JPH1123119A - Auger ice making machine - Google Patents

Auger ice making machine

Info

Publication number
JPH1123119A
JPH1123119A JP9181363A JP18136397A JPH1123119A JP H1123119 A JPH1123119 A JP H1123119A JP 9181363 A JP9181363 A JP 9181363A JP 18136397 A JP18136397 A JP 18136397A JP H1123119 A JPH1123119 A JP H1123119A
Authority
JP
Japan
Prior art keywords
temperature
ice making
ice
suction pipe
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9181363A
Other languages
Japanese (ja)
Other versions
JP3683384B2 (en
Inventor
Makoto Sasaki
誠 佐々木
Hideo Sumikawa
英雄 澄川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP18136397A priority Critical patent/JP3683384B2/en
Publication of JPH1123119A publication Critical patent/JPH1123119A/en
Application granted granted Critical
Publication of JP3683384B2 publication Critical patent/JP3683384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an auger ice making machine capable of securely detecting the generation of ice for processing the machine in safety. SOLUTION: In an auger ice making machine in which it includes a refrigerant circuit composed of a compressor 1, a condenser 2, an expansion mechanism 3, and an evaporator 4 for cooling an ice making cylinder where an auger is disposed coaxially with respect thereto connected in succession, there is provided a heat exchanger 8 for exchanging heat between a suction gas refrigerant flowing from the evaporator 4 to the compressor 1 and a liquid refrigerant flowing from the condenser 2 to the expansion mechanism 4 and is further provided a temperature detector 6 on a suction pipe 5 that connects the heat exchanger 8 and the compressor 1. Ice making operation is interrupted when the temperature of the suction pipe detected by the temperature detector 6 is lowered to a predetermined temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、オーガ式製氷機に
関し、特に、オーガ式製氷機の製氷筒凍結(氷つき)防
止に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an auger type ice maker, and more particularly to the prevention of freezing (with ice) of an ice making cylinder of an auger type ice maker.

【0002】[0002]

【従来の技術】オーガ式製氷機は、例えば、特開平4−
161773号公報に記載されているように、オーガを
回転駆動するギヤモータ等の駆動装置、該駆動装置の上
部に配設された製氷筒、該製氷筒の外周に配設された蒸
発器、前記製氷筒の内部に同軸的に配設され、かつ前記
駆動装置により駆動されるオーガ、前記製氷筒の上部に
配設された押圧頭、この押圧頭の上部に配設された案内
筒、案内筒の内部に配設されたカッタなどにより構成さ
れている。そして、製氷運転時に、前記蒸発器により前
記製氷筒に供給される製氷用水を冷却し、製氷筒の内周
壁面に薄氷層を形成し、この形成した氷を、前記ギヤモ
ータにより回転駆動されるオーガで削り取りながら順次
上方の押圧頭の圧縮通路に送り、この圧縮通路を介して
上方へ押し上げる際に氷を圧縮して圧縮氷塊とし、この
圧縮氷塊をカッタにより適宜の大きさに切断して案内筒
から連続的に機外に供給するように構成されている。
2. Description of the Related Art An auger type ice making machine is disclosed in
As described in Japanese Patent No. 161773, a driving device such as a gear motor for rotating and driving an auger, an ice making cylinder disposed on an upper portion of the driving device, an evaporator disposed on an outer periphery of the ice making cylinder, An auger disposed coaxially within the cylinder and driven by the driving device, a pressing head disposed above the ice making cylinder, a guide cylinder disposed above the pressing head, and a guide cylinder It is composed of a cutter and the like arranged inside. During the ice making operation, the evaporator cools the ice making water supplied to the ice making cylinder to form a thin ice layer on the inner peripheral wall of the ice making cylinder, and the formed ice is rotated by the gear motor. While being scraped off, it is sequentially sent to the compression passage of the upper pressing head, and when it is pushed upward through this compression passage, the ice is compressed into a compressed ice block, and the compressed ice block is cut into an appropriate size by a cutter and the guide cylinder is cut. From the outside.

