JPH11230921A - Method for measuring austenite in steel - Google Patents

Method for measuring austenite in steel

Info

Publication number
JPH11230921A
JPH11230921A JP10046310A JP4631098A JPH11230921A JP H11230921 A JPH11230921 A JP H11230921A JP 10046310 A JP10046310 A JP 10046310A JP 4631098 A JP4631098 A JP 4631098A JP H11230921 A JPH11230921 A JP H11230921A
Authority
JP
Japan
Prior art keywords
steel
diffraction
austenite
diffraction intensity
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10046310A
Other languages
Japanese (ja)
Inventor
Hisato Noro
寿人 野呂
Satoo Kobayashi
聡雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10046310A priority Critical patent/JPH11230921A/en
Publication of JPH11230921A publication Critical patent/JPH11230921A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To implement a highly accurate and simple method for quantitatively analyzing austenite in steel, by measuring the diffraction intensities of a plurality of crystalline lattice surfaces belonging to each phase as providing biaxial rotation to the steel, correcting them by P-values, and computing the amount of the austenite. SOLUTION: A P-value is an observed diffraction intensity from each crystalline surface indicated by a ratio to a diffraction intensity in a non-oriented state. A method to suppress the effects of the texture of steel at the time of measuring the amount of austenite in the steel through the use of an x-ray diffraction method is studied. The measurement of diffraction intensities under biaxial rotation steadily functions with respect to even a cold rolled steel sheet, etc., with a remarkable texture, but it is difficult to obtain diffraction intensities corresponding to a non-oriented state only by this operation. There, each P-value is computed from the balance of each diffraction intensity measured as providing biaxial rotation for a sample, and each diffraction intensity is divided by a corresponding P-value. By this, diffraction intensities corresponding to a non- oriented state is computed and is applied to theoretical computation to improve measuring accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フェライト相とオ
ーステナイト相の混合組織を有する鋼中のオーステナイ
ト量をX線回折法を用いて精度良く測定する方法に関す
るものである。
The present invention relates to a method for accurately measuring the amount of austenite in a steel having a mixed structure of a ferrite phase and an austenite phase by using an X-ray diffraction method.

【0002】[0002]

【従来の技術】鋼中のオーステナイト量は鋼の延性や靭
性に著しく影響するため、その量を精度良く測定するこ
とは鋼の材質の改善や品質管理の面において大変重要で
ある。フェライト相(以下、α相と略称する)やオース
テナイト相(以下、γ相と略称する。)は、組成がほぼ
等しく結晶構造が異なる、所謂、「多形」である。その
ため、蛍光X線分析法などの元素分析法はこれらの定量
分析には適さない。
2. Description of the Related Art Since the amount of austenite in steel greatly affects the ductility and toughness of steel, it is very important to accurately measure the amount of austenite in terms of improvement of steel material and quality control. The ferrite phase (hereinafter abbreviated as α phase) and the austenite phase (hereinafter abbreviated as γ phase) are so-called “polymorphs” having substantially the same composition and different crystal structures. Therefore, elemental analysis methods such as X-ray fluorescence analysis are not suitable for these quantitative analyses.

【0003】そこで、鋼中に含まれるγ相の定量には相
の種類に敏感なX線回折法が広く活用されている(測定
原理については、例えば、B.D. Cullity, Elements of
X-ray Diffraction, Addison-Wesley Publishing Co.
(1956) 388-396に記載されている。)。この方法は無配
向状態の多結晶試料を対象としたCohenの理論計算(B.
L. Averbach and M. Cohen, Trans. AIME, 176 (1948)
401参照;以下、理論計算と略称する。)に基づいてい
る。
[0003] Therefore, X-ray diffraction, which is sensitive to the type of phase, is widely used for the determination of the γ phase contained in steel (for the principle of measurement, for example, BD Cullity, Elements of
X-ray Diffraction, Addison-Wesley Publishing Co.
(1956) 388-396. ). This method is based on Cohen's theoretical calculation (B.
L. Averbach and M. Cohen, Trans.AIME, 176 (1948)
See 401; hereinafter abbreviated as theoretical calculation. ) Based on.

【0004】X線回折法を実際の鋼板等に適用する際の
測定精度は、試料となる鋼の集合組織の影響を強く受け
る。この影響は集合組織の著しい冷延鋼板で特に大き
く、本来、無配向状態であれば影響しないはずの格子面
の組み合わせ方によって測定結果が著しく変化する。こ
のような集合組織の影響を多少なりとも緩和するため
に、鋼板に面内回転をかけて測定することが行われてい
るが、この場合でも、α相の(200)面(以下、このよう
な相と格子面の組み合わせを、α(200)のように略称す
る。)とγ(111)の組み合わせに対して体積率11%と評
価された結果が、α(200)とγ(220)の組み合わせでは79
%に変わる、といった状況があり、正確な測定を行うこ
とができない。
[0004] Measurement accuracy when the X-ray diffraction method is applied to an actual steel sheet or the like is strongly affected by the texture of the sample steel. This effect is particularly large in a cold-rolled steel sheet having a remarkable texture, and the measurement result significantly changes depending on the combination of lattice planes which should not be affected in a non-oriented state. In order to alleviate the influence of such texture, the steel plate is measured by applying an in-plane rotation to the steel plate. Even in this case, the (200) plane of the α phase (hereinafter, referred to as such The combination of a phase and a lattice plane is abbreviated as α (200).) The result of evaluating the volume ratio of 11% to the combination of γ (111) is α (200) and γ (220). 79 in combination
%, And accurate measurement cannot be performed.

