JPH11233889A - Flat type light amplifier element and manufacture thereof - Google Patents

Flat type light amplifier element and manufacture thereof

Info

Publication number
JPH11233889A
JPH11233889A JP2938098A JP2938098A JPH11233889A JP H11233889 A JPH11233889 A JP H11233889A JP 2938098 A JP2938098 A JP 2938098A JP 2938098 A JP2938098 A JP 2938098A JP H11233889 A JPH11233889 A JP H11233889A
Authority
JP
Japan
Prior art keywords
type
type semiconductor
substrate
layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2938098A
Other languages
Japanese (ja)
Other versions
JP2920213B1 (en
Inventor
Mitsutoshi Shimizu
三聡 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2938098A priority Critical patent/JP2920213B1/en
Application granted granted Critical
Publication of JP2920213B1 publication Critical patent/JP2920213B1/en
Publication of JPH11233889A publication Critical patent/JPH11233889A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical element which can produce light easily in high volume with high precision by making the element in such a structure that a light amplifying function section is attached to a transparent supporting substrate and light is made incident to an active layer through the transparent supporting substrate and light beam is emitted from the active layer. SOLUTION: A light amplifying function section 11 having such a structure that an active layer 13 for generating exciting carriers is put from up and down by a p-type and an n-type semiconductor layer 14, 12 is attached with a transparent adhesive 22 to a transparent substrate 21 which is different from a substrate on which the light amplifying function section 11 is built. Light beam generated in the active layer 13 is reflected on a reflecting mirror 14 and is radiated into an outside space from an n-type clad layer 12 through the transparent substrate 21. By locating a flat-type dielectric multilayer film reflecting mirror on the extension line of a light beam emission path in the outside space, an outside reflecting mirror-type surface emission laser can be formed in a complete form. For the active layer 13 to generate exciting carriers, current needs to be injected into the active layer 13. In this case, current is injected by means of a divided electrode 16 for injecting holes which have been divided into a plurality of electrodes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、素子外部に共振器
を設けることで面発光レーザ等として用い得る面型光増
幅素子とその製造方法に関する。ここで、「面型」光増
幅素子とは、光を増幅して出射する光機能部分からの当
該出射光が、光増幅機能部分を物理的に支持している基
板の表面に対し、特定の角度を置いて起ち上がった方
向、一般には直交する方向(法線方向)に出射するもの
を言う。
[0001] 1. Field of the Invention [0002] The present invention relates to a surface type optical amplifying device which can be used as a surface emitting laser or the like by providing a resonator outside the device, and a method of manufacturing the same. Here, the “surface-type” optical amplifying element means that the emitted light from the optical function part that amplifies and emits light is a specific light with respect to the surface of the substrate that physically supports the light amplification function part. It means that the light is emitted in a direction rising at an angle, generally in a direction orthogonal (normal direction).

【0002】[0002]

【従来の技術】この種の面型光増幅素子としては、従
来、参考文献1: "Electrically pumpedmode-locked ver
tical-cavity semiconductor lasers"(W.Jiang,M.Shimi
zu,R.P.Mirin,T.E.Reynolds, and J.E.Bowers, Optics
Letters,vol 18,No.22,pp.1937-1939,1993)に開示され
た図2に示すものが知られている。構造的に見ると、こ
の面型光増幅素子30は、n型GaAs基板31の上に順次、n型半
導体多層膜反射鏡32、n型クラッド層33、n型GaAs活性層3
4、p型クラッド層35、p型AlGaAs層37、p型GaAsコンタクト
層38を積層形成して成っている。 p型AlGaAs層37と p型
GaAsコンタクト層38は所定の平面積形状に切り出されて
いて、その上面に無反射コーティング39が施され、一
方、その切り出し部分の周囲にあって絶縁膜36を挟み p
型クラッド層35上に形成された表面電極40が当該 p型Ga
Asコンタクト層38の上面の周縁部分に接触し、n型基板31
の裏面には基板電極41が形成されている。
2. Description of the Related Art Conventionally, as a surface-type optical amplifying element of this kind, reference 1: "Electrically pumped mode-locked ver.
tical-cavity semiconductor lasers "(W. Jiang, M. Shimi
zu, RPMirin, TEReynolds, and JEBowers, Optics
Letters, vol 18, No. 22, pp. 1937-1939, 1993) and shown in FIG. 2 is known. From a structural point of view, the surface-type optical amplifying element 30 includes an n-type GaAs substrate 31, an n-type semiconductor multilayer mirror 32, an n-type cladding layer 33, and an n-type GaAs active layer 3.
4. The p-type cladding layer 35, the p-type AlGaAs layer 37, and the p-type GaAs contact layer 38 are laminated. p-type AlGaAs layer 37 and p-type
The GaAs contact layer 38 is cut out into a predetermined plane area shape, and the upper surface thereof is provided with an anti-reflection coating 39. On the other hand, around the cut out portion, an insulating film 36 is sandwiched.
The surface electrode 40 formed on the p-type cladding layer 35 is
The n-type substrate 31 contacts the periphery of the upper surface of the As contact layer 38.
The substrate electrode 41 is formed on the back surface of the substrate.

【0003】n型GaAs活性層34へのキャリア注入は表面
電極40と基板電極41の間に電圧を印加しての電流注入で
なされ、ホールは表面電極40の側から p型GaAsコンタク
ト層38、p型AlGaAs層37、p型クラッド層35を介して n型Ga
As活性層34に注入され、電子は基板電極41、n型GaAs基板
31、n型半導体多層膜反射鏡32、そして n型クラッド層33
を介し、n型GaAs活性層34に注入される。
[0003] Carrier injection into the n-type GaAs active layer 34 is performed by current injection by applying a voltage between the surface electrode 40 and the substrate electrode 41, and holes are formed from the side of the surface electrode 40 into the p-type GaAs contact layer 38, n-type Ga through the p-type AlGaAs layer 37 and the p-type cladding layer 35
The electrons are injected into the As active layer 34, and the electrons are
31, n-type semiconductor multilayer reflector 32, and n-type cladding layer 33
Is injected into the n-type GaAs active layer.

【0004】この従来素子30を光増幅素子、ないし特に
面発光レーザとして使用する場合の共振器は、素子内部
に構築されている n型半導体多層膜反射鏡32を一方の反
射鏡手段とし、図示しない外部反射鏡を他方の反射鏡と
して構成される。図示しない外部反射鏡と無反射コーテ
ィング39との間には一般にはレンズ(図示せず)が設け
られる。無反射コーティング39は、もちろん、共振器損
失を減らし、光利得を得る意味で用いられる。同様の趣
旨から、一対の反射鏡に挟まれる各層33〜35、37,38に
もまた、光学的吸収損失が少なくなるように、例えば不
純物濃度等が低く抑えられる等の対策が施されている。
[0004] When the conventional element 30 is used as an optical amplifying element, or in particular, as a surface emitting laser, a resonator is constructed by using an n-type semiconductor multilayer film reflecting mirror 32 constructed inside the element as one reflecting mirror means. A non-external reflecting mirror is configured as the other reflecting mirror. Generally, a lens (not shown) is provided between an external reflection mirror (not shown) and the anti-reflection coating 39. The anti-reflection coating 39 is, of course, used to reduce resonator loss and obtain optical gain. For the same purpose, the layers 33 to 35, 37, and 38 sandwiched between the pair of reflecting mirrors are also provided with measures such as, for example, keeping the impurity concentration low so as to reduce optical absorption loss. .

