is a block diagram showing a configuration of an ultrasonic diagnostic apparatus according to a fifth embodiment.

【図17】超音波プローブの一般的な振動子アレイを示
す図。
FIG. 17 is a diagram showing a general transducer array of an ultrasonic probe.

【図18】送受信の口径の広狭と、ビームの太さとの関
係図。
FIG. 18 is a diagram showing the relationship between the size of a transmission / reception aperture and the beam thickness.

【図19】屈折の受信信号に対する影響を示す図。FIG. 19 is a diagram showing the effect of refraction on a received signal.

【図20】多重反射の受信信号に対する影響を示す図。FIG. 20 is a diagram showing the effect of multiple reflection on a received signal.

【符号の説明】 1…超音波プローブ、 2…送受信切替器、 3…送信用駆動部、 4…送信用遅延制御部、 5…送信用口径制御部、 6…受信用増幅器、 7…アナログディジタルコンバータ、 8…整相加算処理部、 9…受信用口径制御部、 10…受信遅延制御部、 11…Bモード用処理部、 12…カラーフローマッピング用処理部、 13…スペクトラムドプラ処理部、 14…表示系、 15…モニタ、 20…適応口径制御部、 21…評価領域選択部、 22…受信信号評価部、 23…口径制御部、 211…検波部、 212…ローパスフィルタ、 213…増幅器、 214…閾値判定部、 215…領域決定部、 216…領域記録部、 221…バッファメモリ、 222…相関係数演算部、 223…選択スイッチ、 231…パラレルシリアル変換部、 232…安定化処理部、 233A…送信用口径制御部、 233B…受信用口径制御部。[Description of Signs] 1 ... Ultrasonic probe, 2 ... Transmission / reception switch, 3 ... Transmission drive unit, 4 ... Transmission delay control unit, 5 ... Transmission aperture control unit, 6 ... Reception amplifier, 7 ... Analog digital Converter, 8: phasing addition processing section, 9: reception aperture control section, 10: reception delay control section, 11: B mode processing section, 12: color flow mapping processing section, 13: spectrum Doppler processing section, 14 ... display system, 15 monitor, 20 adaptive aperture control section, 21 evaluation area selection section, 22 received signal evaluation section, 23 aperture control section, 211 detection section, 212 low-pass filter, 213 amplifier, 214 .. Threshold determination unit, 215 area determination unit, 216 area recording unit, 221 buffer memory, 222 correlation coefficient operation unit, 223 selection switch, 231 parallel serial Conversion unit, 232 ... stabilization processing unit, 233A ... transmission aperture control unit, 233B ... reception aperture control unit.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 配列された複数の振動子それぞれの励振
信号及びこれらの振動子が被検体からの超音波反射波を
受波して得られた受信信号に個別に遅延時間を与えるこ
とにより送信及び受信の指向性を超音波に付与し、この
指向性を付与した超音波で被検体内部を走査して超音波
画像を得る超音波診断装置において、前記受信信号の歪
みを振動子ごとに評価する手段と、その評価結果に従っ
て前記励振信号の強度と前記受信信号の増幅率との少な
くとも一方を制御する手段とを具備することを特徴とす
る超音波診断装置。
1. An excitation signal of each of a plurality of arranged transducers and a transmission signal obtained by receiving an ultrasonic wave reflected from an object by each of the transducers by individually giving a delay time to the signals. In an ultrasonic diagnostic apparatus that obtains an ultrasonic image by scanning the inside of a subject with an ultrasonic wave having this directivity, the distortion of the received signal is evaluated for each transducer. And a means for controlling at least one of the intensity of the excitation signal and the amplification factor of the received signal in accordance with the evaluation result.
【請求項2】 前記評価手段は、振動子間の受信信号の
類似性に基づいて前記歪みを評価することを特徴とする
請求項1記載の超音波診断装置。
2. The ultrasonic diagnostic apparatus according to claim 1, wherein said evaluation means evaluates said distortion based on a similarity of a received signal between transducers.
【請求項3】 前記類似性を、振動子間で受信信号の相
関係数に従って求めることを特徴とする請求項2記載の
超音波診断装置。
3. The ultrasonic diagnostic apparatus according to claim 2, wherein said similarity is obtained according to a correlation coefficient of a received signal between transducers.
【請求項4】 前記相関係数を求める振動子間の関係
は、均一媒体を仮定して得られる相関係数の理論値に基
づいて決定されていることを特徴とする請求項3記載の
超音波診断装置。
4. The apparatus according to claim 3, wherein the relationship between the oscillators for obtaining the correlation coefficient is determined based on a theoretical value of the correlation coefficient obtained assuming a uniform medium. Ultrasound diagnostic device.
【請求項5】 前記相関係数は、口径内の中央振動子と
他の振動子との関係、及び隣接関係以外の関係にある振
動子間で求めることを特徴とする請求項3記載の超音波
診断装置。
5. The super-correlation apparatus according to claim 3, wherein the correlation coefficient is obtained between a transducer having a relationship other than the relationship between the central transducer in the bore and another transducer and an adjacent relationship. Ultrasound diagnostic device.
【請求項6】 前記励振信号の強度と前記受信信号の増