【0003】ところで、上記のように構成されたオーガ
式製氷機において、案内筒の詰まりなどにより、製氷筒
内に形成された氷が正常に搬出されなくなると、前記薄
氷層が所定値以上の厚さに成長し、所謂氷つきが発生す
る。この氷つきが発生すると、前記オーガを駆動するギ
ヤモータに多大な負荷が作用し、モータ焼損などのが故
障が発生する。また、この駆動装置としてのギヤモータ
がロックすると、蒸発器で、冷媒と製氷用水との熱交換
が全くできなくなり、低圧液冷媒が蒸発器で未蒸発のま
ま圧縮機に戻る所謂液戻り現象が現れ、圧縮機故障の原
因となる可能性がある。
In the auger-type ice making machine constructed as described above, if ice formed in the ice making cylinder is not normally carried out due to clogging of the guide cylinder or the like, the thin ice layer becomes thicker than a predetermined value. It grows quickly and so-called icing occurs. When this icing occurs, a large load acts on the gear motor that drives the auger, causing a failure such as motor burnout. Further, when the gear motor as the driving device is locked, heat exchange between the refrigerant and the ice making water cannot be performed at all in the evaporator, and a so-called liquid return phenomenon in which the low-pressure liquid refrigerant returns to the compressor without being evaporated in the evaporator appears. , May cause a compressor failure.

【0004】このような不具合を避けるため、従来は、
ギヤモータの電流値を検知して製氷機の運転を停止させ
る方法(以下モータ電流検知方式という)、または、圧
縮機の吸入管温度を検出し、その温度によって製氷機の
運転を停止させる方法(以下吸入管温度検知方式とい
う)が用いられてきた。上記モータ電流検知方式は、氷
つきが発生する場合、駆動装置としてのギヤモータに作
用する負荷が増大し、ギヤモータに流れる電流値が増大
することを検知して、氷つきを検知するものであって、
ギヤモータの電流値が所定値に増加した場合に、氷つき
を検知して製氷機の運転を停止する。
In order to avoid such a problem, conventionally,
A method of stopping the operation of the ice maker by detecting the current value of the gear motor (hereinafter referred to as a motor current detection method), or a method of detecting the temperature of the suction pipe of the compressor and stopping the operation of the ice maker based on the detected temperature (hereinafter, referred to as the motor current detection method). Suction pipe temperature detection method). The above-mentioned motor current detection method detects the icing by detecting that the load acting on the gear motor as the driving device increases when the icing occurs, and that the current value flowing through the gear motor increases. ,
When the current value of the gear motor has increased to a predetermined value, the operation of the ice maker is stopped by detecting ice.

【0005】一方、吸入管温度検知方式は、氷つきが発
生する場合、製氷筒に配設された蒸発器における熱交換
作用の低下に伴い、吸入管温度が低下することを検知し
て、氷つきを予知するものであって、吸入管温度が所定
値に低下した場合に、氷つきを予知して製氷機の運転を
停止する。以下この吸入管温度検知方式について、図2
に基づき説明する。図2に示すように、一般的にオーガ
式製氷機の冷媒回路は、圧縮機101、凝縮器102、
膨張機構としての温度自動膨張弁103、製氷筒110
の外周に配設された蒸発器104が順次接続されて構成
されている。製氷筒110は、内部にオーガ111を同
軸的に配設しており、このオーガ111は、製氷筒11
0の下部に配設された駆動装置としてのギヤモータ11
2に連結され、回転可能とされている。尚、103aは
前記温度自動膨張弁103の感温筒である。そして、従
来の吸入管温度検知方式においては、この冷媒回路にお
ける吸入管105に吸入管温度を検知する温度検知器1
06が配設されている。この温度検知器106により検
出された吸入管温度は制御装置107に伝送される。こ
の制御装置107は、吸入管温度が所定温度に低下した
場合、ギヤモータ112及び圧縮機101の運転を停止
するように構成されている。そして、氷つきが発生する
場合には、製氷筒110に配設された蒸発器104にお
いて、低圧冷媒と製氷用水との熱交換機能が低下し、圧
縮機101に吸収される吸入冷媒の温度が低下し、吸入
管温度が低下する。この吸入管温度の低下は、温度検知
器106により検出され、制御装置107により所定温
度以下に低下したことが判断され、その場合に、氷つき
を予知して、ギヤモータ112及び圧縮機101の運転
を停止させ、製氷機の運転を停止させていた。
[0005] On the other hand, the suction pipe temperature detection method detects a decrease in the temperature of the suction pipe due to a decrease in the heat exchange effect of the evaporator provided in the ice making cylinder when the ice sticks. When the temperature of the suction pipe has dropped to a predetermined value, ice is predicted and the operation of the ice making machine is stopped. Hereinafter, this suction pipe temperature detection method will be described with reference to FIG.
It will be described based on. As shown in FIG. 2, a refrigerant circuit of an auger-type ice maker generally includes a compressor 101, a condenser 102,
Automatic temperature expansion valve 103 as an expansion mechanism, ice making cylinder 110
The evaporator 104 arranged on the outer periphery of the is connected in order. The ice making cylinder 110 has an auger 111 coaxially disposed therein.
Gear motor 11 as a drive device disposed below
2 and is rotatable. Reference numeral 103a denotes a temperature-sensitive cylinder of the automatic temperature expansion valve 103. In the conventional suction pipe temperature detection method, the temperature detector 1 detects the suction pipe temperature at the suction pipe 105 in the refrigerant circuit.
06 is provided. The suction pipe temperature detected by the temperature detector 106 is transmitted to the control device 107. The control device 107 is configured to stop the operation of the gear motor 112 and the compressor 101 when the suction pipe temperature decreases to a predetermined temperature. When the ice occurs, the heat exchange function between the low-pressure refrigerant and the ice making water is reduced in the evaporator 104 provided in the ice making cylinder 110, and the temperature of the suction refrigerant absorbed by the compressor 101 is reduced. And the suction pipe temperature decreases. This decrease in the temperature of the suction pipe is detected by the temperature detector 106, and it is determined by the control device 107 that the temperature has fallen below the predetermined temperature. And the operation of the ice making machine was stopped.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記電
流検知方式には、次のような欠点があった。即ち、氷つ
きが現実のものとなる前に、これを予知しようとして
も、氷つき直前のギヤモータの電流値と、正常運転時に
おいて製氷筒内に最も氷が多くできるとき、即ち、製氷
筒の内壁面に薄氷層が形成されるときの電流値との間
に、大きな差が生じない。従って、この方式の場合に
は、氷つきが実際的に発生し、ギヤモータがロックした
後の電流値で検出することになる。このため、ロック前
に、即ち、製氷運転停止前に、案内筒が破損する場合が
あり、製品を保護することができない。
However, the current detection method has the following drawbacks. That is, even if it is attempted to foresee the icing before the icing becomes actual, if the current value of the gear motor immediately before the icing is equal to the maximum amount of ice in the icing cylinder during normal operation, that is, There is no large difference between the current value when the thin ice layer is formed on the inner wall surface. Therefore, in the case of this method, icing actually occurs, and the detection is performed based on the current value after the gear motor is locked. Therefore, the guide cylinder may be damaged before locking, that is, before the ice making operation is stopped, and the product cannot be protected.