【0005】図3には、もう一つの従来例が示されてい
る。この面型光増幅素子50は、参考文献2:"High single
-transverse-mode output from external-cavity surfa
ce-emitting laser diodes"(M.A.Hadley,G.C.Wilson,K.
Y.Lau,and J.S.Smith,Appl.Phys.Lett.,vol.63,No.12,p
p.1607-1609,1993) に開示されたもので、基板51として
は n型ではなく p型のGaAs基板51を用いており、その上
に p型半導体多層膜反射鏡52、p型多重量子井戸活性領域
53、n型半導体多層膜反射鏡55を順に積層して成り、基板
51の裏面に設けられた基板電極57と、n型半導体多層膜反
射鏡55の表面周縁に接触し、絶縁膜54上に設けられたボ
ンディングパッド56との間に電圧を印加し、多重量子井
戸活性領域53に電流(キャリア)を注入することで励起
光を得るようになっている。多重量子井戸活性領域53に
対し、ホールは基板電極57の側から p型GaAs基板51、p型
半導体多層膜反射鏡52を通じて注入され、電子は対向側
のボンディングパッド56から n型半導体多層膜反射鏡55
を通じて注入される。
FIG. 3 shows another conventional example. This planar optical amplifier 50 is described in Reference 2: "High single
-transverse-mode output from external-cavity surfa
ce-emitting laser diodes "(MAHadley, GC Wilson, K.
Y.Lau, and JSSmith, Appl.Phys.Lett., Vol.63, No.12, p
(pp. 1607-1609, 1993), in which a p-type GaAs substrate 51 is used as the substrate 51 instead of an n-type, and a p-type semiconductor multilayer film reflecting mirror 52 and a p-type multiple quantum Well active area
53, an n-type semiconductor multilayer reflector 55 is laminated in order,
A voltage is applied between a substrate electrode 57 provided on the back surface of the substrate 51 and a bonding pad 56 provided on the insulating film 54, in contact with the surface periphery of the n-type semiconductor multilayer film reflecting mirror 55, and a multiple quantum well is formed. By injecting current (carrier) into the active region 53, excitation light is obtained. In the multiple quantum well active region 53, holes are injected from the substrate electrode 57 side through the p-type GaAs substrate 51 and the p-type semiconductor multilayer reflector 52, and electrons are reflected from the opposing bonding pad 56 into the n-type semiconductor multilayer film. Mirror 55
Injected through.

【0006】この素子50は、本来的には外部共振器用の
素子ではない。しかし、素子に内蔵の n型半導体多層膜
反射鏡55と p型半導体多層膜反射鏡52のみで共振器を構
成するに留めた場合、口径を大きくすると、ほぼ必ず、
横モードが単峰でなくなるという欠点が生ずる。この欠
点を補うためには、やはり図示しない外部反射鏡が必要
で、n型半導体多層膜反射鏡55の反射率を意図的に低めた
上で、当該 n型半導体多層膜反射鏡55のある側の素子外
部に適当なる反射鏡を設け、例えば外部反射鏡への光路
中に配したレンズ位置等を調整することで単峰性ビーム
を得んとする。いずれにしても共振器の構成はあくまで
複合型になり、素子内部に設けられている基板側の p型
半導体多層膜反射鏡52と n型多層膜反射鏡55から成る第
一の共振器に、p型半導体多層膜反射鏡52と外部反射鏡か
ら成る第二の共振器が複合したものとなる。
[0006] This element 50 is not originally an element for an external resonator. However, if the resonator is constituted only by the n-type semiconductor multilayer film reflecting mirror 55 and the p-type semiconductor multilayer film reflecting mirror 52 built in the element, if the aperture is enlarged, almost always,
There is a disadvantage that the transverse mode is not monomodal. In order to compensate for this disadvantage, an external reflector (not shown) is also required, and the reflectivity of the n-type semiconductor multilayer film reflector 55 is intentionally reduced, and then the n-type semiconductor multilayer film reflector 55 A suitable reflecting mirror is provided outside the element, and a monomodal beam is obtained by adjusting, for example, the position of a lens disposed in the optical path to the external reflecting mirror. In any case, the configuration of the resonator is a composite type to the last, and the first resonator including the p-type semiconductor multilayer film reflecting mirror 52 and the n-type multilayer film reflecting mirror 55 provided on the substrate side provided inside the element, The second resonator including the p-type semiconductor multilayer film reflecting mirror 52 and the external reflecting mirror is combined.

【0007】[0007]

【発明が解決しようとする課題】しかるに、図2に示し
た素子30の場合、特に大口径のレーザビームを得ること
が困難であった。というのも、大口径化のために n型Ga
As活性層34の実効領域、すなわち無反射コーティング39
に覆われていて実際に発振に寄与する領域の面積を広げ
ると、そこに均一にホールを注入することが不可能にな
るからである。これは専ら、p型の各半導体層38、37、35
の電気的抵抗が高いことに起因しており、n型GaAs活性層
実効領域の中央付近にホールを注入させるには、無反射
コーティング39の周縁に接触している表面電極40から p
型の各半導体層38、37、35中をまずは面内方向にホール
を流した後、n型GaAs活性層34の中央に注入させる必要が
あるが、実際にはそうはならず、ホールの大部分は表面
電極40から p型GaAsコンタクト層38の周縁部分に注入さ
れた後、横方向に余り広がらないまま、ほぼ真っ直ぐに
進んで n型GaAs活性層34に至ってしまう。
However, in the case of the element 30 shown in FIG. 2, it has been particularly difficult to obtain a large-diameter laser beam. This is because n-type Ga
The effective area of the As active layer 34, that is, the anti-reflection coating 39
This is because, if the area of the region which is actually covered by the oscillation and which actually contributes to the oscillation is increased, it becomes impossible to uniformly inject holes there. This is exclusively for each of the p-type semiconductor layers 38, 37, 35
In order to inject holes near the center of the n-type GaAs active layer effective area, the surface electrode 40 in contact with the periphery of the anti-reflection coating 39 needs p
It is necessary to first flow holes in the in-plane direction in the semiconductor layers 38, 37, and 35 of the mold, and then to inject them into the center of the n-type GaAs active layer 34. The portion is injected from the surface electrode 40 to the peripheral portion of the p-type GaAs contact layer 38, and then proceeds almost straight to the n-type GaAs active layer 34 without widening in the lateral direction.

【0008】事実、このような構造原理に従って作製さ
れた従来素子30では、n型GaAs活性層34において均一なホ
ール注入と認め得る状態を確保するには、当該 n型GaAs
活性層34の実効領域の直径を数10μm 以下に留めねばな
らず、その結果、大出力化を図るには複数素子をアレー
化する等の方法を採用せねばならなくなり、ビームの光
学的単一性や均一性を犠牲にせねばならなかった。
In fact, in the conventional device 30 manufactured according to such a structural principle, in order to ensure a state where uniform hole injection can be recognized in the n-type GaAs active layer 34, the n-type GaAs is required.
The diameter of the effective region of the active layer 34 must be kept to several tens of μm or less. As a result, in order to increase the output power, it is necessary to adopt a method such as arraying a plurality of elements. The quality and uniformity had to be sacrificed.

【0009】一方、図3に示した従来素子50では、p型Ga
As基板51の裏面に面接触させた基板電極57からホールを
注入できるので、多重量子井戸活性領域53内に注入する
ホールの面内分布における均一性は満足な程度に取るこ
とができる。しかし、最も問題となるのが複合共振器構
造であることで、純粋な外部共振器型面発光レーザを形
成することはできず、しかも、素子内に組込まれている
n型半導体多層膜反射鏡55が通常、80%程度以上の反射
率を持っているため、面型光増幅素子として用いるにも
不適当であった。また、複合共振器構造であるために、
モード同期動作により光パルスを発生させることもでき
ない。
On the other hand, in the conventional device 50 shown in FIG.
Since holes can be injected from the substrate electrode 57 brought into surface contact with the back surface of the As substrate 51, the uniformity of the in-plane distribution of holes injected into the multiple quantum well active region 53 can be taken to a satisfactory degree. However, since the most problematic is the complex resonator structure, a pure external cavity surface emitting laser cannot be formed, and furthermore, it is built into the device.
Since the n-type semiconductor multilayer reflector 55 usually has a reflectivity of about 80% or more, it is not suitable for use as a planar optical amplifier. Also, because of the composite resonator structure,
An optical pulse cannot be generated by the mode locking operation.

【0010】さらに、p型に比せば低抵抗の n型半導体多
層膜反射鏡55を用い、その面内方向に電子を流すことで
多重量子井戸活性領域53の中央近辺にも電子を注入させ
ることを意図した構造ではあるが、やはり多重量子井戸
活性領域53の直径が大きくなると当該 n型半導体多層膜
反射鏡55の電気的抵抗が無視できなくなり、電流注入の
不均一性が生ずるため、キャリア注入が均一に行われて
いると認め得る多重量子井戸活性領域53の実効領域は、
図2に示した従来素子30に比せば広く取り得るとは言
え、直径 100μm 程度が上限であった。特に、p側の電極
が基板電極であって、電流注入を基板を通して行ってい
るため、活性層へのホール注入を制御するができない。
Further, electrons are injected also in the vicinity of the center of the multiple quantum well active region 53 by using an n-type semiconductor multilayer film reflecting mirror 55 having a lower resistance than the p-type and flowing electrons in the in-plane direction. However, when the diameter of the multiple quantum well active region 53 is increased, the electrical resistance of the n-type semiconductor multilayer reflector 55 cannot be ignored, and non-uniform current injection occurs. The effective area of the multiple quantum well active region 53, which can be regarded as being uniformly implanted, is
Although it can be widely used as compared with the conventional element 30 shown in FIG. 2, the upper limit is about 100 μm in diameter. In particular, since the p-side electrode is a substrate electrode and current is injected through the substrate, injection of holes into the active layer cannot be controlled.