幅率との少なくとも一方を、均一媒体を仮定して得られ
る相関係数の理論値に基づいて制御することを特徴とす
る請求項3記載の超音波診断装置。
6. The apparatus according to claim 3, wherein at least one of the intensity of the excitation signal and the amplification factor of the reception signal is controlled based on a theoretical value of a correlation coefficient obtained assuming a uniform medium. An ultrasonic diagnostic apparatus as described in the above.
【請求項7】 前記相関係数が所定値以下のとき、その
振動子の前記励振信号の強度と前記受信信号の増幅率と
の少なくとも一方を、当該相関係数に応じて低下させる
ことを特徴とする請求項3記載の超音波診断装置。
7. When the correlation coefficient is equal to or less than a predetermined value, at least one of an intensity of the excitation signal of the vibrator and an amplification factor of the reception signal is reduced according to the correlation coefficient. The ultrasonic diagnostic apparatus according to claim 3, wherein
【請求項8】 前記相関係数が所定値以下のとき、その
振動子の前記励振信号の強度と前記受信信号の増幅率と
の少なくとも一方を実質的にゼロにすることを特徴とす
る請求項3記載の超音波診断装置。
8. When the correlation coefficient is equal to or less than a predetermined value, at least one of an intensity of the excitation signal of the vibrator and an amplification factor of the reception signal is made substantially zero. 4. The ultrasonic diagnostic apparatus according to 3.
【請求項9】 前記評価手段は、各振動子の受信信号の
強度とパワーの少なくとも一方に基づいて前記歪みを評
価することを特徴とする請求項1記載の超音波診断装
置。
9. The ultrasonic diagnostic apparatus according to claim 1, wherein said evaluating means evaluates said distortion based on at least one of the intensity and power of a received signal of each transducer.
【請求項10】 前記歪みを、前記各振動子の受信信号
の強度とパワーとの少なくとも一方を、口径内の全振動
子の平均値と比較した結果に基づいて評価することを特
徴とする請求項9記載の超音波診断装置。
10. The method according to claim 1, wherein the distortion is evaluated based on a result of comparing at least one of the intensity and the power of the received signal of each of the transducers with an average value of all transducers within the aperture. Item 10. An ultrasonic diagnostic apparatus according to item 9.
【請求項11】 前記受信信号の強度とパワーとの少な
くとも一方が所定値以下のとき、その振動子の前記励振
信号の強度と前記受信信号の増幅率との少なくとも一方
を、当該受信信号の強度とパワーとの少なくとも一方の
値に応じて低下させることを特徴とする請求項9記載の
超音波診断装置。
11. When at least one of the intensity and power of the received signal is equal to or less than a predetermined value, at least one of the intensity of the excitation signal of the vibrator and the amplification factor of the received signal is determined by the intensity of the received signal. The ultrasonic diagnostic apparatus according to claim 9, wherein the power is decreased according to at least one of the values of power and power.
【請求項12】 前記受信信号の強度とパワーとの少な
くとも一方が所定値以下のとき、その振動子の前記励振
信号の強度と前記受信信号の増幅率との少なくとも一方
を実質的にゼロにすることを特徴とする請求項9記載の
超音波診断装置。
12. When at least one of the intensity and power of the received signal is equal to or less than a predetermined value, at least one of the intensity of the excitation signal of the vibrator and the amplification factor of the received signal is made substantially zero. The ultrasonic diagnostic apparatus according to claim 9, wherein:
【請求項13】 前記振動子それぞれの受信信号から、
超音波の伝搬時間のバラツキを推定する手段と、その推
定結果に基づいて励振信号に与える遅延時間と受信信号
に与える遅延時間との少なくとも一方を補正する手段を
さらに備えることを特徴とする請求項1記載の超音波診
断装置。
13. From a received signal of each of the vibrators,
The apparatus according to claim 1, further comprising: means for estimating a variation in propagation time of the ultrasonic wave, and means for correcting at least one of a delay time given to the excitation signal and a delay time given to the received signal based on the estimation result. 2. The ultrasonic diagnostic apparatus according to claim 1.
【請求項14】 前記評価手段は、前記歪みを受信信号
の一部分に基づいて評価すると共に、この一部分を、受
信信号の振幅が所定値を越えている複数領域の中の基準
深度に最も近い領域に決定することを特徴とする請求項
1記載の超音波診断装置。
14. The evaluation means evaluates the distortion based on a part of a received signal, and evaluates the part in an area closest to a reference depth in a plurality of areas where the amplitude of the received signal exceeds a predetermined value. 2. The ultrasonic diagnostic apparatus according to claim 1, wherein:
JP4082898A 1998-02-23 1998-02-23 Ultrasonic diagnostic equipment Expired - Fee Related JP4334032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4082898A JP4334032B2 (en) 1998-02-23 1998-02-23 Ultrasonic diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4082898A JP4334032B2 (en) 1998-02-23 1998-02-23 Ultrasonic diagnostic equipment