【0005】このような背景から鋼の集合組織の影響を
除いて精度の高い定量結果を得るために以下に示す方法
が提案されてきた。
[0005] From such a background, the following methods have been proposed in order to obtain a highly accurate quantitative result excluding the influence of the texture of steel.

【0006】(1) 極点図から無配向状態に相当する回折
強度を算出し、これを理論計算に用いる方法(S. L. Lo
pata and E. B. Kula, Trans. AIME, 233 (1965) 288;
P.R. Morris, Trans. AIME, 239 (1967) 1586;C. R. H
ouska and V. Rao, Met. Trans, 9A (1978) 1483 他)
(1) A method of calculating a diffraction intensity corresponding to a non-oriented state from a pole figure and using the calculated diffraction intensity for a theoretical calculation (SL Lo)
pata and EB Kula, Trans. AIME, 233 (1965) 288;
PR Morris, Trans. AIME, 239 (1967) 1586; CR H
ouska and V. Rao, Met. Trans, 9A (1978) 1483, etc.)

【0007】(2) 試料(もしくはX線入射角)に面内回
転と傾斜からなる2軸回転を与えることにより無配向状
態に近い回折強度を測定し、これを理論計算に用いる方
法(R.L. Miller, Trans. ASM 57 (1964) 892;S. L. L
opata and E. B. Kula, Trans. AIME, 233(1965) 288
他)
(2) A method in which a sample (or an X-ray incident angle) is given a biaxial rotation consisting of an in-plane rotation and an inclination to measure a diffraction intensity close to a non-oriented state and use this for theoretical calculation (RL Miller , Trans. ASM 57 (1964) 892; SL L
opata and EB Kula, Trans.AIME, 233 (1965) 288
other)

【0008】(3) 各相に帰属する多数の回折線の強度を
測定し、一種の平均化処理をおこなう形に理論計算を改
良して集合組織の影響を抑制した値を算出する方法(R.
D. Arnell, JISI,206 (1968) 1035;M. J. Dickson,
J. Appl. Cryst. 2 (1969) 176;J. Burke and D. W. H
arvey, JISI, 208 (1970) 779; 藤野他 鉄と鋼 67 (19
81) 239; 特開昭55-158545号公報、特開昭55-164341号
公報 他)
(3) A method of measuring the intensities of a large number of diffraction lines belonging to each phase and improving the theoretical calculation to perform a kind of averaging process to calculate a value in which the influence of texture is suppressed (R .
D. Arnell, JISI, 206 (1968) 1035; MJ Dickson,
J. Appl. Cryst. 2 (1969) 176; J. Burke and DW H
arvey, JISI, 208 (1970) 779; Fujino et al. Iron and Steel 67 (19
81) 239; JP-A-55-158545, JP-A-55-164341, etc.)

【0009】(4) 各相に帰属する特定の回折線の強度の
組み合わせを理論計算に用いれば集合組織の影響を抑制
できるという経験則に基づいて算出する方法(J. Durni
n andK. A. Ridal, JISI. 206 (1968) 669;C. J. Ball
and P. M. Kelly, Metal Sci. 16 (1982) 332 他)
(4) A calculation method based on an empirical rule that the influence of texture can be suppressed by using a combination of the intensity of a specific diffraction line belonging to each phase in a theoretical calculation (J. Durni
n andK. A. Ridal, JISI. 206 (1968) 669; CJ Ball
and PM Kelly, Metal Sci. 16 (1982) 332 and others)

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記
(1)-(4)の方法には、それぞれ以下のような問題があ
る。(1)は完全性の高い方法であるが、簡便に実施しが
たいという問題がある。すなわち、この方法を使って無
配向状態に対応する回折強度を算出するためには、原則
として、完全極点図を測定しなければならない。完全極
点図を測定するためには、透過測定時の回折強度を測定
する都合上、試料を数10μm程度まで薄くする必要があ
る。Bonarskiら(J. Bonarski, M. Wrobel and K. Pawl
ik, Scr. Metall. Mater 25 (1991) 1401)は、反射法
のみで測定した不完全極点図からODF(方位分布関数)
解析により完全極点図を再現することでこの試料調整の
手間を省く方法について報告している。しかし、この方
法でもα、γ各相に対応する回折強度を算出するために
最低二種類の極点図を測定しなければならないため、測
定に長時間を要するという問題点は解消されていない。
SUMMARY OF THE INVENTION
The methods (1) to (4) have the following problems, respectively. (1) is a highly complete method, but has a problem that it is difficult to implement easily. That is, in order to calculate the diffraction intensity corresponding to the non-oriented state using this method, a complete pole figure must be measured in principle. In order to measure a complete pole figure, the sample needs to be thinned to about several tens of μm for the sake of measuring the diffraction intensity during transmission measurement. Bonarski et al. (J. Bonarski, M. Wrobel and K. Pawl
ik, Scr. Metall. Mater 25 (1991) 1401) uses ODF (azimuth distribution function) from incomplete pole figure measured only by reflection method.
This paper describes a method to save the labor of sample preparation by reproducing a complete pole figure by analysis. However, even with this method, at least two types of pole figures must be measured in order to calculate the diffraction intensities corresponding to the α and γ phases, so that the problem that the measurement takes a long time has not been solved.