【0011】本発明はこうした点に鑑みてなされたもの
で、少なくとも活性層を p型と n型のクラッド層で挟ん
だ構造を含む光増幅機能部分を有し、支持基板の表面に
対し所定角度(一般には既述のように90°)起ち上がっ
た方向に光ビームを出射する面型光増幅素子において、
単一かつ均一で、要すれば大口径の光ビームの増幅やレ
ーザ発振も可能な素子を提供せんとする。
The present invention has been made in view of the above point, and has at least a light amplification function portion including a structure in which an active layer is sandwiched between p-type and n-type cladding layers, and has a predetermined angle with respect to the surface of the supporting substrate. (Generally 90 ° as described above) In a surface-type optical amplifying element that emits a light beam in the rising direction,
It is intended to provide a single, uniform, and, if necessary, element capable of amplifying a large-diameter light beam and also performing laser oscillation.

【0012】[0012]

【課題を解決するための手段】本発明者は、図2,3に
示した従来素子30,50の持つ種々の短所は、結局、光の
増幅に寄与する光増幅機能部分、すなわち図2に示した
従来素子30では各半導体層32〜35,37,38を含む積層構
造部分、図3に示した従来素子50では各半導体層52,5
3,55を含む積層構造部分を構築している n型基板31ま
たは p型基板51の存在それ自体に起因していると考え
た。
The inventor of the present invention has found that the various disadvantages of the conventional devices 30 and 50 shown in FIGS. 2 and 3 are that an optical amplification function part which ultimately contributes to the amplification of light, that is, FIG. In the conventional device 30 shown in the drawings, the laminated structure portion including the semiconductor layers 32 to 35, 37, and 38, and in the conventional device 50 shown in FIG.
This was attributed to the existence of the n-type substrate 31 or the p-type substrate 51, which constitutes the laminated structure portion including 3, 55, itself.

【0013】もちろん、これら基板31,51は、光増幅機
能部分を構築するためには必須であり、また、構築後
も、素子の物理的強度を確保する支持基板としては十分
な意義がある。しかし、こと光増幅機能に関しては、こ
の基板31,51は言わば不要、ないし邪魔な存在である。
例えば、用いる基板31,51は、一般に数百μm に及ぶか
なりの厚味を有し、従って当該基板としてGaAs基板等の
化合物系半導体基板を用いる場合、増幅した光を通すに
は損失が大き過ぎる。
Of course, these substrates 31 and 51 are indispensable for constructing the optical amplification function part, and have sufficient significance as a support substrate for ensuring the physical strength of the element even after construction. However, with respect to the optical amplification function, the substrates 31 and 51 are unnecessary or obstructive.
For example, the substrates 31 and 51 to be used generally have a considerable thickness of several hundred μm. Therefore, when a compound semiconductor substrate such as a GaAs substrate is used as the substrate, the loss is too large to transmit the amplified light. .

【0014】その結果、図2に示した従来素子30でも図
3に示した従来素子50でも、支持基板31,51には増幅し
た光を通さない構成となっており、説明しなかった他の
従来構成でもその点は同様であった。換言すれば、従
来、素子特性改善のため、種々の構造的工夫を施すにし
ても、基板には光を通さないことを大前提とした上でな
さねばならず、そのために種々の制約が出ていたのであ
る。例えば図2に示した従来素子30の場合、光増幅機能
部分からの出射光は、n型GaAs基板51のある側とは反対側
の面の p型半導体層35,37,38の側から出射させねばな
らないため、この出射面を電極で覆うことができず、そ
の結果、既述のように p型AlGaAs層37の周縁部を介して
のみ、p型クラッド層35から n型GaAs活性層34に導通を取
らねばならないことになり、上述したホール注入の不均
一性や大口径化の困難性を招いていたのである。
As a result, both the conventional element 30 shown in FIG. 2 and the conventional element 50 shown in FIG. 3 have a configuration in which the amplified light does not pass through the supporting substrates 31 and 51, and other elements not described. This is the same in the conventional configuration. In other words, even if various structural measures are conventionally taken to improve the device characteristics, it is necessary to do so on the premise that light does not pass through the substrate. It was. For example, in the case of the conventional device 30 shown in FIG. 2, the light emitted from the optical amplification function portion is emitted from the p-type semiconductor layers 35, 37, and 38 on the surface opposite to the n-type GaAs substrate 51. Therefore, the emission surface cannot be covered with the electrode, and as a result, the p-type cladding layer 35 and the n-type GaAs active layer 34 only pass through the peripheral portion of the p-type AlGaAs layer 37 as described above. Therefore, it is necessary to establish conduction, which causes the above-described non-uniformity of hole injection and difficulty in increasing the diameter.

【0015】図3に示した従来素子50の場合にも、n型Ga
As基板に代えて p型GaAs基板51を用い、これにより当該
基板と反対側の面には n型半導体多層膜反射鏡55を用い
得ることで低抵抗化が図れる利点はあっても、複合共振
器構造にせねばならない等、やはり制約があり、それが
また、既述したような別な欠点を生んでいた。
In the case of the conventional device 50 shown in FIG.
Although the p-type GaAs substrate 51 is used in place of the As substrate, and the n-type semiconductor multilayer reflector 55 can be used on the surface opposite to the substrate, there is an advantage that the resistance can be reduced. There are still restrictions, such as the need to use a container structure, which also has another drawback as described above.

【0016】そこで本発明者は、このような従来の常識
から脱却し、光増幅機能部分の構築に用いた下地基板を
当該光増幅機能部分の構築後に除去してはどうか,との
発想を得た。ただ、単に除去するだけでは、実質的に極
めて薄い構造体である光増幅機能部分の強度が持たず、
物理的歪みが光学的歪みを生むため、実用にはならな
い。そこで、その代わりに、本発明では、光増幅機能部
分をその構築に用いた構築基板とは異なる別の支持基
板、それも光ビームを透過させて問題のない低損失の透
明基板に接着した構造を提案する。
Therefore, the present inventor departed from the conventional common sense and obtained the idea of removing the base substrate used for constructing the optical amplification function part after constructing the optical amplification function part. Was. However, mere removal simply does not have the strength of the optical amplification function, which is a very thin structure.
It is not practical because physical distortion produces optical distortion. Therefore, instead, in the present invention, a structure in which the optical amplification function portion is bonded to a low-loss transparent substrate that transmits a light beam and is different from the supporting substrate different from the construction substrate used for its construction. Suggest.

【0017】このような素子構造にすると、透明基板に
光増幅機能部分の増幅した光ビームを通すことができ
る。ということは、光増幅機能部分に対する構造的工夫
に自由度が生まれ、例えば相対的に高抵抗の p型半導体
層に対しホールを注入するための電極は大面積にした
り、あるいは後述の本発明の特定の態様におけるよう
に、分割した複数の電極から構成して、こうした電極の
ある面側からは光を出射させないようにしても、光増幅
機能部分中の活性層を挟み反対側に設けた透明基板を介
して光ビームを出射できるようにすることで、種々の改
良が可能になる。
With such an element structure, the light beam amplified by the light amplification function portion can be passed through the transparent substrate. This means that there is a degree of freedom in the structure of the optical amplification function, and for example, the electrode for injecting holes into a relatively high-resistance p-type semiconductor layer has a large area, As in the specific embodiment, even if the electrode is constituted by a plurality of divided electrodes so that light is not emitted from one surface side of such an electrode, the transparent electrode provided on the opposite side with the active layer in the optical amplification function portion interposed therebetween. By allowing the light beam to be emitted through the substrate, various improvements can be made.

【0018】この基本条件を満たした上で、本発明では
望ましい下位態様として、光増幅機能部分は n型半導体
層のある側にて透明基板に接着され、活性層を挟んで反
対側にある p型半導体層に対しホールを注入する電極
は、複数個に分割された分割電極である面型光増幅素子
も提案する。
After satisfying these basic conditions, as a desirable lower aspect of the present invention, the optical amplification function portion is bonded to a transparent substrate on one side of the n-type semiconductor layer, and is formed on the opposite side of the active layer with the p-type semiconductor layer therebetween. A surface-type optical amplifying element in which a hole is injected into a semiconductor layer, which is a divided electrode divided into a plurality, is also proposed.

【0019】こうした面型光増幅素子では、n型に比して
高抵抗の p型半導体層に対するホールの注入をも均一化
でき、さらに、分割された各電極への電流注入量を制御
することで活性層内のキャリアの面内分布を制御できる
ため、単峰性の基本モードでの光強度分布に整合を取る
ような制御も可能となる。
In such a planar optical amplifier, the injection of holes into the p-type semiconductor layer having a higher resistance than that of the n-type can be made uniform, and the amount of current injected into each of the divided electrodes can be controlled. Can control the in-plane distribution of carriers in the active layer, so that it is possible to control to match the light intensity distribution in the unimodal fundamental mode.

【0020】さらに、より具体的な下位態様として、本
発明では、光増幅機能部分中の活性層は n型半導体層と
しての n型半導体クラッド層と p型半導体層としての p
型半導体多層膜反射鏡とで挟まれており、光増幅機能部
分はこの n型半導体クラッド層の側で透明基板に接着さ
れ、複数に分割された電極は p型半導体多層膜反射鏡上
に設けられた p型キャップ層を介して導通すると共に、n
型半導体クラッド層に対して導通する電極は透明基板の
表面上に設けられた配線導体に接続している面型光増幅
素子を提案する。
Further, as a more specific lower aspect, according to the present invention, the active layer in the optical amplification function portion has an n-type semiconductor cladding layer as an n-type semiconductor layer and a p-type semiconductor layer as a p-type semiconductor layer.
The optical amplification function part is adhered to the transparent substrate on the side of the n-type semiconductor cladding layer, and the divided electrodes are provided on the p-type semiconductor multilayer reflection mirror. Conduction through the p-type cap layer and n
The present invention proposes a surface-type optical amplifying element in which an electrode conducting to a mold semiconductor cladding layer is connected to a wiring conductor provided on a surface of a transparent substrate.

【0021】本発明ではまた、面型光増幅素子の製造方
法としても、光増幅機能部分を構築するための構築基板
上に当該光増幅機能部分を構築した後、当該構築基板を
除去する前に別な透明基板に光増幅機能部分の露呈して
いる面側を接着し、その後、構築基板を除去する工程を
含む方法も提案する。
According to the present invention, a method of manufacturing a planar optical amplifying device also includes a method of constructing an optical amplifying function part on a construction substrate for constructing the optical amplifying function part, and then removing the construction substrate. There is also proposed a method including a step of bonding the exposed surface side of the optical amplification function portion to another transparent substrate, and then removing the build substrate.

【0022】この場合、本発明はその下位態様として、
構築基板上には p型半導体層の方から活性層、n型半導体
層の順に形成し、透明基板は n型半導体層の露呈面側に
接着し、構築基板を除去することで露呈した p型半導体
層側の表面に、当該 p型半導体層に対して導通を取る複
数の分割電極を形成する製造方法も提案する。
In this case, the present invention provides
An active layer and an n-type semiconductor layer are formed in this order on the construction substrate from the p-type semiconductor layer, and the transparent substrate is adhered to the exposed surface side of the n-type semiconductor layer, and the p-type exposed by removing the construction substrate A manufacturing method is also proposed in which a plurality of split electrodes that conduct to the p-type semiconductor layer are formed on the surface on the semiconductor layer side.

【0023】[0023]

【発明の実施の形態】図1(A) には、本発明に従って構
成された面型光増幅素子10の一例の概略構成図が示され
ている。励起キャリアを生成する活性層13をその上下か
ら p型と n型の半導体層14,12で挟んだ構造を含む光増
幅機能部分11は、本発明の場合、当該光増幅機能部分11
を構築した基板とは異なる透明基板21に対し、透明接着
剤22により接着されている。すなわち図1(A) では、構
築基板は既に除去された状態で示されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1A is a schematic diagram showing an example of a planar optical amplifier 10 constructed according to the present invention. In the case of the present invention, the optical amplification function portion 11 including the structure in which the active layer 13 for generating excited carriers is sandwiched between the p-type and n-type semiconductor layers 14 and 12 from above and below is formed.
Is adhered to a transparent substrate 21 different from the substrate on which is constructed by a transparent adhesive 22. That is, in FIG. 1A, the construction substrate is shown in a state where it has been already removed.

【0024】しかるに、こうした本発明素子10の場合、
光増幅機能部分11により生成された光ビームはこの透明
基板21を通すことができるため、当該光増幅機能部分11
に対する構造的改良の自由度が増す。図1(A) では、以
下に説明するように、本発明に従った下位態様における
望ましい構造例が開示されているが、これ以外でも、本
発明の基本的な構成に従った面型光増幅素子は種々提供
できる。
However, in the case of the device 10 of the present invention,
Since the light beam generated by the light amplification function part 11 can pass through the transparent substrate 21, the light amplification function part 11
The degree of freedom of structural improvement for is increased. In FIG. 1A, as described below, an example of a desirable structure in a lower aspect according to the present invention is disclosed. However, in addition to this, a planar optical amplifier according to the basic configuration of the present invention is disclosed. Various elements can be provided.

【0025】透明基板21には、発振波長に対して極力透
明度の高いものを選べば良く、ガラス、プラスチック等
に適当なる素材を求めることができ、実際、光波長領域
の透過ビームに対し、透過率にして99%から99.9%にも
及ぶものも容易に得られる。ただ、いくら透過率が高く
ても、厚さが余りに厚くなれば損失は増す。しかし通
常、光増幅機能部分11を物理的に支持し、歪みを防ぎ得
る強度を確保し得る厚さの範囲では、これを相当厚くし
て、数百μm から数ミリにまでしても、十分に満足な透
過率が得られる。
The transparent substrate 21 may be selected to have as high transparency as possible to the oscillation wavelength, and suitable materials such as glass and plastic can be obtained. As high as 99% to 99.9% can be easily obtained. However, no matter how high the transmittance, the loss increases if the thickness is too large. However, normally, in the range of the thickness that can physically support the optical amplification function portion 11 and secure the strength that can prevent the distortion, even if the thickness is considerably increased to several hundred μm to several millimeters, it is sufficient. And a satisfactory transmittance is obtained.

【0026】透明接着剤22にも、ポリイミド等、適当な
る接着剤が市販されており、その透過率も十分高いし、
そもそも極めて薄くて良いので、問題にはならない。透
明基板21の表面平坦化(光学的な高精度化)や、透明接
着剤22の均一な塗布は、既存の技術をしても満足な程度
に容易である。さらに、透明基板21の表面界面、透明基
板21と透明接着剤22、透明接着剤22と光増幅機能部分11
との界面における乱反射を避けるためには、それらの面
にそれぞれ、予め無反射コーティング25,24,23を施し
ておくのが良く、これらは例えば、TiO2とSiO2の二層積
層構造層で構成することができる。
A suitable adhesive such as polyimide is also commercially available as the transparent adhesive 22, and its transmittance is sufficiently high.
It doesn't matter because it can be very thin in the first place. The flattening of the surface of the transparent substrate 21 (higher optical precision) and the uniform application of the transparent adhesive 22 can be performed to a satisfactory degree even with existing techniques. Further, the surface interface of the transparent substrate 21, the transparent substrate 21 and the transparent adhesive 22, the transparent adhesive 22 and the optical amplification function portion 11
In order to avoid irregular reflection at the interface with the surface, it is preferable to previously apply anti-reflection coatings 25, 24, and 23 on those surfaces, respectively. These are, for example, a two-layer laminated structure layer of TiO 2 and SiO 2. Can be configured.

【0027】図1(A) に示す本発明の面型光増幅素子10
の場合、光増幅機能部分11の構成は具体的には下記のよ
うになっている。まず、透明接着剤22、無反射コーティ
ング23を介して透明基板21の側に面して接着されている
のは n型クラッド層12であって、これは例えば、厚さ 2
μm 程度の n型AlXGa1-XAs(x=0.3) 層により構成でき
る。
FIG. 1A shows a planar optical amplifier 10 according to the present invention.
In this case, the configuration of the optical amplification function part 11 is specifically as follows. First, the n-type cladding layer 12 adhered to the transparent substrate 21 via the transparent adhesive 22 and the anti-reflection coating 23 has a thickness of, for example, 2 nm.
It can be composed of an n-type Al X Ga 1-X As (x = 0.3) layer of about μm.

【0028】その上には、光増幅機能部分11の主要部で
ある、励起キャリアを生成する活性層13が形成されてお
り、これは例えば、厚さ 0.5μm 程度のノンドープGaAs
層で構成できる。
On top of this, an active layer 13 for generating excited carriers, which is a main part of the optical amplification function part 11, is formed, for example, a non-doped GaAs having a thickness of about 0.5 μm.
It can be composed of layers.

【0029】活性層13の上には、 p型半導体層としてこ
の場合は p型半導体多層膜反射鏡14が形成されており、
これは例えば、p型AlXGa1-XAs(x=0.1) と p型AlAs層の周
期的な繰返し積層構造により構成でき、一層当たりは相
当に薄くして、総厚としても数μm 程度にする。もっと
も、このような半導体多層膜反射鏡自体は既に公知であ
るので、任意の技術に従って作製して良い。
On the active layer 13, a p-type semiconductor multilayer mirror 14 is formed as a p-type semiconductor layer in this case.
This can be achieved, for example, by a periodic repetitive lamination structure of p-type Al X Ga 1-X As (x = 0.1) and p-type AlAs layer, and one layer is considerably thinner, and the total thickness is about several μm. To However, since such a semiconductor multilayer film reflecting mirror itself is already known, it may be manufactured according to an arbitrary technique.

【0030】ただ、このように、図1(A) に示す面型光
増幅素子10の場合、p型半導体層として半導体多層膜反射
鏡14が用いられていることから分かるように、活性層13
にて生成された光ビームはこの反射鏡14にて反射され、n
型クラッド層12から透明基板21を介し外部空間に輻射さ
れる構造となっている。従って、図示していないが、こ
の光ビームの出射経路の延長上の外部空間に、要すれば
適当なるレンズを介在させながら、既に開発されている
高性能な反射鏡、例えば反射率が99%以上の平面型誘電
体多層膜反射鏡等を配置することで、図3に示した従来
素子のような、素子内部の共振器との併用による複合共
振器構造に依らない、完全な形での外部反射鏡型面発光
レーザを構成することができる。
However, in the case of the planar optical amplifier 10 shown in FIG. 1A, as can be seen from the fact that the semiconductor multilayer reflector 14 is used as the p-type semiconductor layer, as shown in FIG.
The light beam generated at is reflected by the reflecting mirror 14, and n
The structure is such that radiation is emitted from the mold cladding layer 12 to the external space via the transparent substrate 21. Therefore, although not shown, a high-performance reflecting mirror already developed, for example, having a reflectivity of 99%, is provided in an external space on the extension of the light beam emission path, if necessary, with an appropriate lens interposed therebetween. By arranging the planar dielectric multilayer film reflecting mirror and the like as described above, a complete shape can be obtained without depending on the complex resonator structure used in combination with the resonator inside the device as in the conventional device shown in FIG. An external reflecting mirror type surface emitting laser can be configured.

【0031】もちろん、活性層13中にて励起キャリアを
生成するためには、当該活性層13への電流注入が必要に
なるが、そのための構成は、図示素子10の場合、次のよ
うになっており、ここにも望ましい工夫が施されてい
る。
Of course, in order to generate excited carriers in the active layer 13, it is necessary to inject current into the active layer 13. The configuration for this is as follows in the case of the illustrated element 10. Here, too, desirable measures have been taken.

【0032】まず、p型半導体多層膜反射鏡14の上には、
例えばZnが高濃度でドーピングされた3000Å程度の p型
GaAs層による p型キャップ層15が形成され、その上に、
望ましいことに、複数個に分割されたホール注入用分割
電極16が形成されている。図示の場合、中央の円盤状電
極の回りに、所定のピッチで同心円上に円環上の電極を
複数個配した構造となっている。このようにすると、各
電極に印加する電圧を個々に調整することで、当該各電
極から p型キャップ層15、p型半導体多層膜反射鏡14を介
し、活性層13に注入されるホールの面内分布が均一にな
るように調整でき、動作時においてアクティブな制御が
可能となる。
First, on the p-type semiconductor multilayer film reflecting mirror 14,
For example, p-type of about 3000Å doped with high concentration of Zn
A p-type cap layer 15 of a GaAs layer is formed, on which a
Desirably, a plurality of divided hole injection electrodes 16 are formed. In the case of the drawing, a plurality of annular electrodes are arranged concentrically at a predetermined pitch around a central disk-shaped electrode. In this way, by individually adjusting the voltage applied to each electrode, the surface of the hole injected into the active layer 13 from each electrode via the p-type cap layer 15 and the p-type semiconductor multilayer film reflecting mirror 14 is obtained. The internal distribution can be adjusted to be uniform, and active control can be performed during operation.

【0033】すなわち、従来においては高抵抗の p型半
導体層、それもかなり薄い p型半導体層を介して活性層
にホールを注入する際、どうしてもホール流が偏り、均
一な注入ができなかったのに対し、図示構成によれば、
活性層13に対し均一なホール注入が可能になるばかり
か、もっと積極的に、発振モード等の光分布に適応した
利得分布になるように注入電流分布を制御することも可
能となる。例えば単峰性の基本モードの光分布を得たい
場合には、一般に中央の電極を介して程、注入電流量が
多くなるようにすれば良い。さらに、安定、高精度な発
振光を得られるのみならず、所望の遠視野像の発振光ビ
ームを得ること等も可能となる。
That is, conventionally, when holes are injected into the active layer through the high-resistance p-type semiconductor layer, which is also a considerably thin p-type semiconductor layer, the hole flow is inevitably biased and uniform injection cannot be performed. In contrast, according to the illustrated configuration,
In addition to enabling uniform hole injection into the active layer 13, it is also possible to more positively control the injection current distribution so that the gain distribution is adapted to the light distribution such as the oscillation mode. For example, when it is desired to obtain a light distribution of a unimodal fundamental mode, generally, the amount of injected current should be increased as the central electrode is passed. Further, it is possible not only to obtain a stable and highly accurate oscillation light, but also to obtain an oscillation light beam having a desired far-field pattern.

【0034】分割電極16は、図示のように同心円状のも
のに限らない。短冊状に複数個が並設されたパタンにす
ることもできるし、一つ一つが円形や四角形等、適当な
平面形状のドット状で、これが所定の平面パタンで複数
個配置されたようなものでも良く、要は任意である。
The split electrodes 16 are not limited to concentric ones as shown in the figure. It can be a pattern in which a plurality of strips are arranged side by side, each one is a dot shape of an appropriate plane shape such as a circle or a square, and a plurality of these are arranged in a predetermined plane pattern However, the point is arbitrary.

【0035】これに対し、相対的に低抵抗の n型半導体
層12に対する電子注入用の電極は、もう少し大雑把に作
ることができる。図示の場合は、全体が所定の立体形状
(図示の場合は円柱形状)に切り出されている光増幅機
能部分11の外周縁に沿って、当該 n型半導体層(クラッ
ド層)12の下面に接する円環状のコンタクト層17が設け
られ、その表面に設けられたAuGe合金等の電極18が電極
接続材19を介し、光増幅機能部分11の周囲にあって透明
基板12の表面に形成された配線導体20に電気的に導通し
ている。コンタクト層17は例えば厚さ1000Å程度の n型
GaAs層により構成でき、電極接続材19はInやAuSnの半田
により構成でき、配線導体20はAu等により構成できる。
On the other hand, an electrode for injecting electrons into the n-type semiconductor layer 12 having a relatively low resistance can be made a little more roughly. In the case shown in the drawing, the entire surface is in contact with the lower surface of the n-type semiconductor layer (cladding layer) 12 along the outer periphery of the optical amplification function portion 11 cut out into a predetermined three-dimensional shape (in the case shown, a cylindrical shape). An annular contact layer 17 is provided, and an electrode 18 made of AuGe alloy or the like provided on the surface thereof is formed on the surface of the transparent substrate 12 around the optical amplification function portion 11 through an electrode connecting material 19. It is electrically connected to the conductor 20. The contact layer 17 is, for example, an n-type having a thickness of about 1000 mm.
The electrode connecting member 19 can be formed of In or AuSn solder, and the wiring conductor 20 can be formed of Au or the like.

【0036】先に少し述べたように、図示の素子10を外
部共振器型面発光レーザとして用いる場合には、共振器
構造は p型半導体多層膜反射鏡14と、図示しない外部反
射鏡及びレンズとで構成できる。もちろん、レンズは活
性領域13に対して透明基板21がある側の外部空間に配置
され、外部反射鏡は透明基板21とレンズを結ぶ線の延長
線上に配置される。つまり、透明基板21が外部反射鏡に
面するように面型素子10を配置し、その間にレンズを配
置する。素子やレンズ、外部反射鏡は光学的に調整が可
能な微動台にのせる。外部反射鏡には、発振波長を十分
に高反射率で反射する平面反射鏡として、例えば99%以
上の反射率をもつ誘電体多層膜反射鏡等を用いる。
As described earlier, when the device 10 shown in the figure is used as an external cavity surface emitting laser, the cavity structure is a p-type semiconductor multilayer film reflecting mirror 14, an external reflecting mirror and a lens (not shown). It can be composed of Of course, the lens is disposed in an external space on the side where the transparent substrate 21 is located with respect to the active region 13, and the external reflection mirror is disposed on an extension of a line connecting the transparent substrate 21 and the lens. That is, the surface element 10 is arranged so that the transparent substrate 21 faces the external reflection mirror, and the lens is arranged therebetween. The element, lens and external reflecting mirror are mounted on a fine adjustment table that can be adjusted optically. As the external reflecting mirror, for example, a dielectric multilayer film reflecting mirror having a reflectance of 99% or more is used as a plane reflecting mirror that reflects the oscillation wavelength with a sufficiently high reflectance.

【0037】p型半導体多層膜反射鏡14で反射された光
が活性領域13で再度増幅され、レンズを通してコリメー
トされ、外部反射鏡によって再び反射され、活性領域13
と p型多層膜反射鏡14に再度戻る動作が繰返されること
でレーザ発振が生起するが、この際に微動台等の調整機
構を用いて共振器の損失が小さくなるように、素子やレ
ンズ、外部反射鏡を光学的に調整する。外部反射鏡と素
子の距離、つまり外部共振器の距離は十分に短くする。
これは振動等の影響を防ぐ為である。
The light reflected by the p-type semiconductor multilayer film reflecting mirror 14 is again amplified in the active region 13, collimated through a lens, reflected again by the external reflecting mirror, and
Laser oscillation is generated by repeating the operation of returning to the p-type multilayer film reflecting mirror 14 and again, and at this time, using an adjustment mechanism such as a fine adjustment table, an element, a lens, Optically adjust the external reflector. The distance between the external reflecting mirror and the element, that is, the distance between the external resonators is sufficiently short.
This is to prevent the influence of vibration and the like.

【0038】分割電極16に注入する電流は、例えば単峰
性の基本モードの光強度分布に一致するように、つまり
中央の電極には多くの電流が流れるようにする。こうす
ることで、高出力の外部共振器型面発光レーザの実現が
可能となる。また、分割電極16に注入する電流に、外部
共振器長の光の往復時間に適合するような変調を加え
て、例えば光の往復時間が1nsならば1GHzの変調を加え
ると、能動モード同期動作が行われ、光パルスの発生も
可能となる。
The current to be injected into the split electrode 16 is set so as to coincide with, for example, the light intensity distribution of the unimodal fundamental mode, that is, a large amount of current flows through the central electrode. This makes it possible to realize a high-output external cavity surface emitting laser. Also, when the current injected into the split electrode 16 is subjected to a modulation suitable for the round-trip time of the light of the external resonator length, for example, if the round-trip time of the light is 1 ns, a modulation of 1 GHz is applied to the active mode-locking operation. Is performed, and it becomes possible to generate an optical pulse.

【0039】図1(A) に示す面型光増幅素子10を始め、
本発明に従う面型光増幅素子は種々の方法により作製す
ることができようが、図1(A) に示す素子10に関しての
望ましい作製工程は、図1(B) に即して例示できる。ま
ず、ステップ101 で示すように、光増幅機能部分を構築
する構築基板として、市販されている 400μm 程度の厚
さのGaAs基板を用い、その上に、将来のエッチング時に
機能するエッチング停止層として、AlXGa1-XAs(x=0.6)層
を3000Å程度、形成する。
Starting with the surface-type optical amplifying device 10 shown in FIG.
Although the surface type optical amplifying device according to the present invention can be manufactured by various methods, a preferable manufacturing process for the device 10 shown in FIG. 1A can be exemplified with reference to FIG. 1B. First, as shown in Step 101, a commercially available GaAs substrate having a thickness of about 400 μm was used as a construction substrate for constructing an optical amplification function part, and an etching stop layer functioning in future etching was formed thereon. An Al X Ga 1-X As (x = 0.6) layer is formed to about 3000 °.

【0040】その上に、ステップ102 で示すように、図
1(A) の光増幅機能部分11を図面上で丁度上下をひっく
り返した関係で構築する。すなわち、分割電極16はまだ
この時点では作製されるものではなく、p型キャップ層15
の方から順に p型半導体層多層膜反射鏡14、活性層13、n
型クラッド層12、コンタクト層17を積層形成し、適宜リ
ソグラフィ技術を援用する等して所定の立体形状、例え
ば円柱形状の光増幅機能部分11を構築する。同様にリソ
グラフィ技術を用い、ビームの通路上にある光学的損失
の大きなコンタクト層17の部分を除去し、さらに、必要
に応じ、リソグラフィ技術を併用しながら無反射コーテ
ィング23も形成する。
On top of that, as shown in step 102, the optical amplifying function part 11 of FIG. 1A is constructed in a relationship just turned upside down on the drawing. That is, the split electrode 16 is not yet manufactured at this time, and the p-type cap layer 15
P-type semiconductor layer multilayer mirror 14, active layer 13, n
The mold cladding layer 12 and the contact layer 17 are stacked and formed, and a light amplification function portion 11 having a predetermined three-dimensional shape, for example, a column shape, is constructed by appropriately using a lithography technique or the like. Similarly, the portion of the contact layer 17 having a large optical loss on the path of the beam is removed by using the lithography technique, and if necessary, the anti-reflection coating 23 is also formed while using the lithography technique.

【0041】次いでステップ103 に示すように、露呈し
ている n型クラッド層12の側、すなわち無反射コーティ
ング23があるならばその面側に、十分に表面平坦性の高
いガラス基板等の透明基板21を極力均一に塗布したポリ
イミド等の透明接着剤22により接着する。
Next, as shown in step 103, a transparent substrate such as a glass substrate having a sufficiently high surface flatness is provided on the exposed side of the n-type cladding layer 12, that is, on the side of the anti-reflection coating 23, if any. 21 is adhered with a transparent adhesive 22, such as polyimide, applied as uniformly as possible.

【0042】このようにして、予め光増幅機能部分11の
物理的強度を確保し、物理的、光学的歪みが発生しない
ようにした所で、次に構築基板の除去工程に移る。構築
基板は上述のように 400μm 程度と厚いので、ステップ
104 に示すように、まずはこれを機械的な研磨法等によ
り所定の厚味、例えば残り厚が30ないし 100μm 程度に
なるように研磨する。
In this way, the physical strength of the optical amplifying function portion 11 is secured in advance so that physical and optical distortions do not occur, and then the process proceeds to the step of removing the construction substrate. Since the construction board is as thick as about 400 μm as described above,
First, as shown in 104, this is polished by a mechanical polishing method or the like so as to have a predetermined thickness, for example, a remaining thickness of about 30 to 100 μm.

【0043】所定の厚味まで薄くなったら、ステップ10
5 で示すように、適当な温度、適当な溶液、例えば温度
20℃程度でアンモニアと過酸化水素水の1:20程度の混合
溶液で構築基板の残り厚をエッチングする。この時、エ
ッチング停止層として上述のようにAlXGa1-XAs(x=0.6)
層を用いていると、エッチング時間を厳密に管理しなく
ても、エッチング停止層の所までは20μm/分程度の高速
エッチングが可能になる一方で、そこでエッチングの進
行を止めることができる。エッチング停止層としては、
その外、AlAs層等も用いることができる。
When the thickness is reduced to the predetermined thickness, step 10
As shown at 5, suitable temperature, suitable solution, e.g. temperature
At about 20 ° C., the remaining thickness of the built substrate is etched with a mixed solution of ammonia and hydrogen peroxide solution at about 1:20. At this time, Al X Ga 1-X As (x = 0.6) was used as an etching stop layer as described above.
When a layer is used, a high-speed etching of about 20 μm / min can be performed up to the etching stop layer without strictly controlling the etching time, but the etching can be stopped there. As an etching stop layer,
In addition, an AlAs layer or the like can be used.

【0044】その後は、ステップ106 に示すように、例
えば燐酸と過酸化水素水と水の混合溶液(例えばH3PO4:
H2O2:H2O=3:1:50)を用い、温度20℃程度でエッチング停
止層自体をエッチングし、除去する。この時のエッチン
グ速度は1000Å/分程度であるので、時間管理でエッチ
ング停止層のみを除去するのも容易である。
Thereafter, as shown in step 106, for example, a mixed solution of phosphoric acid, hydrogen peroxide and water (eg, H 3 PO 4 :
Using H 2 O 2 : H 2 O = 3: 1: 50), the etching stopper layer itself is etched and removed at a temperature of about 20 ° C. Since the etching rate at this time is about 1000 ° / min, it is easy to remove only the etching stop layer by time management.

【0045】このようにして、光増幅機能部分11の p型
キャップ層15の表面が露呈したならば、ステップ107 に
示すように、AuZn合金などを全面蒸着してからリソグラ
フィ技術によるか、所定パタンに即しての印刷技術によ
り、所定個数、所定配置パタンのホール注入用分割電極
16を形成する。
When the surface of the p-type cap layer 15 of the optical amplification function portion 11 is exposed in this way, as shown in step 107, an AuZn alloy or the like is entirely deposited and then a lithography technique or a predetermined pattern is used. By the printing technology according to the above, the divided electrodes for hole injection of a predetermined number and a predetermined arrangement pattern
Form 16.

【0046】もちろん、説明しなかったが、n型半導体層
(クラッド層)12に対する電極構造17〜20は、適宜の工
程で公知既存の手法により作製することができる。
Of course, although not described, the electrode structures 17 to 20 for the n-type semiconductor layer (cladding layer) 12 can be manufactured by a known process using appropriate steps.

【0047】以上、本発明の望ましい実施形態に即し説
明したが、本発明の趣旨に即する限り、任意の改変は自
由である。光増幅機能部分11に使用可能な材料として
も、例示したAlGaAs系の外、同じ III-V族半導体では I
nGaAsP系、GaN系等も使用可能であるし、II-VI族半導体で
あるZnSe系等の光半導体材料も用いることができる。
Although the preferred embodiment of the present invention has been described above, any modifications can be made freely as long as the purpose of the present invention is met. As a material that can be used for the optical amplification function part 11, in addition to the AlGaAs-based material illustrated,
An nGaAsP-based or GaN-based material can be used, and an optical semiconductor material such as a ZnSe-based II-VI group semiconductor can also be used.

【0048】[0048]

【発明の効果】本発明によると、光増幅機能部分の構築
に用いた基板は除去可能であり、透明基板側に光を通す
ことが可能であるので、光増幅機能部分に対する種々の
改良の自由度が大幅に増す。
According to the present invention, the substrate used for constructing the optical amplifying function can be removed and light can be transmitted to the transparent substrate side. The degree greatly increases.

【0049】また、本発明の特定の態様に従い、p型半導
体層側のホール注入用の電極を複数個から成る分割電極
とすれば、一つ一つの電極に注入する電流を制御するこ
とにより、活性層内のキャリア分布をアクティブに制御
することが可能となる。その結果、外部共振器型面発光
レーザを構築する場合には、単峰性の基本モードの光強
度分布に合わせてキャリアの注入が可能となり基本モー
ドでの動作を安定化することが可能となる。
Further, according to a specific embodiment of the present invention, if the electrode for hole injection on the p-type semiconductor layer side is a plurality of divided electrodes, by controlling the current injected to each electrode, It is possible to actively control the carrier distribution in the active layer. As a result, when constructing an external cavity surface emitting laser, carriers can be injected in accordance with the light intensity distribution of the unimodal fundamental mode, and the operation in the fundamental mode can be stabilized. .

【0050】さらに、透明基板側を出射口として用いる
ならば、p型半導体層は多層膜反射鏡として構成できるの
で、透明基板に固定することで得られる当該 p型多層膜
反射鏡の光学的安定性により、有効な活性領域の範囲を
拡大することが可能となり、電流注入型で高出力の外部
共振器型面発光レーザや、大口径の光ビーム反射型増幅
器等を実現することができる。数百μm 径からそれ以上
の径の光ビームの発生も十分実現性がある。もちろん、
本発明の面型光増幅素子は電流注入型であるため、外部
共振器型能動モード同期面発光レーザの実現も可能であ
る。この場合には高出力の光パルスの発生が可能とな
る。
Furthermore, if the transparent substrate side is used as an emission port, the p-type semiconductor layer can be configured as a multilayer film reflecting mirror, so that the optical stability of the p-type multilayer film reflecting mirror obtained by fixing to the transparent substrate can be obtained. This makes it possible to expand the range of the effective active region, thereby realizing a current-injection type, high-output external cavity surface emitting laser, a large-diameter light beam reflection amplifier, and the like. Generation of a light beam with a diameter of several hundred μm or more is sufficiently feasible. of course,
Since the surface optical amplifier of the present invention is of the current injection type, it is possible to realize an external cavity type active mode-locked surface emitting laser. In this case, a high-output light pulse can be generated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明面型光増幅素子の一例の概略構成と作製
工程の説明図である。
FIG. 1 is a schematic diagram illustrating an example of a surface-type optical amplifying element of the present invention and a manufacturing process thereof.

【図2】従来の面型光増幅素子の代表的一例の概略構成
図である。
FIG. 2 is a schematic configuration diagram of a typical example of a conventional planar optical amplifier.

【図3】従来の面型光増幅素子の他の代表的一例の概略
構成図である。
FIG. 3 is a schematic configuration diagram of another typical example of a conventional planar optical amplifier.

【符号の説明】[Explanation of symbols]

10 本発明面型光増幅素子 11 光増幅機能部分 12 n型クラッド層 13 活性層 14 p型半導体多層膜反射鏡 15 p型キャップ層 16 分割電極 17 コンタクト層 18 電極 19 電極接続材 20 配線導体 21 透明基板 22 透明接着剤 23,24,25 無反射コーティング 10 Surface-type optical amplifier element of the present invention 11 Optical amplification function part 12 n-type cladding layer 13 active layer 14 p-type semiconductor multilayer mirror 15 p-type cap layer 16 split electrode 17 contact layer 18 electrode 19 electrode connecting material 20 wiring conductor 21 Transparent substrate 22 Transparent adhesive 23, 24, 25 Non-reflective coating

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年1月14日[Submission date] January 14, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Correction target item name] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Correction target item name] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項3[Correction target item name] Claim 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項4[Correction target item name] Claim 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項5[Correction target item name] Claim 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 励起キャリアを生成する活性層を p型と
n型の半導体層で挟んだ構造を含む光増幅機能部分を有
し、支持基板の表面に対し所定角度起ち上がった方向に
光ビームを出射する面型光増幅素子であって;上記光増
幅機能部分が該光増幅機能部分を構築した基板とは異な
る他の透明基板に接着されており、かつ、該透明基板を
介して上記活性層からの光ビームが出射すること;を特
徴とする面型光増幅素子。
1. An active layer for generating excited carriers is a p-type.
A surface-type light amplifying element having a light amplifying function portion including a structure sandwiched between n-type semiconductor layers and emitting a light beam in a direction rising at a predetermined angle with respect to the surface of a support substrate; A portion is adhered to another transparent substrate different from the substrate on which the optical amplification function portion is constructed, and a light beam from the active layer is emitted through the transparent substrate. Optical amplification element.
【請求項2】 請求項1記載の面型光増幅素子であっ
て;上記光増幅機能部分は n型半導体層のある側にて上
記透明基板に接着され;上記活性層を挟んで反対側にあ
る上記 p型半導体層に対しホールを注入する電極が複数
個に分割された分割電極であること;を特徴とする面型
光増幅素子。
2. The planar optical amplifying device according to claim 1, wherein the optical amplifying function portion is adhered to the transparent substrate on one side of the n-type semiconductor layer; and on the opposite side of the active layer. A planar light amplification element, wherein the electrode for injecting holes into the p-type semiconductor layer is a divided electrode divided into a plurality of divided electrodes;
【請求項3】 請求項2記載の面型光増幅素子であっ
て;上記光増幅機能部分中の上記活性層は、上記 n型半
導体層としての n型半導体クラッド層と、上記 p型半導
体層としての p型半導体多層膜反射鏡とで挟まれてお
り;該光増幅機能部分は該 n型半導体クラッド層の側で
透明基板に接着され;上記複数に分割された電極は上記
p型半導体多層膜反射鏡上に設けられた p型キャップ層
を介して導通すると共に;上記 n型半導体クラッド層に
対して導通する電極は上記透明基板の表面上に設けられ
た配線導体に接続していること;を特徴とする面型光増
幅素子。
3. The planar optical amplifying device according to claim 2, wherein the active layer in the optical amplifying function portion includes an n-type semiconductor clad layer as the n-type semiconductor layer, and the p-type semiconductor layer. The optical amplification function part is adhered to a transparent substrate on the side of the n-type semiconductor cladding layer; the plurality of divided electrodes are
Conduction is carried out through a p-type cap layer provided on the p-type semiconductor multilayer mirror; and an electrode conducting to the n-type semiconductor cladding layer is connected to a wiring conductor provided on the surface of the transparent substrate. A surface-type optical amplifying element.
【請求項4】 励起キャリアを生成する活性層を p型と
n型の半導体層で挟んだ構造を含む光増幅機能部分を有
し、支持基板の表面に対し所定角度起ち上がった方向に
光ビームを出射する面型光増幅素子の製造方法であっ
て;上記光増幅機能部分を構築するための構築基板上に
該光増幅機能部分を構築した後;該構築基板を除去する
前に別な透明基板に光増幅機能部分の露呈している面側
を接着し;その後、該構築基板を除去する工程を含むこ
と;を特徴とする面型光増幅素子の製造方法。
4. An active layer for generating excited carriers is a p-type.
A method for manufacturing a surface-type optical amplifying element having a light-amplifying function portion including a structure sandwiched between n-type semiconductor layers and emitting a light beam in a direction rising at a predetermined angle with respect to the surface of a supporting substrate; After constructing the light amplification function part on the construction substrate for constructing the light amplification function part; bonding the exposed surface side of the light amplification function part to another transparent substrate before removing the construction substrate A method of manufacturing the surface-type optical amplifying device, comprising a step of removing the construction substrate thereafter.
【請求項5】 請求項4記載の面型光増幅素子の製造方
法であって;上記構築基板上には上記 p型半導体層の方
から上記活性層、上記 n型半導体層の順に形成し;上記
透明基板は上記 n型半導体層の露呈面側に接着し;上記
構築基板を除去することで露呈した上記 p型半導体層側
の表面に、該 p型半導体層に対して導通を取る複数の分
割電極を形成すること;を特徴とする面型光増幅素子の
製造方法。
5. The method for manufacturing a planar optical amplifier according to claim 4, wherein the active layer and the n-type semiconductor layer are formed on the construction substrate in the order of the p-type semiconductor layer; The transparent substrate is adhered to the exposed surface side of the n-type semiconductor layer; a plurality of conductive surfaces are connected to the p-type semiconductor layer on the exposed surface of the p-type semiconductor layer by removing the construction substrate. Forming a split electrode; a method of manufacturing a surface-type optical amplifying element.
JP2938098A 1998-02-12 1998-02-12 Planar optical amplifier and method of manufacturing the same Expired - Lifetime JP2920213B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2938098A JP2920213B1 (en) 1998-02-12 1998-02-12 Planar optical amplifier and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2938098A JP2920213B1 (en) 1998-02-12 1998-02-12 Planar optical amplifier and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2920213B1 JP2920213B1 (en) 1999-07-19
JPH11233889A true JPH11233889A (en) 1999-08-27

Family

ID=12274546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2938098A Expired - Lifetime JP2920213B1 (en) 1998-02-12 1998-02-12 Planar optical amplifier and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2920213B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057402A (en) * 2000-08-10 2002-02-22 Sony Corp Semiconductor light-emitting element
WO2005062434A1 (en) * 2003-12-22 2005-07-07 Matsushita Electric Industrial Co., Ltd. Surface-emitting laser and laser projector
JP2005322857A (en) * 2004-05-11 2005-11-17 Nippon Telegr & Teleph Corp <Ntt> Optical resonator and method for manufacturing same
JP2007221051A (en) * 2006-02-20 2007-08-30 Sanyo Electric Co Ltd Manufacturing method of nitride-based semiconductor element
JP2009212338A (en) * 2008-03-05 2009-09-17 Ricoh Microelectronics Co Ltd Photoelectric conversion module and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW474034B (en) 2000-11-07 2002-01-21 United Epitaxy Co Ltd LED and the manufacturing method thereof
TW493286B (en) 2001-02-06 2002-07-01 United Epitaxy Co Ltd Light-emitting diode and the manufacturing method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057402A (en) * 2000-08-10 2002-02-22 Sony Corp Semiconductor light-emitting element
JP4538921B2 (en) * 2000-08-10 2010-09-08 ソニー株式会社 Semiconductor light emitting device
CN100463313C (en) * 2003-12-22 2009-02-18 松下电器产业株式会社 Surface-emitting laser and laser projector
EP1710877A1 (en) * 2003-12-22 2006-10-11 Matsushita Electric Industries Co., Ltd. Surface-emitting laser and laser projector
JPWO2005062434A1 (en) * 2003-12-22 2007-12-13 松下電器産業株式会社 Surface emitting laser and laser projection apparatus
EP1710877A4 (en) * 2003-12-22 2009-06-03 Panasonic Corp Surface-emitting laser and laser projector
US7643524B2 (en) 2003-12-22 2010-01-05 Panasonic Corporation Surface-emitting laser and laser projector
WO2005062434A1 (en) * 2003-12-22 2005-07-07 Matsushita Electric Industrial Co., Ltd. Surface-emitting laser and laser projector
JP4680065B2 (en) * 2003-12-22 2011-05-11 パナソニック株式会社 Surface emitting laser and laser projection apparatus
KR101118351B1 (en) * 2003-12-22 2012-03-13 파나소닉 주식회사 Surface-emitting laser and laser projector
JP2005322857A (en) * 2004-05-11 2005-11-17 Nippon Telegr & Teleph Corp <Ntt> Optical resonator and method for manufacturing same
JP2007221051A (en) * 2006-02-20 2007-08-30 Sanyo Electric Co Ltd Manufacturing method of nitride-based semiconductor element
JP2009212338A (en) * 2008-03-05 2009-09-17 Ricoh Microelectronics Co Ltd Photoelectric conversion module and method of manufacturing the same

Also Published As

Publication number Publication date
JP2920213B1 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
US5982802A (en) Solid microlaser with optical pumping by vertical cavity semiconductor laser
US6404797B1 (en) Efficiency high power laser device
US9124064B2 (en) Ultrashort pulse microchip laser, semiconductor laser, and pump method for thin laser media
JPH01264285A (en) Surface light-emitting type semiconductor laser
US8059689B2 (en) Vertical cavity surface emitting laser, vertical cavity surface emitting laser device, optical transmission device, and information processing apparatus
EP1606863B1 (en) Improvements in and relating to vertical-cavity semiconductor optical devices
JP2001281473A (en) Photonics crystal and method for manufacturing the same, optical module as well as optical system
US6798804B2 (en) Laser apparatus including surface-emitting semiconductor excited with semiconductor laser element, and directly modulated
JP2001085790A (en) Light emitting/amplifying device
CN109643880A (en) It is encapsulated using the high power laser light of carbon nanotube
US6480516B1 (en) Surface semiconductor optical amplifier with transparent substrate
US20080043798A1 (en) Vertical-Cavity Semiconductor Optical Devices
JP2920213B1 (en) Planar optical amplifier and method of manufacturing the same
JP4437376B2 (en) Manufacturing method of surface emitting laser element
KR102552466B1 (en) Surface-emitting laser module, optical device, and surface-emitting laser substrate
US20220059986A1 (en) Semiconductor laser chip and preperation method therefor
CN111799654A (en) Laser device and manufacturing method and application thereof
US6744798B2 (en) Surface-type light amplifer device and method of manufacture thereof
WO2021124967A1 (en) Vertical cavity surface-emitting laser element, vertical cavity surface-emitting laser element array, vertical cavity surface-emitting laser module, and method for manufacturing vertical cavity surface-emitting laser element
US8311073B2 (en) Semiconductor laser, semiconductor laser device, and fabrication method of semiconductor laser
WO2003034559A1 (en) Vertically integrated high power surface emitting semiconductor laser device and method of producing the same
JP2001332810A (en) Laser device
JP2010045385A (en) Surface emitting laser element and method of manufacturing the same, surface emitting laser array and wavelength multiplexing transmission system
JP2007227861A (en) Semiconductor light-emitting device
JP7367484B2 (en) Surface-emitting laser elements, surface-emitting lasers, surface-emitting laser devices, light source devices, and detection devices

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term