Publications (2)

Publication Number Publication Date
JPH11235341A true JPH11235341A (en) 1999-08-31
JP4334032B2 JP4334032B2 (en) 2009-09-16

Family

ID=12591527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4082898A Expired - Fee Related JP4334032B2 (en) 1998-02-23 1998-02-23 Ultrasonic diagnostic equipment

Country Status (1)

Country Link
JP (1) JP4334032B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001050961A1 (en) * 2000-01-12 2001-07-19 Hitachi Medical Corporation Ultrasonic diagnosing apparatus
JP2003521341A (en) * 2000-01-31 2003-07-15 アー.ヤー. アンゲルセン、ビョルン Correction of phase plane aberration and pulse reverberation in medical ultrasound imaging
JP2004533885A (en) * 2001-06-26 2004-11-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Variable multidimensional apodization control for ultrasonic transducers
JP2008080101A (en) * 2006-08-28 2008-04-10 Osaka Prefecture Univ Optical tomography system
JP2008220506A (en) * 2007-03-09 2008-09-25 Osaka Prefecture Univ Light-assisted ultrasound velocity variation imaging device and light-assisted ultrasonic velocity variation image display method
JP2009100997A (en) * 2007-10-24 2009-05-14 Aloka Co Ltd Ultrasonic diagnostic apparatus
US7713206B2 (en) 2004-09-29 2010-05-11 Fujifilm Corporation Ultrasonic imaging apparatus
JP2010522582A (en) * 2007-03-29 2010-07-08 アロカ株式会社 Ultrasonic image processing method and ultrasonic image processing apparatus
JP2010167258A (en) * 2008-12-25 2010-08-05 Canon Inc Biological information acquisition apparatus
JP2011120765A (en) * 2009-12-11 2011-06-23 Canon Inc Image generating apparatus, image generating method, and program
JP2012217624A (en) * 2011-04-08 2012-11-12 Canon Inc Subject information obtaining apparatus, subject information obtaining method, and program
WO2013038847A1 (en) * 2011-09-15 2013-03-21 株式会社日立メディコ Ultrasound imaging apparatus
WO2013073514A1 (en) * 2011-11-14 2013-05-23 富士フイルム株式会社 Ultrasonic diagnosis device and method
JPWO2018181127A1 (en) * 2017-03-30 2020-01-23 富士フイルム株式会社 Ultrasonic diagnostic apparatus and control method for ultrasonic diagnostic apparatus
JP2021522602A (en) * 2018-05-07 2021-08-30 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Changing the tactile sensitivity of dialogue with the aerial interface
CN116212257A (en) * 2023-05-10 2023-06-06 深圳半岛医疗有限公司 Method and apparatus for controlling ultrasonic therapy head, and readable storage medium