【0011】(2)の方法は、市販のアタッチメント(例
えば、理学電機製の回転振動試料台)などを使って簡単
に実施でき、測定時間も通常のX線回折パターンの測定
と同程度であって短い、などの点で簡便である。また、
試料を機械的に回転させることにより試料中の個々の結
晶粒の単位で無配向状態に近付ける方法のため、着実な
効果が得られる。それゆえ、この方法は、鋼材等の比較
的緩やかな集合組織しか持たない鋼中のγ相の定量には
大変効果的である。
The method (2) can be easily carried out using a commercially available attachment (for example, a rotary vibration sample table manufactured by Rigaku Denki) and the measurement time is almost the same as that of a normal X-ray diffraction pattern measurement. It is simple and short. Also,
Since the sample is mechanically rotated to approach a non-oriented state in units of individual crystal grains in the sample, a steady effect can be obtained. Therefore, this method is very effective for the determination of the γ phase in steel having only a relatively mild texture such as steel.

【0012】しかし、この機械的な方法では試料を全方
位に渡って万遍無く回転させることが困難であるため、
集合組織の著しい冷延鋼板などに対しては十分な測定精
度が得られない。例えば、この方法により、α(200)と
γ(200)の組み合わせに対して11%と評価される場合で
も、面の組み合わせがα(220)とγ(222)に変わると15%
に変わる、といったように、測定結果が面の組み合わせ
により3割程度変化することは避けがたい。
However, it is difficult to rotate the sample uniformly in all directions by this mechanical method.
Sufficient measurement accuracy cannot be obtained for cold rolled steel sheets with a remarkable texture. For example, according to this method, even if the combination of α (200) and γ (200) is evaluated as 11%, if the combination of surfaces is changed to α (220) and γ (222), 15%
It is unavoidable that the measurement result changes by about 30% depending on the combination of surfaces, such as changing to.

【0013】(3)の方法は、全回折強度が保存されると
いう仮定に基づいて算出する方法である。この方法は、
比較的緩やかな集合組織しか持たない鋼に対しては大変
効果的であるが、著しい集合組織を示す冷延鋼板などに
対してはある程度の抑制効果しか示さない。その理由
は、この方法で仮定されている内容が集合組織が著しい
場合に破綻するからである。例えば、集合組織の極限で
ある単結晶を測定する場合、単結晶が回折条件を満足す
るように配置されているか否かで全回折強度に極端な差
が生じる。これから類推されるように、集合組織が著し
い場合、全回折強度が保存されるという仮定はもはや成
り立たない。
The method (3) is a method of calculating based on the assumption that all diffraction intensities are preserved. This method
It is very effective for steel having only a relatively mild texture, but exhibits only a certain suppression effect on cold-rolled steel sheets and the like that have a remarkable texture. The reason is that the content assumed in this method breaks down when the texture is significant. For example, when measuring a single crystal which is the limit of the texture, an extreme difference occurs in the total diffraction intensity depending on whether the single crystal is arranged so as to satisfy the diffraction condition. As can be inferred from this, if the texture is significant, the assumption that the total diffraction intensity is preserved no longer holds.

【0014】(4)の方法は、主に経験則に基づくもの
で、集合組織が著しい場合には大きな誤差を生じるとい
う例も報告されている(例えば、M. J. Dickson, J. Ap
pl. Cryst. 2 (1969) 176)。α-γ変態時の方位関係が
維持されるという仮定に基づいて面の組み合わせを選択
する提案もなされているが(C. J. Ball and P. M. Kel
ly, Metal Sci. 16 (1982) 332)、後の実施例でも示
すようにこの方法も十分とは言えない。
The method (4) is based mainly on empirical rules, and it has been reported that large errors occur when the texture is significant (for example, MJ Dickson, J. Ap.
pl. Cryst. 2 (1969) 176). There has been a proposal to select a combination of surfaces based on the assumption that the orientation relationship during α-γ transformation is maintained (CJ Ball and PM Kel
ly, Metal Sci. 16 (1982) 332), and this method is not sufficient, as will be shown in the examples below.

【0015】以上のように現状では著しい集合組織を示
す鋼板又は鋼材中のオーステナイト量をX線回折法を用
いて精度良く測定する方法は知られていない。本発明
は、このような事情に鑑みてなされたもので、冷延鋼板
のように著しい集合組織を示す鋼板又は鋼材に対して
も、精度の高い測定結果を簡便に得ることのできる鋼中
オーステナイトの定量分析法を提供することを目的とす
る。
As described above, at present, there is no known method for accurately measuring the amount of austenite in a steel sheet or a steel material exhibiting a remarkable texture by using an X-ray diffraction method. The present invention has been made in view of such circumstances, and even for a steel sheet or a steel material having a remarkable texture such as a cold-rolled steel sheet, an austenitic steel in steel that can easily obtain a highly accurate measurement result. An object of the present invention is to provide a quantitative analysis method.

【0016】[0016]

【課題を解決するための手段】本発明の骨子は、(i) 試
料に面内回転と傾斜からなる2軸回転を与えながら無配
向状態に近い回折強度を計測し、(ii) 回折強度に残っ
た集合組織の影響をP値(M. J. Dickson: J. Appl. Cr
yst. 2 (1969) 176参照)を利用して除去した上で理論
計算に適用することにより、著しい集合組織を示す鋼板
又は鋼材に対しても、精度の高い測定結果を簡便に得る
ことにある。
The gist of the present invention is to measure (i) a diffraction intensity close to a non-oriented state while giving a sample a biaxial rotation consisting of an in-plane rotation and an inclination, and (ii) to measure the diffraction intensity. The effect of the remaining texture was evaluated by the P value (MJ Dickson: J. Appl.
yst. 2 (1969) 176) and apply it to the theoretical calculation to easily obtain high-precision measurement results even for steel sheets or steel materials showing a remarkable texture. .

【0017】すなわち、前記課題は、フェライト相とオ
ーステナイト相の混合組織を有する鋼中のオーステナイ
ト量をX線回折法を用いて測定するにあたり、鋼に2軸
回転を与えながら各相に帰属する複数の結晶格子面の回
折強度を測定した後、各回折強度をP値で補正してオー
ステナイト量を算出することを特徴とする鋼中オーステ
ナイトの測定方法(請求項1)により解決される。
[0017] That is, the object is to measure the amount of austenite in a steel having a mixed structure of a ferrite phase and an austenite phase by using an X-ray diffraction method. This problem is solved by a method for measuring austenite in steel, characterized in that, after measuring the diffraction intensity of the crystal lattice plane, the austenite amount is calculated by correcting each diffraction intensity with a P value.

【0018】その際、コバルトの特性X線を用いて測定
することにより、最も精度の良い測定結果が得られる。
At this time, the most accurate measurement result can be obtained by performing measurement using characteristic X-rays of cobalt.

【0019】ここに、P値とは、詳細には前記 M. J. D
ickson: J. Appl. Cryst. 2 (1969)176 に記載されるよ
うに、各結晶面からの実測回折強度を無配向状態に対す
る回折強度に対する比で表したものである。P=1なら
ば無配向相当、P>1ならばその結晶面が試料表面にP
倍だけ優先的に配向しており、P<1ならば逆に優先的
に避けられていることを意味する。
Here, the P value refers to the MJ D
ickson: As described in J. Appl. Cryst. 2 (1969) 176, the measured diffraction intensity from each crystal plane is expressed as a ratio to the diffraction intensity with respect to the non-oriented state. If P = 1, it corresponds to non-orientation, and if P> 1, the crystal plane is P
It is preferentially oriented by a factor of two, and if P <1, it means that it is preferentially avoided.

【0020】本発明者らは、鋼中のオーステナイト量を
X線回折法を用いて測定する際の鋼の集合組織の影響を
抑制する方法について詳細な検討を行った。本発明の特
徴の(i)に示した「2軸回転下での回折強度の計測」
は、前述の従来技術(2)の方法と同様である。既に述べ
た通り、この方法は、集合組織の著しい冷延鋼板等に対
しても着実に機能するが、この操作だけで無配向状態に
対応する回折強度を得ることは困難である。そこで本発
明者らは、(i) の操作を経て得られた各回折強度のバラ
ンスからそれぞれのP値を計算し、各回折強度を対応す
るP値で除算することにより無配向状態に相当する回折
強度を算出して理論計算に当てはめることにより、測定
精度が向上することを見出した。本発明によればオース
テナイト量が面の組み合わせに拠らず一義的に求められ
る。
The present inventors have conducted a detailed study on a method for suppressing the influence of the texture of steel when measuring the amount of austenite in steel by X-ray diffraction. "Measurement of diffraction intensity under biaxial rotation" shown in (i) of the feature of the present invention
Is the same as the above-mentioned method of the prior art (2). As described above, this method functions steadily even for a cold-rolled steel sheet having a remarkable texture, but it is difficult to obtain a diffraction intensity corresponding to a non-oriented state only by this operation. Therefore, the present inventors calculate each P value from the balance of each diffraction intensity obtained through the operation (i), and divide each diffraction intensity by the corresponding P value to correspond to the non-oriented state. By calculating the diffraction intensity and applying it to the theoretical calculation, it has been found that the measurement accuracy is improved. According to the present invention, the amount of austenite is uniquely determined irrespective of the combination of surfaces.

【0021】本発明者等が計算の結果確認したところに
よれば、このP値による補正は今日比較的良く用いられ
るArnell(R. D. Arnell: JISI, 206 (1968) 1035)の
計算式と数学的に等価である。しかし、Arnellの方法に
おいても、前述したように補正できる配向性の程度に限
界があり、配向性が強い場合は精度が悪くなってしま
う。本発明においては、Arnellの方法と等価なP値によ
る補正を、2軸回転下で計測された回折強度に残る比較
的小さな集合組織の影響を除去するために適用するとい
う点で、通常のArnellの方法とは大きく異なっており、
Arnellの方法を単独で用いた場合に比して非常に精度の
良い測定結果が得られる。また、P値補正を通常の方法
で測定した回折強度に適用することも可能であるが、こ
の場合、Arnellの方法と等価になって、本発明で得られ
るような高精度の測定結果が得られない。
According to the results of calculation by the present inventors, the correction based on the P value is mathematically equivalent to the calculation formula of Arnell (RD Arnell: JISI, 206 (1968) 1035) which is relatively frequently used today. Are equivalent. However, even in Arnell's method, there is a limit to the degree of orientation that can be corrected as described above, and if the orientation is strong, the accuracy becomes poor. In the present invention, the normal Arnell method is applied in that a correction by a P value equivalent to the Arnell method is applied to remove the influence of a relatively small texture remaining on the diffraction intensity measured under biaxial rotation. Method is very different,
Very accurate measurement results can be obtained compared to the case where Arnell's method is used alone. It is also possible to apply the P-value correction to the diffraction intensity measured by a normal method, but in this case, it is equivalent to the method of Arnell, and a highly accurate measurement result as obtained by the present invention is obtained. I can't.

【0022】本発明者らは、請求項1に記載の定量法を
運用するにあたり、使用するX線の種類についても詳細
な検討をおこなった。その結果、コバルトの特性X線の
利用が最も好ましいことを見出した。
The present inventors have conducted detailed studies on the types of X-rays to be used in operating the quantitative method according to the first aspect. As a result, it has been found that utilization of characteristic X-rays of cobalt is most preferable.

【0023】薄板分野では数vol%の残留オーステナイ
トを測定対象とすることが多いため、回折強度の測定精
度を維持することが重要である。特に、請求項1に記載
の定量法では2軸回転させながら回折強度を測定する必
要があることから、精度の良い測定をおこなうために以
下の点に配慮することが望ましい。 (i) 試料を2軸回転させるために系統的に回折ピークの
幅が広がり、近接するα相、γ相のピークの分離が悪く
なってそれぞれの回折強度の測定精度が悪くなりやす
い。 (ii) 2軸回転させない場合に較べて回折条件を満足す
る測定領域が狭くなるため、回折パターンのS/N比が
悪くなりやすい。 (iii) 2軸回転により集合組織の影響を緩和させた状態
で精度の良いP値測定を行えなければ定量結果の妥当性
を損なう。
In the field of thin plates, several vol% of retained austenite is often measured, and it is important to maintain the measurement accuracy of diffraction intensity. In particular, in the quantitative method according to the first aspect, since it is necessary to measure the diffraction intensity while rotating in two axes, it is desirable to consider the following points in order to perform accurate measurement. (i) Since the sample is biaxially rotated, the width of the diffraction peaks is systematically widened, the separation of adjacent α-phase and γ-phase peaks becomes poor, and the measurement accuracy of the respective diffraction intensities tends to deteriorate. (ii) Since the measurement area satisfying the diffraction condition is narrower than the case where the two-axis rotation is not performed, the S / N ratio of the diffraction pattern is likely to be deteriorated. (iii) If accurate P-value measurement cannot be performed in a state where the influence of the texture is reduced by biaxial rotation, the validity of the quantitative result will be impaired.

【0024】そこで、測定に際し、この3つの点に配慮
したX線源を選ぶことが肝要である。本発明者らはこの
ような観点から、Mo、Cu、Co、Fe、Crの特性X線を検討
し、その結果、Coの特性X線が最も好ましいことを見出
した。
Therefore, it is important to select an X-ray source in consideration of these three points in measurement. The present inventors have studied characteristic X-rays of Mo, Cu, Co, Fe, and Cr from such a viewpoint, and as a result, have found that characteristic X-rays of Co are most preferable.

【0025】[0025]

【実施例】以下、本発明の効果を実施例に基き説明す
る。 (実施例1) 集合組織の比較的緩やかな熱延鋼板に対す
る測定結果の比較 表1に比較的緩やかな集合組織を持つ熱延鋼板に対する
検討結果を示す。この鋼板はα相の(200)とγ相の(200)
の集積度がやや高く、P値による評価では、それぞれ
1.81、1.62という値を示す。表の結果は、(株)リガク
製X線回折装置RINT2100に同社の回転振動試料台を組み
合わせて測定した結果から得られたものである。測定に
はCoのKα線を管電圧40kV、管電流50mAの条件で用い
た。測定した回折角は、既述の理論計算における温度因
子の信頼性を考慮して、10 〜 130°とした。
EXAMPLES The effects of the present invention will be described below based on examples. (Example 1) Comparison of measurement results for hot-rolled steel sheets with relatively moderate texture Table 1 shows the results of studies on hot-rolled steel sheets with relatively mild texture. This steel plate has an α phase (200) and a γ phase (200)
Is slightly higher, and the P-value
The values are 1.81 and 1.62. The results in the table were obtained by combining Rigaku's X-ray diffractometer RINT2100 with the company's rotary vibration sample table. For the measurement, Co Kα radiation was used under the conditions of a tube voltage of 40 kV and a tube current of 50 mA. The measured diffraction angle was set to 10 to 130 ° in consideration of the reliability of the temperature factor in the theoretical calculation described above.

【0026】オーステナイト量及びP値は、この角度範
囲に現れる各相の回折ピーク、具体的には、α(110)、
α(200)、α(211)、α(220)、γ(111)、γ(200)、γ(22
0)、γ(311)、γ(222)、の積分強度を積算測定から求め
た上、これを理論計算に適用して求めた。オーステナイ
ト量を計算する際に必要なパラメータのうち、格子定数
については回折パターンからの実測に基づいてα相2.87
01A(オグストローム)、γ相3.626Aとし、原子散乱
因子や温度因子については International Tables for
X-ray Crystallography 記載の値を用いた。また、原子
散乱因子については、鋼板の組成ならびに鉄に対するCo
Kα線の異常散乱の効果を考慮した。
The amount of austenite and P value are determined by the diffraction peak of each phase appearing in this angle range, specifically, α (110),
α (200), α (211), α (220), γ (111), γ (200), γ (22
0), γ (311), and γ (222) were obtained from integrated measurements, and then applied to theoretical calculations. Among the parameters required when calculating the amount of austenite, the lattice constant of the α phase 2.87 based on the actual measurement from the diffraction pattern
01A (Ogstrom), γ-phase 3.626A. Atomic scattering factor and temperature factor are listed in International Tables for
The values described in X-ray Crystallography were used. Regarding the atomic scattering factor, the composition of the steel sheet and the
The effect of extraordinary Kα ray scattering was considered.

【0027】既存手法との比較に際しては、(2)の方法
(表中のChoenの方法(2軸回転あり))でα相の4ピー
クとγ相の5ピークのそれぞれの組み合わせに対して計
算された結果の範囲に収まるものを妥当とし、これから
外れたものを不適当と評価した。この方法を基準にした
のは、この方法が、配向性を有する鋼のX線回折法とし
て最も一般的に用いられているからである。
In comparison with the existing method, calculation was performed for each combination of 4 peaks of α phase and 5 peaks of γ phase by the method (2) (Choen's method in the table (with biaxial rotation)). Those that fall within the range of the results obtained were considered appropriate, and those that fell outside this range were evaluated as inappropriate. This method was based because it is most commonly used as an X-ray diffraction method for oriented steel.

【0028】定量結果ならびに既述の説明からわかるよ
うに、(2)の方法では集合組織の影響を完全には除去し
きれないため、ピークの組み合わせに応じて結果が変動
する。したがって、基準とする(2)の方法それ自体は、
いずれの組み合わせに対する結果が妥当であるか判断で
きない点で不十分である。
As can be seen from the quantitative results and the above description, the effect of the texture cannot be completely removed by the method (2), so that the result varies depending on the combination of peaks. Therefore, the method of (2) itself as a criterion is
It is insufficient that it is impossible to judge which combination is appropriate.

【0029】比較例には既述の(3)の方法(Arnellの方
法)と、(4)の各方法のうち妥当性が高いと報告されて
いるBall & Kellyの方法、を挙げた。試料回転による集
合組織の影響の緩和効果を示すため、表には、試料回転
の方法を変えた場合の、Choenの方法による評価結果も
示した。評価に時間のかかる(1) の方法(極点図から無
配向状態に相当する回折強度を算出し、これを理論計算
に用いる方法)については本発明の目的から外れるため
対象外とした。表からわかるように、比較的緩やかな集
合組織を持つこの材料に対しても、本発明ならびにArne
llの方法以外は不適当である。
As comparative examples, the above-mentioned method (3) (Arnell's method) and the method of Ball & Kelly, which is reported to be highly relevant among the methods of (4), were mentioned. In order to show the effect of reducing the influence of the texture by the sample rotation, the table also shows the evaluation results by the Choen method when the method of the sample rotation was changed. The method (1), which takes a long time to evaluate (a method of calculating a diffraction intensity corresponding to a non-oriented state from a pole figure and using it for a theoretical calculation) is out of the scope of the present invention because it is out of the object of the present invention. As can be seen from the table, the invention and the Arne
The method is inappropriate except for the method of II.

【0030】[0030]

【表1】 [Table 1]

【0031】(実施例2) 集合組織の著しい合金鋼板に
対する測定結果の比較 表2に集合組織の著しい合金鋼板に対する検討結果を示
す。この鋼板はγ相の(220)の集積度が著しく高く、対
応するP値は3.35という値を示す。測定条件ならびに結
果の判断は実施例1と同様である。この材料の場合、2
軸回転をかけても、γ相の集合組織の影響が強く残る
(γ(220)のP値は1.37までしか改善されない)。表か
らわかるように、このような材料に対しては、Arnellの
方法も不適当である。このように、本発明は、集合組織
の著しい鋼板ならびに鋼材に対しても信頼性の高い評価
結果を提供する。
(Example 2) Comparison of measurement results for alloy steel sheets with remarkable textures Table 2 shows the results of studies on alloy steel sheets with remarkable textures. This steel sheet has a remarkably high degree of accumulation of (220) in the γ phase, and the corresponding P value is 3.35. The measurement conditions and the determination of the result are the same as in the first embodiment. For this material, 2
Even when the shaft is rotated, the influence of the texture of the γ phase remains strong (the P value of γ (220) is improved only up to 1.37). As can be seen, Arnell's method is also unsuitable for such materials. As described above, the present invention provides highly reliable evaluation results even for steel sheets and steel materials having a remarkable texture.

【0032】[0032]

【表2】 [Table 2]

【0033】(実施例3)回折強度測定の精度に対する線
源の比較 表3に、請求項1に記載の定量法を運用するにあたり、
使用するX線源の種類について検討した結果を示す。既
に説明した通り、請求項1に記載の定量法では2軸回転
に伴って回折強度の測定精度が悪くなりやすいため、線
源の選択にも配慮することが望ましい。
(Example 3) Comparison of source with respect to accuracy of diffraction intensity measurement Table 3 shows the operation of the quantitative method according to claim 1.
The result of examining the type of X-ray source to be used is shown. As described above, in the quantitative method according to the first aspect, the measurement accuracy of the diffraction intensity tends to deteriorate with the rotation of the two axes. Therefore, it is desirable to consider the selection of the radiation source.

【0034】その際のポイントは、(i) 近接するα(11
0)、γ(111)ピークの分離の程度、(ii) 回折強度のP/B
(Peak to Background)比、(iii) 2軸回転で集合組織
の影響を緩和した状態で精度の良いP値測定に使えるα
相のピーク本数、の3点である。
The point at that time is as follows: (i) The adjacent α (11
0), degree of separation of γ (111) peak, (ii) P / B of diffraction intensity
(Peak to Background) ratio, (iii) α that can be used for accurate P value measurement with the influence of texture reduced by biaxial rotation
Phase peak number.

【0035】(i) は、α(110)、γ(111)の回折強度を測
定する際の精度に直接影響する。昨今、ピーク分離法の
発展に伴って、ピークのオーバーラップが生じる際の回
折強度の測定精度も向上している。しかし、アンブレラ
効果によって生じる低角ピークの非対称性、ピーク形状
に対する計算上の制約、などによって生じる計算誤差を
考慮すると、できるだけ元データの段階でオーバーラッ
プの影響を軽減しておくことが望ましい。そこで、α(1
10)、γ(111)の回折角の差が1.2°以上でオーバーラッ
プの影響が小さい、もしくは、無視できるものを○、ピ
ーク分離の影響が多少見込まれる1.0から1.2°までのも
のを△、ピーク分離の方法に依存して結果が変わりやす
い1.0°未満のものを×、と評価した。
(I) directly affects the accuracy in measuring the diffraction intensity of α (110) and γ (111). In recent years, with the development of the peak separation method, the measurement accuracy of the diffraction intensity when the peak overlap occurs has also been improved. However, considering the asymmetry of the low angle peak caused by the umbrella effect and the calculation error caused by the calculation restriction on the peak shape, it is desirable to reduce the influence of the overlap at the stage of the original data as much as possible. Then, α (1
10), when the difference in diffraction angle of γ (111) is 1.2 ° or more and the influence of the overlap is small or negligible, の も の indicates that the influence of peak separation is somewhat expected from 1.0 to 1.2 °, Those having a result of less than 1.0 °, which tends to vary depending on the method of peak separation, were evaluated as x.

【0036】(ii)は積分強度測定時の統計精度に影響す
る。ここではSUS304の(111)回折ピークをモノクロメー
タなしで測定した時のP/B比が2.0以上のものを○、それ
未満を×、と評価した。
(Ii) affects the statistical accuracy in measuring the integrated intensity. Here, when the (111) diffraction peak of SUS304 was measured without a monochromator, the one with a P / B ratio of 2.0 or more was evaluated as ○, and the one less than that was evaluated as ×.

【0037】(iii)はP値補正計算の精度に配慮した項
目で、ここでは、回折角130°までの間に現れる、各相
中での相対強度が10以上のα相のピーク本数、で比較し
た。(γ相のピーク本数は常にα相の本数を上回るた
め、α相のピーク本数のみの評価とした)。このような
ピークの本数が多い程、P値測定の精度は向上すると期
待されるため、ピークの本数が4本以上の場合を○、3
本の場合を△、2本以下の場合を×、で評価した。ここ
で回折角の上限を130°に限定する理由は、理論計算で
仮定する温度因子の誤差の影響が(高角側ほど現れやす
く)、回折角130°で回折強度に数%以上の誤差をもたら
す可能性があるからである。相対強度が10以下のピーク
をカウントしないのは、回折強度の測定精度が悪くなり
やすい2軸回転を採用する状況下で、相対強度の低い
(即ち、統計精度の悪い)ピークの回折強度を考慮する
とP値計算に大きな誤差を生じるためである。
(Iii) is an item in consideration of the accuracy of the P value correction calculation. Here, the number of peaks of the α phase having a relative intensity of 10 or more in each phase, which appears up to a diffraction angle of 130 °. Compared. (Since the number of peaks in the γ-phase always exceeds the number of α-phases, only the peak number in the α-phase was evaluated.) It is expected that the greater the number of such peaks, the higher the accuracy of P value measurement.
The case of the book was evaluated by Δ, and the case of 2 or less was evaluated by ×. The reason for limiting the upper limit of the diffraction angle to 130 ° here is that the effect of the temperature factor error assumed in the theoretical calculation (the higher the angle, the more likely it appears) causes an error of several percent or more in the diffraction intensity at the 130 ° diffraction angle. This is because there is a possibility. The reason why the peak having a relative intensity of 10 or less is not counted is that the diffraction intensity of a peak having a low relative intensity (that is, poor statistical accuracy) is taken into account in a situation in which a biaxial rotation is likely to cause the measurement accuracy of diffraction intensity to deteriorate. This causes a large error in the calculation of the P value.

【0038】検討した線源は、Mo、Cu、Co、Fe、Crの5
種類である。表からわかるように、オーステナイトの定
量時に文献で比較的多用されるMoのP/B比はCoやCrに較
べて悪い。また、Moを用いた場合、測定角度範囲で検出
される回折ピークの本数の絶対数は多くなるものの、P
値計算の精度に効く相対強度10以上の回折ピークの本数
は少なくなる。ピークの分離性、P/B比、精度の良いP
値測定に使えるα相のピーク本数、の3点に亙って最も
優れているのはCoである。このことから、請求項1に記
載の定量方法を運用するに際しては、Co線源の使用がも
っとも望ましいといえる。
The sources examined were Mo, Cu, Co, Fe, and Cr.
Kind. As can be seen from the table, when quantifying austenite, the P / B ratio of Mo, which is relatively frequently used in the literature, is worse than that of Co or Cr. When Mo is used, the absolute number of diffraction peaks detected in the measurement angle range is increased, but P
The number of diffraction peaks having a relative intensity of 10 or more, which is effective for value calculation accuracy, is reduced. Peak separation, P / B ratio, accurate P
Co is the most excellent among the three points of the peak number of the α phase that can be used for the value measurement. From this, it can be said that the use of a Co source is most desirable when operating the quantification method according to the first aspect.

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【発明の効果】以上説明したように、本発明において
は、フェライト相とオーステナイト相の混合組織を有す
る鋼中のオーステナイト量をX線回折法を用いて測定す
るにあたり、鋼に2軸回転を与えながら各相に帰属する
複数の結晶格子面の回折強度を測定した後、各回折強度
をP値で補正してオーステナイト量を算出しているの
で、従来法と同じ測定時間で得られたデータから、オー
ステナイト量を精度良く評価することが可能になる。
As described above, in the present invention, when the amount of austenite in a steel having a mixed structure of a ferrite phase and an austenite phase is measured by the X-ray diffraction method, the steel is given a biaxial rotation. After measuring the diffraction intensities of a plurality of crystal lattice planes belonging to each phase, the amount of austenite is calculated by correcting each diffraction intensity with the P value. In addition, it is possible to accurately evaluate the amount of austenite.

【0041】また、X線としてコバルトの特性X線を用
いることにより、特に精度の良い測定を行うことができ
る。
Further, by using characteristic X-rays of cobalt as X-rays, particularly accurate measurement can be performed.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フェライト相とオーステナイト相の混合
組織を有する鋼中のオーステナイト量をX線回折法を用
いて測定するにあたり、鋼に2軸回転を与えながら各相
に帰属する複数の結晶格子面の回折強度を測定した後、
各回折強度をP値で補正してオーステナイト量を算出す
ることを特徴とする鋼中オーステナイトの測定方法。
When measuring the amount of austenite in a steel having a mixed structure of a ferrite phase and an austenite phase using an X-ray diffraction method, a plurality of crystal lattice planes belonging to each phase while giving biaxial rotation to the steel. After measuring the diffraction intensity of
A method for measuring austenite in steel, wherein each diffraction intensity is corrected by a P value to calculate an austenite amount.
【請求項2】 コバルトの特性X線を用いて測定するこ
とを特徴とする請求項1に記載の鋼中オーステナイトの
測定方法。
2. The method for measuring austenite in steel according to claim 1, wherein the measurement is performed using characteristic X-rays of cobalt.
JP10046310A 1998-02-13 1998-02-13 Method for measuring austenite in steel Pending JPH11230921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10046310A JPH11230921A (en) 1998-02-13 1998-02-13 Method for measuring austenite in steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10046310A JPH11230921A (en) 1998-02-13 1998-02-13 Method for measuring austenite in steel

Publications (1)

Publication Number Publication Date
JPH11230921A true JPH11230921A (en) 1999-08-27

Family

ID=12743620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10046310A Pending JPH11230921A (en) 1998-02-13 1998-02-13 Method for measuring austenite in steel

Country Status (1)

Country Link
JP (1) JPH11230921A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103808743A (en) * 2014-01-16 2014-05-21 南京钢铁股份有限公司 Method for measuring austenite content in steel by using X-ray diffraction technology
RU2769111C1 (en) * 2021-04-09 2022-03-28 федеральное государственное автономное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Method for detecting bainite in structural steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103808743A (en) * 2014-01-16 2014-05-21 南京钢铁股份有限公司 Method for measuring austenite content in steel by using X-ray diffraction technology
RU2769111C1 (en) * 2021-04-09 2022-03-28 федеральное государственное автономное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Method for detecting bainite in structural steel

Similar Documents

Publication Publication Date Title
Shi et al. High-throughput synthesis and corrosion behavior of sputter-deposited nanocrystalline Alx (CoCrFeNi) 100-x combinatorial high-entropy alloys
Mosecker et al. Temperature effect on deformation mechanisms and mechanical properties of a high manganese C+ N alloyed austenitic stainless steel
Joy et al. Electron channeling patterns in the scanning electron microscope
CN110865092A (en) In-situ analysis method for representing component distribution of high-temperature alloy by utilizing X-ray fluorescence spectrum
CN112164431A (en) Design method and system of multi-element alloy
Salasi et al. NanoSIMS investigation of passive oxide films on high-Cr cast iron
MX2012012384A (en) Electromagnetic performance detection method for oriented silicon steel.
Pathak et al. Aqueous corrosion behavior of cast CoCrFeMnNi alloy
Cullity Sources of Error in X‐Ray Measurements of Residual Stress
JPH11230921A (en) Method for measuring austenite in steel
Akiyama et al. The corrosion behavior of sputter-deposited amorphous Al Cr Mo alloys in 1 M HCl
Dahl et al. Interdiffusion between Ni-based superalloy and MCrAlY coating
Mulligan et al. Microstructure and age hardening of C276 alloy coatings
Christudasjustus et al. Surface Film Formation on Al-V Alloys with Far-From-Equilibrium Microstructure
JP2000144380A (en) Super corrosion-resisting alloy and its manufacture
Nakamura et al. Self-diffusion of aluminium in the intermetallic compound Fe-48 at.% Al
Crépin et al. Microstructural study of β treated grade 702 zirconium. Scanning electron microscopy and transmission electron microscopy, complementarity of two observational scales
Johansson et al. Measurement of average texture of cold-rolled aluminium sheet by electron back-scattering diffraction: a comparison with neutron diffraction
JP6094155B2 (en) Iron oxide analysis method
JP2707865B2 (en) Method of measuring alloying degree of alloyed galvanized layer
Cox III et al. A Hexagonal Grid-Sampling Scheme for Improving X-Ray Diffraction-Retained Austenite Measurements of Sheet Steels
JP6094156B2 (en) Iron oxide analysis method
Wan et al. BCC stabilization and growth stress behavior in Ti/V multilayers
Downham et al. Segregation of cerium in chromia scales
Alibhai et al. Use of isotopic tracers and SIMS analysis for evaluating the oxidation behaviour of protective coatings on nickel based superalloys