【0007】一方、吸入管温度検知方式は、氷つきが現
実のものとなる前にこれを予知するもので、前記電流検
知方式の場合のように案内筒が破損するような問題は生
じないが、この吸入管温度検知方式においても、次のよ
うな欠点があった。即ち、温度自動膨張弁103は、製
氷機の起動前においては吸入管温度が高いため全開状態
となっている,そして、製氷機が起動されると、蒸発器
104から低圧冷媒が吸入管に流れてくるため、吸入管
温度を検知して適正な開度に調節されなければならない
ところ、温度自動膨張弁103自身の作動遅れにより、
過渡的に多量の低圧液冷媒が蒸発器104流れていた。
この結果、製氷機の起動時において、冷媒が湿り気味で
圧縮機101に戻り、吸入管温度が一時的に低下してい
た。このため、起動時における吸入管温度が、氷つきを
予知するとき、つまり、氷つきとして検知するときの吸
入管温度と大きな差がなく、この起動時の吸入管温度の
低下を氷つきとして誤って検知する虞れがあった。ま
た、温度自動膨張弁103は、通常その感温筒103a
を吸入管温度を検出するように吸入管105に密着させ
て取り付けているが、この感温筒105の取り付けが僅
かに緩んでしまったような場合には、温度自動膨張弁1
03が開き気味となって、圧縮機101に吸入される冷
媒が湿り気味となり、吸入管温度が低下する。このた
め、温度自動膨張弁103の感温筒105の取り付けが
僅かに緩んでいる場合に、誤って氷つきを検知する虞れ
があった。
[0007] On the other hand, the suction pipe temperature detection method predicts the possibility of icing before it becomes a reality, and does not cause a problem that the guide cylinder is damaged unlike the current detection method. However, this suction pipe temperature detection method has the following disadvantages. That is, the automatic temperature expansion valve 103 is fully opened before the start of the ice maker because the temperature of the suction pipe is high. When the ice maker is started, the low-pressure refrigerant flows from the evaporator 104 to the suction pipe. Therefore, the temperature must be adjusted to an appropriate opening by detecting the suction pipe temperature, but due to a delay in the operation of the temperature automatic expansion valve 103 itself,
A large amount of the low-pressure liquid refrigerant was transiently flowing through the evaporator 104.
As a result, when the ice making machine was started, the refrigerant returned to the compressor 101 due to the dampness, and the temperature of the suction pipe was temporarily reduced. For this reason, the temperature of the suction pipe at the time of startup is not significantly different from the temperature of the suction pipe at the time of predicting icing, that is, the temperature of the suction pipe at the time of detecting icing. There is a risk of detection. In addition, the temperature automatic expansion valve 103 is usually provided with the temperature-sensitive cylinder 103a.
Is attached in close contact with the suction pipe 105 so as to detect the temperature of the suction pipe. However, if the mounting of the temperature-sensitive cylinder 105 is slightly loosened, the temperature automatic expansion valve 1
03 tends to open, the refrigerant sucked into the compressor 101 becomes damp, and the suction pipe temperature decreases. For this reason, when the attachment of the temperature sensing cylinder 105 of the temperature automatic expansion valve 103 is slightly loose, there is a possibility that icing may be erroneously detected.