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001050961A1 (en) * 2000-01-12 2001-07-19 Hitachi Medical Corporation Ultrasonic diagnosing apparatus
JP2003521341A (en) * 2000-01-31 2003-07-15 アー.ヤー. アンゲルセン、ビョルン Correction of phase plane aberration and pulse reverberation in medical ultrasound imaging
JP2004533885A (en) * 2001-06-26 2004-11-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Variable multidimensional apodization control for ultrasonic transducers
US7713206B2 (en) 2004-09-29 2010-05-11 Fujifilm Corporation Ultrasonic imaging apparatus
JP2008080101A (en) * 2006-08-28 2008-04-10 Osaka Prefecture Univ Optical tomography system
JP2008220506A (en) * 2007-03-09 2008-09-25 Osaka Prefecture Univ Light-assisted ultrasound velocity variation imaging device and light-assisted ultrasonic velocity variation image display method
US8771190B2 (en) 2007-03-29 2014-07-08 Hitachi Aloka Medical, Ltd. Methods and apparatus for ultrasound imaging
JP2010522582A (en) * 2007-03-29 2010-07-08 アロカ株式会社 Ultrasonic image processing method and ultrasonic image processing apparatus
JP2009100997A (en) * 2007-10-24 2009-05-14 Aloka Co Ltd Ultrasonic diagnostic apparatus
JP2010167258A (en) * 2008-12-25 2010-08-05 Canon Inc Biological information acquisition apparatus
JP2011120765A (en) * 2009-12-11 2011-06-23 Canon Inc Image generating apparatus, image generating method, and program
JP2012217624A (en) * 2011-04-08 2012-11-12 Canon Inc Subject information obtaining apparatus, subject information obtaining method, and program
US9585629B2 (en) 2011-04-08 2017-03-07 Canon Kabushiki Kaisha Subject information obtaining apparatus, method for obtaining subject information, and computer-readable storage medium
WO2013038847A1 (en) * 2011-09-15 2013-03-21 株式会社日立メディコ Ultrasound imaging apparatus
JPWO2013038847A1 (en) * 2011-09-15 2015-03-26 株式会社日立メディコ Ultrasonic imaging device
US9754185B2 (en) 2011-09-15 2017-09-05 Hitachi, Ltd. Ultrasound imaging apparatus
WO2013073514A1 (en) * 2011-11-14 2013-05-23 富士フイルム株式会社 Ultrasonic diagnosis device and method
JPWO2018181127A1 (en) * 2017-03-30 2020-01-23 富士フイルム株式会社 Ultrasonic diagnostic apparatus and control method for ultrasonic diagnostic apparatus
JP2021522602A (en) * 2018-05-07 2021-08-30 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Changing the tactile sensitivity of dialogue with the aerial interface
CN116212257A (en) * 2023-05-10 2023-06-06 深圳半岛医疗有限公司 Method and apparatus for controlling ultrasonic therapy head, and readable storage medium
CN116212257B (en) * 2023-05-10 2023-12-12 深圳半岛医疗集团股份有限公司 Method and apparatus for controlling ultrasonic therapy head, and readable storage medium

Also Published As

Publication number Publication date
JP4334032B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
EP1563318B1 (en) Method and apparatus for automatically setting the transmit aperture and apodization of an ultrasound transducer array
KR100748858B1 (en) Image processing system and method for improving quality of images
JP4150866B2 (en) Method of operating an ultrasound imaging system
US8002704B2 (en) Method and system for determining contact along a surface of an ultrasound probe
JP4324256B2 (en) Ultrasound imaging method and system
US6635018B2 (en) Ultrasonic diagnosis apparatus
US7097619B2 (en) Elevation beam pattern variation for ultrasound imaging
JP4334032B2 (en) Ultrasonic diagnostic equipment
KR100749973B1 (en) Prf adjustment method and apparatus, and ultrasonic wave imaging apparatus
JP4424707B2 (en) Method and apparatus for automatic transmit waveform optimization in B-mode ultrasound imaging
US10524767B2 (en) Ultrasound diagnostic apparatus and ultrasound imaging method
US20060094962A1 (en) Aperture shading estimation techniques for reducing ultrasound multi-line image distortion
JP5637880B2 (en) Ultrasonic diagnostic apparatus and image generation control program
JPH11290318A (en) Ultrasonic diagnostic system
WO1995002993A1 (en) Method and apparatus for performing imaging
US10564281B2 (en) Ultrasonography apparatus and ultrasonic imaging method
US20030187354A1 (en) System and method of dynamic automatic sensing of available dynamic range
JP2017093913A (en) Ultrasonic diagnostic device, signal processing device and analysis program
JPH1033535A (en) Doppler ultrasonograph and its method
JP2001061841A (en) Ultrasonograph, and method of producing ultrasonic image
WO2013005811A1 (en) Ultrasound diagnostic device and ultrasound diagnostic device control method
JP2002017720A (en) Signal processing method and device, and image photographing device
JP4580490B2 (en) Ultrasonic diagnostic equipment
JP5016782B2 (en) Ultrasonic diagnostic equipment
JP5781203B2 (en) Ultrasonic diagnostic apparatus and image generation control program

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees