JPH11233047A - Deflecting yoke and cathode-ray tube type display apparatus - Google Patents

Deflecting yoke and cathode-ray tube type display apparatus

Info

Publication number
JPH11233047A
JPH11233047A JP3699498A JP3699498A JPH11233047A JP H11233047 A JPH11233047 A JP H11233047A JP 3699498 A JP3699498 A JP 3699498A JP 3699498 A JP3699498 A JP 3699498A JP H11233047 A JPH11233047 A JP H11233047A
Authority
JP
Japan
Prior art keywords
coil
deflection
deflection yoke
horizontal
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3699498A
Other languages
Japanese (ja)
Inventor
Hiroshi Jitsukata
寛 實方
Soichi Sakurai
宗一 桜井
Misao Ikeda
操 池田
Masao Obara
正雄 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Media Electronics Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Media Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Media Electronics Co Ltd filed Critical Hitachi Ltd
Priority to JP3699498A priority Critical patent/JPH11233047A/en
Publication of JPH11233047A publication Critical patent/JPH11233047A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress temperature increase of a deflecting yoke by installing a heat releasing mechanism while being held and brought into contact with a coil in a part where the absolute value of the density of magnetic fluxes leaking to an outer space from a horizontally deflecting coil is lower than those of other parts. SOLUTION: A holding member 9 is installed in a region where the absolute value of the density of magnetic fluxes leaking to an outer space from a horizontally deflecting coil 2 is lower than those in other regions, in other words in a region where the polarity of the magnetic fluxes is inverted and a heat releasing mechanism is installed in the holding member 9. Consequently, since the density of magnetic fluxes of a magnetic field leaking out of the horizontally deflecting coil affecting the holding member 9 is suppressed, the generation quantity of Joule's heat due to eddy current can be significantly suppressed. The heat generated in the horizontally deflecting coil 2 is highly efficiently transmitted to the heat releasing mechanism 8 and released to air, so that the operation temperature in the neck part of the horizontally deflecting coil 2 where the temperature increases highest in the deflecting yoke 1 can be lowered. Moreover, in the case the holding member 9 and the heat releasing mechanism 8 are integrally made of an aluminum or the like, the operation temperature of the neck part can further be lowered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は偏向ヨークおよび陰
極線管表示装置に関し、特に、電子ビームを上下左右に
偏向する偏向ヨークの温度上昇を低減する放熱機構を有
する偏向ヨークおよび該偏向ヨークを具備した陰極線管
表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deflection yoke and a cathode ray tube display device, and more particularly, to a deflection yoke having a heat radiation mechanism for reducing a temperature rise of a deflection yoke for deflecting an electron beam up, down, left and right, and comprising the deflection yoke. The present invention relates to a cathode ray tube display device.

【0002】[0002]

【従来の技術】最近の陰極線管表示装置は大画面化およ
び表示画像の高解像度化の要求が高まっており、後者に
対しては電子ビームの水平偏向周波数を高くする手段が
用いられている。しかし、大画面化による偏向電力の増
大に加え、水平偏向周波数を高くして高周波数の偏向電
流を偏向ヨークの水平偏向コイルに流すと、該コイルの
高周波損失および磁性コアの損失が急激に増加し、偏向
ヨークの温度上昇が急激に増大する問題を生ずる。
2. Description of the Related Art In recent cathode ray tube display devices, there is an increasing demand for a large screen and a high resolution of a displayed image. For the latter, means for increasing the horizontal deflection frequency of an electron beam is used. However, in addition to the increase in deflection power due to the enlargement of the screen, when the horizontal deflection frequency is increased and a high-frequency deflection current is passed through the horizontal deflection coil of the deflection yoke, the high-frequency loss of the coil and the loss of the magnetic core increase sharply. However, there arises a problem that the temperature rise of the deflection yoke rapidly increases.

【0003】偏向ヨークの温度上昇により再生画像の品
位劣化が発生し易くなり、更に偏向ヨークを構成する樹
脂製部品等の変形、耐久性劣化を生ずるなどの信頼性、
寿命上の問題も生じていた。
Degradation of the quality of reproduced images is likely to occur due to a rise in the temperature of the deflection yoke, and furthermore, reliability such as deformation and durability of resin parts and the like constituting the deflection yoke is reduced.
There was also a problem with life.

【0004】偏向ヨークの温度上昇を低減するために、
コイルの線材を細い線を多数本並列巻した所謂リッツ線
により百kHz以下の周波数領域の高周波損失を低減する
ことが行われている。一方、偏向ヨークの動作時に、偏
向ヨークの各部で発生した熱を効率よく周囲の空気に伝
導、放熱することにより温度上昇を低減する技術が知ら
れている。
In order to reduce the temperature rise of the deflection yoke,
A so-called litz wire in which a number of thin wires are wound in parallel with a coil material is used to reduce high-frequency loss in a frequency region of 100 kHz or less. On the other hand, there has been known a technique for efficiently transferring heat generated in each part of the deflection yoke to surrounding air during operation of the deflection yoke and radiating the heat to reduce a rise in temperature.

【0005】第1の従来技術は実開昭61ー13105
4号公報に記載のように、偏向ヨークの磁気コアの面に
凹凸を設け、空気との接触面積を増大させることにより
放熱するものである又、第2の従来技術は実開昭61ー
172447号公報に記載のように、偏向ヨークの磁気
コアの外壁面に放熱フィンを具備することにより放熱さ
せるものである。
The first prior art is disclosed in Japanese Utility Model Laid-Open Publication No. 61-13105.
As described in Japanese Patent Application Laid-Open No. 4 (1993) -174, the surface of the magnetic core of the deflection yoke is provided with irregularities to increase the contact area with air to radiate heat. As described in Japanese Patent Application Laid-Open Publication No. H11-260, heat is dissipated by providing a radiation fin on the outer wall surface of the magnetic core of the deflection yoke.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記第
1の従来技術は熱伝導率の小さな磁気コアに放熱のため
の凹凸を設けたため、放熱効果が少ない問題があった。
その上、凹凸を有する磁気コアの生産性が劣化する問題
があった。
However, the first prior art has a problem that the heat radiation effect is small because the magnetic core having a small thermal conductivity is provided with irregularities for heat radiation.
In addition, there is a problem that the productivity of the magnetic core having irregularities is deteriorated.

【0007】又、上記第2の従来技術は偏向ヨークの中
で温度上昇が最も大きな水平偏向コイルから磁気コアま
での熱伝達量が小さく、かつ前記のように磁気コア材の
熱伝導率が小さいために、水平偏向コイルの放熱効果が
少ない問題があった。
In the second prior art, the amount of heat transfer from the horizontal deflection coil having the largest temperature rise in the deflection yoke to the magnetic core is small, and the thermal conductivity of the magnetic core material is small as described above. Therefore, there is a problem that the heat radiation effect of the horizontal deflection coil is small.

【0008】本発明の目的は、上記問題点に鑑み、偏向
ヨークの中で温度上昇が最も大きな水平偏向コイルで発
生した熱量を高い効率で空気中に放熱し、偏向ヨークの
温度上昇を大幅に低減する技術を提供するものである。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to dissipate the heat generated by a horizontal deflection coil having the largest temperature rise in a deflection yoke into the air with high efficiency, thereby greatly reducing the temperature rise of the deflection yoke. It is intended to provide a technology for reducing the amount.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明は複数の水平偏向コイルに接触させた放熱機
構を設けることにより、該放熱機構に生じる渦電流によ
る発熱を低減する。又、放熱機構が水平偏向コイルに接
触する保持部に高熱伝導率の高抵抗率材、若しくは高熱
伝導率の無機質絶縁体材とすることにより、渦電流によ
る保持部の発熱を大幅に低減し、高い効率で水平偏向コ
イルから発生した熱量を放熱機構に伝達する手段を設け
る。
In order to achieve the above object, the present invention reduces heat generation due to eddy current generated in the heat radiating mechanism by providing a heat radiating mechanism in contact with a plurality of horizontal deflection coils. Also, by using a high thermal conductivity high resistivity material or a high thermal conductivity inorganic insulator material for the holding part where the heat radiating mechanism contacts the horizontal deflection coil, heat generation of the holding part due to eddy current is greatly reduced, Means is provided for transmitting the amount of heat generated from the horizontal deflection coil to the heat radiation mechanism with high efficiency.

【0010】[0010]

【発明の実施の形態】以下、本発明の第1の実施の形態
を図1から図5を参照して説明する。図1、図2は本発
明の偏向ヨークの主要部を示す断面図および側面図であ
る。なお、各図において同じものには同一の符号を付し
た。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 and 2 are a sectional view and a side view showing a main part of a deflection yoke according to the present invention. In the drawings, the same components are denoted by the same reference numerals.

【0011】本発明の偏向ヨーク1は数十kHzから百数
十kHzの高周波偏向電流が流れる水平偏向コイル2(2
R,2L),21(21R,21L)、百Hz程度の低周
波偏向電流が流れる垂直偏向コイル4,41、水平偏向
コイル2,21と垂直偏向コイル4,41を電気的に絶
縁する樹脂製のセパレータ3、高透磁率のフェライト材
からなる磁気コア5、セパレータ3の一方の端を陰極線
管のネック管(図示せず)に固定する支持部6、締付け
バンド7および2つの水平偏向コイル2と21に接した
保持部9と該水平偏向コイル2,21が発生した熱を空
気に伝達する放熱機構(放熱フィン)8から構成され
る。
The deflection yoke 1 of the present invention has a horizontal deflection coil 2 (2) through which a high-frequency deflection current of several tens kHz to one hundred and several tens kHz flows.
R, 2L), 21 (21R, 21L), a vertical deflection coil 4, 41 through which a low-frequency deflection current of about 100 Hz flows, and a resin made of resin that electrically insulates the horizontal deflection coils 2, 21 from the vertical deflection coils 4, 41. , A magnetic core 5 made of a ferrite material having a high magnetic permeability, a support 6 for fixing one end of the separator 3 to a neck tube (not shown) of a cathode ray tube, a tightening band 7 and two horizontal deflection coils 2 And 21 and a radiating mechanism (radiating fin) 8 for transmitting the heat generated by the horizontal deflection coils 2 and 21 to the air.

【0012】本実施形態の保持部9は高熱電導率の金属
材、例えば、安価なアルミニウム材を2つの水平偏向コ
イル2,21に接触させ固定している。なお、図には示
していないが放熱機構8と保持部9の間および保持部9
と水平偏向コイル2,21の間には接触面の熱抵抗を小
さくするためにシリコングリス、高熱伝導性のシリコー
ンゲルまたは高熱伝導性の放熱シート等を介して、水平
偏向コイル2,21に密着させて固定してもよい。又、
高熱伝導率のエポキシ接着材を用いることにより、接触
部の熱抵抗低減と放熱機構8と保持部9および保持部9
の水平コイルへの取付け、固着が同時にできる。なお、
図2には水平偏向コイル2R,21Rを示す為に、放熱
機構8と保持部9は図示していない。
The holding portion 9 of this embodiment is made of a metal material having a high thermal conductivity, for example, an inexpensive aluminum material, which is in contact with and fixed to the two horizontal deflection coils 2 and 21. Although not shown in the drawing, the space between the heat dissipating mechanism 8 and the holder 9 and the holder 9
The horizontal deflection coils 2 and 21 are in close contact with the horizontal deflection coils 2 and 21 through silicon grease, high thermal conductivity silicone gel or a high thermal conductivity heat radiation sheet to reduce the thermal resistance of the contact surface. It may be fixed. or,
By using an epoxy adhesive having a high thermal conductivity, the thermal resistance of the contact portion can be reduced and the heat radiating mechanism 8 and the holding portion 9 and the holding portion 9 can be reduced.
Can be attached to the horizontal coil and fixed at the same time. In addition,
FIG. 2 does not show the heat radiating mechanism 8 and the holding unit 9 to show the horizontal deflection coils 2R and 21R.

【0013】図3は水平偏向コイル2,21を正面から
見た図、図4は水平偏向コイル2の平面図である。コイ
ル2は水平偏向磁界(図示せず)を発生するコイル2
R,2Lと前後のコイル渡り部2F,2B、コイルの線
材が無い部分である窓部2Wからなる。同様にコイル2
1は水平偏向磁界を発生する21R,21L等からな
る。該コイル2R,2L,21R,21Lに流れる電流
の方向は図3中に示したように、2Rと21Rが同一方
向、又、2Lと21Lが同一方向であり、図5は水平偏
向コイル2,21の外壁面に沿って、該コイルの外壁面
から垂直に漏洩する磁界の磁束密度Bを測定した結果で
ある。
FIG. 3 is a front view of the horizontal deflection coils 2 and 21, and FIG. 4 is a plan view of the horizontal deflection coil 2. The coil 2 generates a horizontal deflection magnetic field (not shown).
R and 2L, front and rear coil crossover portions 2F and 2B, and a window portion 2W where there is no coil wire. Similarly coil 2
Reference numeral 1 denotes 21R, 21L and the like for generating a horizontal deflection magnetic field. As shown in FIG. 3, the directions of the currents flowing through the coils 2R, 2L, 21R, 21L are the same in 2R and 21R, and the same in 2L and 21L. 21 shows the results of measuring the magnetic flux density B of a magnetic field leaking vertically from the outer wall surface of the coil along the outer wall surface of the coil 21.

【0014】水平偏向コイル2,21から外部空間に漏
洩する磁束密度Bはθ(図3のX軸をθ=0度とした)
が180度毎に極性が反転している。一方、金属材から
なる保持部9は該漏洩磁界内に存在するため、保持部9
には渦電流が流れ、ジュール熱を生じてしまう。
The magnetic flux density B leaking from the horizontal deflection coils 2 and 21 to the external space is θ (the X axis in FIG. 3 is set to θ = 0 °).
However, the polarity is inverted every 180 degrees. On the other hand, since the holding portion 9 made of a metal material exists in the leakage magnetic field, the holding portion 9
Causes eddy currents to flow, generating Joule heat.

【0015】前記渦電流に起因するジュール熱は磁束密
度Bの強度と磁束密度の変化速度f(水平偏向周波数)
の2乗に比例し、材料の体積抵抗率ρの逆数に比例する
ので、磁束密度Bの絶対値が大きいほど保持部9の温度
上昇が高くなる。そこで図5に示した磁束密度B絶対値
が他の部分より小さな領域、即ち磁束密度Bの極性が反
転する領域(図5に両矢印で示した部分)に保持部9を
配置している。
The Joule heat caused by the eddy current is the intensity of the magnetic flux density B and the rate of change of the magnetic flux density f (horizontal deflection frequency)
Is proportional to the reciprocal of the volume resistivity ρ of the material. Therefore, as the absolute value of the magnetic flux density B increases, the temperature rise of the holding unit 9 increases. Therefore, the holding unit 9 is disposed in a region where the absolute value of the magnetic flux density B shown in FIG. 5 is smaller than other portions, that is, in a region where the polarity of the magnetic flux density B is reversed (the portion indicated by a double arrow in FIG. 5).

【0016】例えば、本実施例では図5中のθが−25
度から+25度の領域および+155度から+205度
の領域にアルミニウム製の保持部9を設置し、各各に放
熱機構8を取付けている。かかる領域に保持部9を配置
することにより、保持部9に作用する水平偏向コイル
2,21から漏洩する磁界の磁束密度を小さくでき、渦
電流によるジュール熱の発生量を大幅に抑制することが
できる。その結果、水平偏向コイル2,21で発生した
熱を高い効率で放熱機構8に伝達でき、空気中に放熱で
きるので、偏向ヨーク1の中で温度上昇が最も高い水平
偏向コイル2,21のネック部の動作温度を大幅に低減
できる。
For example, in the present embodiment, θ in FIG.
The holding portions 9 made of aluminum are installed in a region from +25 degrees to +25 degrees and in a region from +155 degrees to +205 degrees, and the heat radiation mechanism 8 is attached to each of them. By arranging the holding portion 9 in such an area, the magnetic flux density of the magnetic field leaking from the horizontal deflection coils 2 and 21 acting on the holding portion 9 can be reduced, and the generation amount of Joule heat due to the eddy current can be largely suppressed. it can. As a result, the heat generated in the horizontal deflection coils 2 and 21 can be transmitted to the heat radiating mechanism 8 with high efficiency and can be radiated into the air, so that the neck of the horizontal deflection coils 2 and 21 having the highest temperature rise in the deflection yoke 1. The operating temperature of the unit can be greatly reduced.

【0017】なお、前記と同様な動作であるから説明は
省略するが、保持部9と放熱機構8を例えば、アルミニ
ウム等の材料で、一体化して製作したものを用いること
により偏向ヨーク1の中で温度上昇が最も高い水平偏向
コイル2,21のネック部の動作温度を大幅に低減でき
る。
Since the operation is the same as that described above, a description thereof will be omitted. However, by using an integrally manufactured holding portion 9 and heat radiation mechanism 8 made of a material such as aluminum, the deflection yoke 1 Thus, the operating temperature of the neck portions of the horizontal deflection coils 2 and 21 having the highest temperature rise can be greatly reduced.

【0018】図6は本発明の第2の実施の形態を示すも
のであり、高熱伝導率の高抵抗率材または、高熱伝導率
の無機質絶縁体材を用いた保持部と放熱部を一体化した
放熱機構80を用いる。第1の実施の形態で使用したア
ルミニウム材(体積抵抗率ρ≒2.8E−8[Ωm]、
ここにEは10のべき冪乗を示す)に比べ、高熱伝導率
の高抵抗率の材料、例えば、アルミナ磁器材(体積抵抗
率ρ≒1E12[Ωm])は体積抵抗率ρを非常に高く
でき、漏洩磁界による渦電流に起因するジュール熱によ
る放熱機構80の発熱量(∝1/ρ)を大幅に抑制でき
る。従って、水平偏向コイル2,21で発生した熱を高
い効率で放熱機構80に伝達でき、空気中に放熱できる
ので、偏向ヨーク1の中で温度上昇が最も高い水平偏向
コイル2,21のネック部の動作温度を大幅に低減でき
る。
FIG. 6 shows a second embodiment of the present invention, in which a holding section and a heat radiating section using a high resistivity material having a high thermal conductivity or an inorganic insulator material having a high thermal conductivity are integrated. The radiating mechanism 80 is used. The aluminum material used in the first embodiment (volume resistivity ρm2.8E-8 [Ωm],
Here, E indicates a power of 10), and a material having a high thermal conductivity and a high resistivity, for example, an alumina porcelain material (volume resistivity ρ ≒ 1E12 [Ωm]) has a very high volume resistivity ρ. As a result, the heat generation amount (∝1 / ρ) of the heat dissipation mechanism 80 due to Joule heat caused by the eddy current due to the leakage magnetic field can be significantly suppressed. Therefore, the heat generated in the horizontal deflection coils 2 and 21 can be transmitted to the heat radiating mechanism 80 with high efficiency and can be radiated into the air, so that the neck of the horizontal deflection coils 2 and 21 having the highest temperature rise in the deflection yoke 1. Operating temperature can be greatly reduced.

【0019】図7は本発明の第3の実施の形態を示すも
のであり、高熱伝導率の高抵抗率材または、高熱伝導率
の無機質絶縁体材を保持部90として用い、アルミニウ
ム製の放熱機構8と組合わせて使用する。第2の実施の
形態と同様に、高熱伝導率を有する高抵抗率の材料又
は、無機質絶縁体の材料を保持部90として用いること
により、漏洩磁界による渦電流に起因する保持部90の
発熱をほぼ零にできる。従って、水平偏向コイル2,2
1で発生した熱を高い効率で放熱機構80に伝達でき、
空気中に放熱できるので、偏向ヨーク1の中で温度上昇
が最も高い水平偏向コイル2,21のネック部の動作温
度を大幅に低減できる。
FIG. 7 shows a third embodiment of the present invention, in which a high resistivity material having a high thermal conductivity or an inorganic insulator material having a high thermal conductivity is used as the holding portion 90, and a heat radiating member made of aluminum is used. Used in combination with mechanism 8. As in the second embodiment, by using a material having a high thermal conductivity and a high resistivity or a material of an inorganic insulator as the holding portion 90, heat generation of the holding portion 90 due to an eddy current due to a leakage magnetic field is reduced. Can be reduced to almost zero. Therefore, the horizontal deflection coils 2, 2
1. The heat generated in 1 can be transferred to the heat dissipation mechanism 80 with high efficiency,
Since the heat can be radiated into the air, the operating temperature of the neck portions of the horizontal deflection coils 2 and 21 having the highest temperature rise in the deflection yoke 1 can be greatly reduced.

【0020】そして、第2および第3の実施の形態は、
漏れ磁界による放熱機構80、保持部90自体の発熱を
生じないので、第1の実施の形態に比べ、放熱機構80
および保持部90の取付け位置の自由度を高くできる利
点がある。
The second and third embodiments are as follows.
Since the heat radiation mechanism 80 and the holding unit 90 do not generate heat due to the leakage magnetic field, compared to the first embodiment, the heat radiation mechanism 80
Also, there is an advantage that the degree of freedom of the mounting position of the holding portion 90 can be increased.

【0021】なお、本発明を適用する水平偏向コイル
2,21および垂直偏向コイル4,41は図示した形状
のみに限定されるものではなく、偏向磁界を発生するコ
イル(例えば2R,2L)に対して渡り部(例えば2
B)を折曲げた形状のものでも良いことは説明するまで
もない。
Note that the horizontal deflection coils 2 and 21 and the vertical deflection coils 4 and 41 to which the present invention is applied are not limited to the shapes shown in the figure, but are applied to coils (for example, 2R and 2L) that generate a deflection magnetic field. Transfer section (for example, 2
It goes without saying that B) may have a bent shape.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
偏向ヨークからの漏れ磁界に起因する渦電流による保持
部の発熱を少なくできるので、温度上昇が最も高い水平
偏向コイル部に直接接触させて放熱機構を具備すること
により、偏向ヨークの温度上昇を高効率かつ大幅に低減
できる。この結果、高周波数動作時や大電流駆動時に偏
向ヨークの温度上昇に起因する特性変動、性能劣化及び
信頼性の低下を生じないので、高品位な画像を再生で
き、高い信頼性の偏向ヨークおよび陰極線管表示装置を
実現できる効果がある。
As described above, according to the present invention,
Since the heat generated by the holding section due to the eddy current caused by the leakage magnetic field from the deflection yoke can be reduced, the temperature rise of the deflection yoke can be increased by directly contacting the horizontal deflection coil section having the highest temperature rise and by providing a heat radiation mechanism. Efficiency can be greatly reduced. As a result, characteristic fluctuations, performance deterioration and reliability deterioration due to temperature rise of the deflection yoke do not occur during high frequency operation or large current driving, so that high-quality images can be reproduced, and a highly reliable deflection yoke and There is an effect that a cathode ray tube display device can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態による偏向ヨークの
構成を示す断面図である。
FIG. 1 is a sectional view showing a configuration of a deflection yoke according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態による偏向ヨークの
構成を示す図である。
FIG. 2 is a diagram showing a configuration of a deflection yoke according to the first embodiment of the present invention.

【図3】偏向ヨークの水平偏向コイルのおよびコイル電
流の向きを示す図である。
FIG. 3 is a diagram showing directions of a horizontal deflection coil and a coil current of a deflection yoke.

【図4】偏向ヨークの水平偏向コイルの平面図である。FIG. 4 is a plan view of a horizontal deflection coil of the deflection yoke.

【図5】水平偏向コイルの外壁面から垂直に漏れる磁界
の磁束密度を示す図である。
FIG. 5 is a diagram illustrating a magnetic flux density of a magnetic field leaking vertically from an outer wall surface of a horizontal deflection coil.

【図6】本発明の第2の実施の形態による偏向ヨークの
構成を示す断面図である。
FIG. 6 is a sectional view showing a configuration of a deflection yoke according to a second embodiment of the present invention.

【図7】本発明の第3の実施の形態による偏向ヨークの
構成を示す断面図である。
FIG. 7 is a sectional view showing a configuration of a deflection yoke according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…偏向ヨーク、2(2R,2L),21(21R,21L)
…水平偏向コイル、2F,2B…水平偏向コイルの渡り
部、 2W…水平偏向コイルの窓部、3…セパレ
ータ、 4,41…垂直偏向コイル、 5…磁気コア、
6…支持部、7…締付けバンド、8,80…放熱機構、
9,90…保持部。
1. Deflection yoke, 2 (2R, 2L), 21 (21R, 21L)
... horizontal deflection coil, 2F, 2B ... crossover part of horizontal deflection coil, 2W ... window part of horizontal deflection coil, 3 ... separator, 4,41 ... vertical deflection coil, 5 ... magnetic core,
6 ... support part, 7 ... tightening band, 8,80 ... radiation mechanism,
9, 90 ... holding part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桜井 宗一 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステム開 発本部内 (72)発明者 池田 操 千葉県茂原市早野3300番地株式会社日立製 作所電子デバイス事業部内 (72)発明者 小原 正雄 岩手県水沢市真城字北野1番地株式会社日 立メディアエレクトロニクス内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Souichi Sakurai 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Within the Multimedia Systems Development Division of Hitachi, Ltd. (72) Inventor Masao Ohara 1st Kitano, Makino, Majo, Mizusawa-shi, Iwate Media Electronics Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】電子ビームを水平方向および垂直方向に偏
向する磁界を発生する複数のコイルから成る水平偏向コ
イルと垂直偏向コイルを有する偏向ヨークにおいて、該
水平偏向コイルを構成する複数のコイルに接触して保持
した放熱機構を設けたことを特徴とする偏向ヨーク。
1. A deflection yoke having a horizontal deflection coil comprising a plurality of coils for generating a magnetic field for deflecting an electron beam in a horizontal direction and a vertical direction, and a deflection yoke having a vertical deflection coil. A deflection yoke characterized by having a heat dissipating mechanism that is held as such.
【請求項2】電子ビームを水平方向および垂直方向に偏
向する磁界を発生する水平偏向コイルと垂直偏向コイル
を有する偏向ヨークにおいて、該水平偏向コイルから外
部空間に漏洩する磁束密度の絶対値が他より小さい部分
のコイルに接触して保持した放熱機構を設けたことを特
徴とする偏向ヨーク。
2. A deflection yoke having a horizontal deflection coil and a vertical deflection coil for generating a magnetic field for deflecting an electron beam in a horizontal direction and a vertical direction, wherein an absolute value of a magnetic flux density leaked from the horizontal deflection coil to an external space is different from that of the deflection yoke. A deflection yoke provided with a heat radiating mechanism which is held in contact with a coil of a smaller portion.
【請求項3】電子ビームを水平方向および垂直方向に偏
向する磁界を発生する複数のコイルから成る水平偏向コ
イルと垂直偏向コイル有する偏向ヨークにおいて、高熱
伝導率の高抵抗率材からなる保持部を該水平偏向コイル
に接触させた放熱機構を設けたこと特徴とする偏向ヨー
ク。
3. A deflection yoke having a horizontal deflection coil comprising a plurality of coils for generating a magnetic field for deflecting an electron beam in a horizontal direction and a vertical direction and a deflection yoke having a vertical deflection coil, wherein a holding portion made of a high resistivity material having a high thermal conductivity is provided. A deflection yoke provided with a heat radiation mechanism in contact with the horizontal deflection coil.
【請求項4】電子ビームを水平方向および垂直方向に偏
向する磁界を発生する複数のコイルから成る水平偏向コ
イルと垂直偏向コイルとを有する偏向ヨークにおいて、
高熱伝導率の無機質絶縁体材からなる保持部を該水平偏
向コイルに接触させた放熱機構を設けたことを特徴とす
る偏向ヨーク。
4. A deflection yoke having a horizontal deflection coil comprising a plurality of coils for generating a magnetic field for deflecting an electron beam in a horizontal direction and a vertical direction, and a vertical deflection coil.
A deflection yoke having a heat radiating mechanism in which a holding portion made of an inorganic insulator material having high thermal conductivity is brought into contact with the horizontal deflection coil.
【請求項5】請求項1乃至4記載の偏向ヨークを装着し
た陰極線管を用いたことを特徴とする陰極線管表示装
置。
5. A cathode ray tube display device comprising a cathode ray tube equipped with the deflection yoke according to claim 1.
JP3699498A 1998-02-19 1998-02-19 Deflecting yoke and cathode-ray tube type display apparatus Pending JPH11233047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3699498A JPH11233047A (en) 1998-02-19 1998-02-19 Deflecting yoke and cathode-ray tube type display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3699498A JPH11233047A (en) 1998-02-19 1998-02-19 Deflecting yoke and cathode-ray tube type display apparatus

Publications (1)

Publication Number Publication Date
JPH11233047A true JPH11233047A (en) 1999-08-27

Family

ID=12485300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3699498A Pending JPH11233047A (en) 1998-02-19 1998-02-19 Deflecting yoke and cathode-ray tube type display apparatus

Country Status (1)

Country Link
JP (1) JPH11233047A (en)

Similar Documents

Publication Publication Date Title
GB2313976A (en) Dissipating voice coil heat through loudspeaker diaphragm via heat conductive bobbin and subcone
JPH11233047A (en) Deflecting yoke and cathode-ray tube type display apparatus
JPH0677440B2 (en) Deflection yoke for oscilloscope equipped with heat dissipation mechanism
JP2010021011A (en) Rotary anode type x-ray tube device
JP2019070455A (en) Magnetic fluid heat engine
JPH10223153A (en) Deflection yoke and cathode-ray tube display device
JPH1055768A (en) Deflection yoke and cathode ray tube display device
JPS60175345A (en) Deflection yoke
JPS58218734A (en) Cathode-ray tube device
JPH03155028A (en) Deflection yoke
CN216901299U (en) Extended pixel resolution actuator and projector system
JP2000175295A (en) Speaker system
JP2002042686A (en) Color picture tube device
JPH11312477A (en) Cathode-ray tube display device
JPH06150848A (en) Deflection yoke
JPH08222442A (en) Reactor with cooling device for electric car
JP2006217009A (en) Speaker
JPH0782818B2 (en) Heat sink for deflection coil
JPH084680Y2 (en) Deflection yoke
KR920002591Y1 (en) Anti-heat type deflection yoke
JP3118942B2 (en) Print head device
JPH06243798A (en) Deflecting yoke
JP2004192864A (en) Cathode-ray tube device
KR200157658Y1 (en) Deflection yoke for cathode ray tube
KR100292459B1 (en) Heat radiation apparatus of deflection yoke in crt