【0008】本発明は、このような従来技術に存在する
問題点に鑑みなされたものであり、氷つきを確実に検知
して製氷機を保護できるようにしたオーガ式製氷機を提
供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems in the prior art, and has as its object to provide an auger-type ice maker which can reliably detect the icing and protect the ice maker. It is the purpose.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1に記載の発明は、圧縮機、凝縮器、膨張
機構、オーガを同軸的に配設した製氷筒を冷却する蒸発
器とを順次接続してなる冷媒回路を有するオーガ式製氷
機において、蒸発器から圧縮機へ流通する吸入ガス冷媒
と凝縮器から膨張機構へ流通する液冷媒とを熱交換させ
る熱交換器を設け、該熱交換器と圧縮機とを接続する吸
入管に温度検出器を設け、該温度検知器により検出した
吸入管温度が所定温度に低下した場合に、製氷運転を停
止せしめるごとくしたことを特徴とする。
In order to achieve the above object, an invention according to claim 1 is an evaporator for cooling an ice making cylinder in which a compressor, a condenser, an expansion mechanism, and an auger are coaxially arranged. An auger-type ice maker having a refrigerant circuit sequentially connected to a heat exchanger provided with a heat exchanger for exchanging heat between suction gas refrigerant flowing from an evaporator to a compressor and liquid refrigerant flowing from a condenser to an expansion mechanism. A temperature detector is provided in a suction pipe connecting the heat exchanger and the compressor, and the ice making operation is stopped when the temperature of the suction pipe detected by the temperature detector drops to a predetermined temperature. And

【0010】請求項1に記載のオーガ式製氷機において
は、蒸発器から流出される低圧冷媒は、前記熱交換器に
おいて高圧液冷媒で加熱されて、圧縮機に吸入される。
従って、正常な製氷運転の場合においては、高圧圧力が
正常な圧力になっているので、圧縮機に吸入される冷媒
ガスは所定温度以上に保持される。しかし、氷つきが発
生する直前においては、蒸発器における低圧冷媒と製氷
用水との熱交換が極端に低下するため、蒸発器から流出
される冷媒ガス温度が低下し、これに付随して低圧圧力
及び高圧圧力が共に低下するため、前記熱交換器におけ
る加熱能力も低下する。このため圧縮機に吸入される冷
媒ガスの温度が大きく低下し、前記熱交換器と圧縮機と
を接続する吸入管の温度が、正常運転時に比し大きく低
下する。従って、この吸入管温度を検出することによ
り、氷つきを的確に予知すること、つまり、氷つきとし
て的確に検知することができる。本発明は、このように
して氷つきを検知するので、正常な製氷運転時に、氷つ
きとして誤って検知することがない。
[0010] In the auger-type ice making machine according to the first aspect, the low-pressure refrigerant flowing out of the evaporator is heated by the high-pressure liquid refrigerant in the heat exchanger and is sucked into the compressor.
Therefore, in the normal ice making operation, the high pressure is at the normal pressure, and the refrigerant gas sucked into the compressor is kept at a predetermined temperature or higher. However, immediately before the occurrence of icing, the heat exchange between the low-pressure refrigerant and the ice making water in the evaporator extremely decreases, so that the temperature of the refrigerant gas flowing out of the evaporator decreases, and the low pressure , And the high pressure decreases, so that the heating capacity of the heat exchanger also decreases. For this reason, the temperature of the refrigerant gas sucked into the compressor is greatly reduced, and the temperature of the suction pipe connecting the heat exchanger and the compressor is greatly reduced as compared with the normal operation. Therefore, by detecting the suction pipe temperature, it is possible to accurately predict the icing, that is, to accurately detect the icing. According to the present invention, icing is detected in this manner, so that erroneous detection of icing does not occur during normal ice making operation.

【0011】[0011]

【発明の実施の形態】以下本発明をオーガ式製氷機に具
体化した実施の形態を図1に基づいて詳細に説明する。
図1に示すように、本実施の形態に係るオーガ式製氷機
の冷媒回路は、圧縮機1、凝縮器2、膨張機構としての
温度自動膨張弁3、製氷筒10の外周に熱交換チューブ
を配設した蒸発器4が順次接続されている。そして、凝
縮器2から温度自動膨張弁3へ流通する液冷媒と、蒸発
器4から圧縮機1へ流通する吸入ガス冷媒とを熱交換さ
せる熱交換器8が回路中に介装されている。また、前記
温度自動膨張弁3の感温筒3aは蒸発器4と熱交換器8
との間の配管4aに密着して配設されている。オーガ1
1は、製氷筒10の内部に同軸的に配設されており、製
氷筒10の下部に配設された駆動装置としてのギヤモー
タ12に連結され、回転可能とされている。また、熱交
換器8と圧縮機1とを接続する吸入管5には、吸入管温
度を検知する温度検知器6が配設されている。7は、制
御装置であって、この制御装置7には、温度検知器6に
より検出された吸入管温度が伝送される。そして、この
制御装置7によりギヤモータ12及び圧縮機1の発停が
制御されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in an auger type ice maker will be described in detail with reference to FIG.
As shown in FIG. 1, the refrigerant circuit of the auger type ice making machine according to the present embodiment includes a compressor 1, a condenser 2, a temperature automatic expansion valve 3 as an expansion mechanism, and a heat exchange tube on the outer periphery of an ice making cylinder 10. The disposed evaporators 4 are sequentially connected. A heat exchanger 8 for exchanging heat between the liquid refrigerant flowing from the condenser 2 to the automatic temperature expansion valve 3 and the suction gas refrigerant flowing from the evaporator 4 to the compressor 1 is provided in the circuit. The temperature-sensitive cylinder 3a of the automatic temperature expansion valve 3 includes an evaporator 4 and a heat exchanger 8.
And is disposed in close contact with the pipe 4a between them. Ogre 1
Numeral 1 is coaxially disposed inside the ice making cylinder 10 and is connected to a gear motor 12 as a driving device disposed below the ice making cylinder 10 so as to be rotatable. Further, a temperature detector 6 for detecting the temperature of the suction pipe is provided in the suction pipe 5 connecting the heat exchanger 8 and the compressor 1. Reference numeral 7 denotes a control device to which the suction pipe temperature detected by the temperature detector 6 is transmitted. The start / stop of the gear motor 12 and the compressor 1 is controlled by the control device 7.

【0012】上記のように構成された製氷機が製氷運転
開始される場合、製氷筒10内の製氷用水や製氷筒10
の容器そのものの温度が高いため、冷凍負荷が大きくな
る。また、温度自動膨張弁3は、全開状態から定常運転
時の開度へ調整される。このとき温度自動膨張弁3の作
動遅れにより過渡的に大量の低圧液冷媒が蒸発器4に流
入する。このため、蒸発器4の出口の冷媒は、湿り気味
となるが、熱交換器8において凝縮器2から流出する高
温の液冷媒と熱交換され、温度上昇されて圧縮機に吸入
される。従って、製氷機の起動時、従来の吸入管温度検
知方式においては、本実施の形態のように熱交換器8を
有していないため、圧縮機に吸入される冷媒温度の低下
を、温度検知器が氷つきとして誤って検出してしまう虞
れがあったが、本実施の形態の場合には、上記のように
熱交換器8で過熱された冷媒が圧縮機1に吸入されるた
め、このような誤作動の虞れが全くない。
When the ice making machine configured as described above starts the ice making operation, the ice making water in the ice making cylinder 10 and the ice making cylinder 10
Since the temperature of the container itself is high, the refrigeration load increases. Further, the automatic temperature expansion valve 3 is adjusted from the fully open state to the opening degree during the steady operation. At this time, a large amount of low-pressure liquid refrigerant transiently flows into the evaporator 4 due to the operation delay of the automatic temperature expansion valve 3. For this reason, the refrigerant at the outlet of the evaporator 4 becomes moist, but exchanges heat with the high-temperature liquid refrigerant flowing out of the condenser 2 in the heat exchanger 8, and the temperature is increased and is sucked into the compressor. Therefore, when the ice making machine is started, the conventional suction pipe temperature detection method does not include the heat exchanger 8 unlike the present embodiment, so that the decrease in the temperature of the refrigerant sucked into the compressor is detected by the temperature detection. There is a risk that the heat exchanger 8 may erroneously detect that the ice is present, but in the case of the present embodiment, the refrigerant overheated in the heat exchanger 8 is sucked into the compressor 1 as described above. There is no fear of such malfunction.

【0013】次に、定常の製氷運転においては、案内筒
11内に供給された製氷用水が蒸発器4により冷却さ
れ、製氷筒4の内壁面に薄氷層が形成される。この形成
された氷は、オーガ10で削り取られながら順次上方の
押圧頭(図示せず)の圧縮通路(図示せず)に送られ、
この圧縮通路を介して上方へ押し上げられる際に圧縮さ
れ、圧縮氷塊となる。この圧縮氷塊は、カッター(図示
せず)により適宜の大きさに切断されて、案内筒(図示
せず)から連続的に機外に供給される。このような正常
な製氷運転において、製氷筒10の内壁面に薄氷層が形
成されてくると、製氷筒10内の製氷用水の温度が低下
し、蒸発温度が低下して、蒸発器4出口の冷媒温度が低
下してくるが、この冷媒は熱交換器8で加熱されるた
め、圧縮機1に吸入される冷媒ガス温度は所定温度以上
に保持される。従って、この正常運転時においては誤っ
て氷つきとして検知されるような虞れは全くない。
Next, in a normal ice making operation, the ice making water supplied into the guide cylinder 11 is cooled by the evaporator 4, and a thin ice layer is formed on the inner wall surface of the ice making cylinder 4. The formed ice is sequentially sent to a compression passage (not shown) of an upper pressing head (not shown) while being scraped off by the auger 10,
When it is pushed upward through this compression passage, it is compressed and becomes a compressed ice block. This compressed ice block is cut into an appropriate size by a cutter (not shown), and is continuously supplied to the outside of the machine from a guide tube (not shown). In such a normal ice making operation, when a thin ice layer is formed on the inner wall surface of the ice making cylinder 10, the temperature of the ice making water in the ice making cylinder 10 decreases, the evaporation temperature decreases, and the evaporator 4 exits. Although the refrigerant temperature decreases, the refrigerant is heated by the heat exchanger 8, so that the temperature of the refrigerant gas sucked into the compressor 1 is maintained at a predetermined temperature or higher. Therefore, there is no danger of being erroneously detected as being icy during normal operation.

【0014】このように製氷運転が継続され、貯氷庫
(図示せず)に氷塊が大量に蓄積され、案内筒(図示せ
ず)において、搬送された氷塊が詰まった場合におい
て、製氷運転が継続されると、製氷筒11内で削り取ら
れた氷が搬出されず、製氷筒10の内壁面に形成される
氷層が厚くなり、所謂氷つきへと発展する。しかし、氷
つきへと発展する前に、蒸発器4内を流通する低圧冷媒
と製氷筒10内の製氷用水との熱交換が十分に行われな
くなるので、低圧圧力が低下し、高圧圧力も低下する。
このようになると、蒸発器4から流出される冷媒は、熱
交換器8で加熱されるが、高圧圧力が低く加熱量が少な
いため、熱交換器8から流出する冷媒の温度は、定常運
転時あるいは前記の製氷運転の起動時に比し大きく低下
し、吸入管温度が大きく低下する。吸入管5に配設され
た温度検知器6は、この吸入管温度を常時検出してお
り、検出した吸入管温度を制御装置7に伝送している。
そして、制御装置7は、温度検知器6から伝送された吸
入管温度が所定値以下になると、氷つきを予知して、つ
まり、氷つきとして判断して、ギヤモータ12及び圧縮
機1の運転停止指令を発し、ギヤモータ12及び圧縮機
1の運転を停止して、製氷運転を停止する。本実施の形
態の場合、上記のごとく吸入管温度が定常運転時あるい
は前記の製氷運転の起動時に比し大きく低下するため、
氷つきが的確に検知される。
As described above, when the ice making operation is continued and a large amount of ice blocks are accumulated in an ice storage (not shown) and the conveyed ice blocks are blocked in a guide cylinder (not shown), the ice making operation is continued. Then, the ice shaved off in the ice making cylinder 11 is not carried out, and the ice layer formed on the inner wall surface of the ice making cylinder 10 becomes thicker, so that the ice is developed. However, since the heat exchange between the low-pressure refrigerant flowing in the evaporator 4 and the ice-making water in the ice-making cylinder 10 is not sufficiently performed before the ice is developed, the low-pressure pressure is reduced and the high-pressure pressure is also reduced. I do.
In this case, the refrigerant flowing out of the evaporator 4 is heated in the heat exchanger 8, but the high-pressure pressure is low and the amount of heating is small. Alternatively, the temperature greatly decreases as compared with the start of the ice making operation, and the temperature of the suction pipe greatly decreases. The temperature detector 6 arranged in the suction pipe 5 constantly detects the suction pipe temperature, and transmits the detected suction pipe temperature to the control device 7.
When the temperature of the suction pipe transmitted from the temperature detector 6 becomes equal to or less than a predetermined value, the control device 7 predicts icing, that is, determines that icing has occurred, and stops the operation of the gear motor 12 and the compressor 1. A command is issued to stop the operation of the gear motor 12 and the compressor 1 to stop the ice making operation. In the case of the present embodiment, as described above, since the suction pipe temperature is greatly reduced during steady operation or when starting the ice making operation,
Ice is accurately detected.

【0015】また、温度自動膨張弁3の感温筒3aの取
り付けが僅かに緩んだ場合、温度自動膨張弁3は、吸入
管温度を高めに検出することになり、温度自動膨張弁3
の開度が適性値より若干大きめとなって制御されること
になる。この場合、蒸発器4出口の冷媒は、湿り気味と
なり、温度が低下するが、熱交換器8により加熱され、
所定温度以上に保持されて圧縮機1に吸入される。従っ
て、感温筒3aの取り付けが若干緩んだ程度の場合にお
いても、従来の吸入管温度検知方式のように、誤って氷
つきとして検知されるような虞れがない。
If the temperature-sensitive cylinder 3a of the automatic temperature expansion valve 3 is slightly loosened, the automatic temperature expansion valve 3 will detect the temperature of the suction pipe at a higher temperature.
Is controlled to be slightly larger than the appropriate value. In this case, the refrigerant at the outlet of the evaporator 4 becomes wet and the temperature decreases, but the refrigerant is heated by the heat exchanger 8,
It is kept at a predetermined temperature or higher and is sucked into the compressor 1. Therefore, even if the attachment of the temperature sensing tube 3a is slightly loose, there is no possibility that the temperature may be erroneously detected as ice as in the conventional suction pipe temperature detection method.

【0016】[0016]

【発明の効果】本発明は以上のように構成されているた
め、次の様な効果を奏する。ギヤモータがロックされる
前に、製氷筒の氷つきが確実に検知されるので、ギヤモ
ータに多大な負荷が作用することが防止され、ギヤモー
タの信頼性向上、寿命の延長が図れる。また、氷つきを
防止することによって、氷つきが招く圧縮機への液戻り
現象が防止され、圧縮機の信頼性向上、寿命の延長が図
れる。また、氷つき状態になるときの吸入管温度と正常
な製氷運転時における吸入管温度との差が拡大されるた
め、氷つきを検知する温度検知器の設定温度幅が拡大さ
れる。このため、温度検知器の設定温度を、能力の異な
る多機種間に共用できる温度とすることが容易となり、
部品の共通化による原価低減を容易に行うことができ
る。
Since the present invention is configured as described above, the following effects can be obtained. Before the gear motor is locked, icing of the ice making cylinder is reliably detected, so that a large load is prevented from acting on the gear motor, and the reliability and the life of the gear motor can be improved. In addition, by preventing icing, the phenomenon of liquid returning to the compressor, which is caused by icing, is prevented, so that the reliability of the compressor and the life thereof can be improved. Further, since the difference between the suction pipe temperature at the time of icing and the suction pipe temperature at the time of normal ice making operation is expanded, the set temperature range of the temperature detector for detecting icing is expanded. For this reason, it becomes easy to set the temperature of the temperature detector to a temperature that can be shared by multiple models with different capabilities.
Cost reduction can be easily achieved by sharing parts.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本実施の形態に係るオーガ式製氷機の冷媒回
路図である。
FIG. 1 is a refrigerant circuit diagram of an auger ice maker according to the present embodiment.

【図2】 従来のオーガ式製氷機の冷媒回路図である。FIG. 2 is a refrigerant circuit diagram of a conventional auger type ice making machine.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…凝縮器、3…膨張機構としての温度自
動膨張弁、3a…感温筒、4…蒸発器、5…吸入管、6
…温度検知器、7…制御装置、8…熱交換器、10…製
氷筒、11…オーガ、12…駆動装置としてのギヤモー
タ。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Condenser, 3 ... Automatic temperature expansion valve as expansion mechanism, 3a ... Temperature sensing cylinder, 4 ... Evaporator, 5 ... Suction pipe, 6
... temperature detector, 7 ... control device, 8 ... heat exchanger, 10 ... ice making cylinder, 11 ... auger, 12 ... gear motor as drive device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、膨張機構、オーガを同
軸的に配設した製氷筒を冷却する蒸発器とを順次接続し
てなる冷媒回路を有するオーガ式製氷機において、蒸発
器から圧縮機へ流通する吸入ガス冷媒と凝縮器から膨張
機構へ流通する液冷媒とを熱交換させる熱交換器を設
け、該熱交換器と圧縮機とを接続する吸入管に温度検出
器を設け、該温度検知器により検出された吸入管温度が
所定温度に低下した場合に、製氷運転を停止せしめるご
とくしたことを特徴とするオーガ式製氷機。
An auger-type ice maker having a refrigerant circuit in which a compressor, a condenser, an expansion mechanism, and an evaporator for cooling an ice-making cylinder in which an auger is coaxially arranged are sequentially connected. A heat exchanger for exchanging heat between the suction gas refrigerant flowing to the compressor and the liquid refrigerant flowing from the condenser to the expansion mechanism, a temperature detector provided on a suction pipe connecting the heat exchanger and the compressor, An auger-type ice maker, wherein the ice making operation is stopped when the temperature of the suction pipe detected by the temperature detector drops to a predetermined temperature.
JP18136397A 1997-07-07 1997-07-07 Auger ice machine Expired - Fee Related JP3683384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18136397A JP3683384B2 (en) 1997-07-07 1997-07-07 Auger ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18136397A JP3683384B2 (en) 1997-07-07 1997-07-07 Auger ice machine

Publications (2)

Publication Number Publication Date
JPH1123119A true JPH1123119A (en) 1999-01-26
JP3683384B2 JP3683384B2 (en) 2005-08-17

Family

ID=16099422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18136397A Expired - Fee Related JP3683384B2 (en) 1997-07-07 1997-07-07 Auger ice machine

Country Status (1)

Country Link
JP (1) JP3683384B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101853A (en) * 2006-10-19 2008-05-01 Hoshizaki Electric Co Ltd Auger type ice making machine
JP2012026645A (en) * 2010-07-23 2012-02-09 Sanyo Electric Co Ltd Refrigerating device, and auger type ice making machine and showcase using the same
DE102011017038A1 (en) * 2011-04-14 2012-10-18 Weber Maschinenbau Gmbh Breidenbach Apparatus for the production of flake ice
CN112629003A (en) * 2020-11-26 2021-04-09 北京华彦邦科技股份有限公司 Anti-ice-blockage heat exchanger and dynamic ice cold storage system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101853A (en) * 2006-10-19 2008-05-01 Hoshizaki Electric Co Ltd Auger type ice making machine
JP2012026645A (en) * 2010-07-23 2012-02-09 Sanyo Electric Co Ltd Refrigerating device, and auger type ice making machine and showcase using the same
DE102011017038A1 (en) * 2011-04-14 2012-10-18 Weber Maschinenbau Gmbh Breidenbach Apparatus for the production of flake ice
CN112629003A (en) * 2020-11-26 2021-04-09 北京华彦邦科技股份有限公司 Anti-ice-blockage heat exchanger and dynamic ice cold storage system

Also Published As

Publication number Publication date
JP3683384B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
US10890368B2 (en) Methods and apparatuses for controlling the harvest cycle of an ice maker using a harvest sensor and a temperature sensor
JP5591678B2 (en) Storage
EP1329678B1 (en) Auger type ice making machine
JP2009121768A (en) Automatic ice making machine and control method for it
WO2004083971A3 (en) Icemaker control system
JPH1123119A (en) Auger ice making machine
JPH07270002A (en) Refrigerant circulating circuit for icemaker or the like
US5894734A (en) Water-circulating type ice maker
US5025637A (en) Automatic ice making machine
JP2003042610A (en) Auger type icemaker
JPH0638292Y2 (en) Automatic ice machine
JP2007032941A (en) Operation method of refrigeration unit
JP2008101853A (en) Auger type ice making machine
JPH08338675A (en) Method and device for preventing imperfect ice generation in water circulation type ice making machine
JP2966607B2 (en) Ice making method
JPH11351715A (en) Auger-type ice-making machine
JPH09178314A (en) Operation protective device of auger type ice machine
JP4445738B2 (en) Refrigeration equipment
JPH07122536B2 (en) Operation control device for ice maker
JPH0638293Y2 (en) Drum type ice machine
JP2941112B2 (en) Auger ice machine
JP2000329433A (en) Ice maker
JPH0638299Y2 (en) Automatic ice machine
JPH06257910A (en) Controller for operation of ice making apparatus
JPH0518651A (en) Operating controller of cooling unit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees