JPH11230543A - Operation method of heat storage regenerative-type burner - Google Patents

Operation method of heat storage regenerative-type burner

Info

Publication number
JPH11230543A
JPH11230543A JP10029737A JP2973798A JPH11230543A JP H11230543 A JPH11230543 A JP H11230543A JP 10029737 A JP10029737 A JP 10029737A JP 2973798 A JP2973798 A JP 2973798A JP H11230543 A JPH11230543 A JP H11230543A
Authority
JP
Japan
Prior art keywords
burner
combustion
furnace
heat storage
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10029737A
Other languages
Japanese (ja)
Inventor
Hiroharu Ogura
弘治 小椋
Yukihisa Wada
幸久 和田
Masaki Sato
昌己 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP10029737A priority Critical patent/JPH11230543A/en
Publication of JPH11230543A publication Critical patent/JPH11230543A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Air Supply (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for operating a heat storage regenerative-type burner which is capable of obtaining an excellent energy saving effect in a wide range from a low temperature region to a high temperature region, and ensuring a temperature distribution which has an excellent agitating effect in a furnace. SOLUTION: A plurality of heat storage regenerative-type burners 2a, 2b, 2c, 2d which are arranged in a furnace 1, are combusted while changing the ratio of a combustion time to a combustion period of a burner, and the combustion time of the burner, according to the furnace temperature. Specifically, in a low temperature region, the ratio of the combustion time to the combustion period of a burner, and the combustion time of the burner are decreased, while increasing the ratio of the combustion time to the combustion period of the burner, and the combustion time of the burner in a high temperature region so as to perform combustion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種の炉に配置さ
れた蓄熱再生式バーナの運転方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a regenerative burner disposed in various furnaces.

【0002】[0002]

【従来の技術】蓄熱再生式バーナは、燃焼用空気の流路
に蓄熱体を備えたバーナであり、図5に示したように2
本を1組として炉に設置される。図6に示すように、バ
ーナAが燃焼するときにはバーナBの燃焼用空気の流路
を通じて排気動作を行わせ、排気ガスの熱をバーナBの
蓄熱体で回収する。次にバーナBが燃焼するときには燃
焼用空気を蓄熱体で予熱し、バーナの熱効率を高めると
ともに、その排ガスの熱を反体側のバーナAの蓄熱体で
回収する。このような燃焼動作と排気動作を繰り返すこ
とにより、通常のバーナを常時燃焼させる定常燃焼方式
に比べ、優れた省エネルギー効果を達成できるものであ
る。
2. Description of the Related Art A heat storage regeneration type burner is a burner having a heat storage body in a flow path of combustion air. As shown in FIG.
A set of books is installed in a furnace. As shown in FIG. 6, when the burner A burns, the exhaust operation is performed through the combustion air flow path of the burner B, and the heat of the exhaust gas is recovered by the heat storage body of the burner B. Next, when the burner B burns, the combustion air is preheated by the heat storage to increase the thermal efficiency of the burner, and the heat of the exhaust gas is recovered by the heat storage of the burner A on the opposite side. By repeating such a combustion operation and an exhaust operation, an excellent energy saving effect can be achieved as compared with a steady combustion system in which a normal burner is constantly burned.

【0003】しかし、上記の蓄熱再生式バーナには、次
の2つの問題があった。第1に、蓄熱再生式バーナは燃
焼温度が高いため、炉内温度が低温度域(200〜60
0℃)で、昇温スピードが10℃/Hr程度と遅く、か
つ良好な温度分布を確保したい場合には、過剰の空気を
炉内に導入して燃焼温度を下げる必要があり、排気熱量
が多くなって省エネ効果を低下させていた。また低昇温
を確保するために、バーナ出力を絞った状態で燃焼を行
うと炉の排熱温度が低くなるために、熱交換器による排
熱回収の効果が殆ど期待できなかった。
However, the above-mentioned regenerative heat storage burner has the following two problems. First, since the regenerative burner has a high combustion temperature, the temperature inside the furnace is in a low temperature range (200 to 60).
0 ° C.), when the temperature rise speed is as slow as about 10 ° C./Hr, and when it is desired to secure a good temperature distribution, it is necessary to introduce excess air into the furnace to lower the combustion temperature, and the exhaust heat quantity is reduced. It increased and the energy saving effect was reduced. Further, if combustion is performed in a state where the burner output is reduced in order to secure a low temperature rise, the exhaust heat temperature of the furnace becomes low, so that the effect of the exhaust heat recovery by the heat exchanger could hardly be expected.

【0004】 第2に、蓄熱再生式バーナは図5に示し
たようにバーナ2本を1組として炉内に設置されている
ため、炉内のガス流の方向が固定されてしまい、単純な
往復流となる。これにより、炉内温度を均一化するため
の炉内流の攪拌効果に限界があった。また、燃焼してい
るバーナ数は常に炉に設置されているバーナ数の半分で
あるため、昇温スピードにも限界があった。これによ
り、炉内温度が高温度域(600〜1500℃)で昇温
スピードを300℃/Hr程度と速く、かつ良好な温度
分布を確保したい場合には、炉の設計時に予めバーナ容
量を大きくしておくか、バーナの本数を増加しておく必
要があり、設備コストがかかっていた。
Secondly, as shown in FIG. 5, the regenerative regenerative burner is installed in a furnace as a set of two burners, so that the direction of gas flow in the furnace is fixed, so that the regenerative burner is simple. It becomes a reciprocating flow. Thus, there is a limit to the effect of stirring the flow in the furnace to make the temperature in the furnace uniform. In addition, the number of burners burning is always half of the number of burners installed in the furnace, so there was a limit to the heating speed. Accordingly, when the temperature in the furnace is high (600-1500 ° C.) and the rate of temperature rise is as fast as 300 ° C./Hr and a good temperature distribution is to be ensured, the burner capacity must be increased in advance when designing the furnace. Or the number of burners had to be increased, which required equipment costs.

【0005】そこで低温度域では、通常のバーナを負荷
100%の状態で燃焼させ、温度制御はバーナのオンオ
フにより行う間欠燃焼方式を加熱炉に用いることも検討
されている。しかしこの方式では、低温度域においては
過剰燃焼空気量が抑えられるので、熱効率に優れている
が、高温度域では過剰燃焼空気量が増加するため、省エ
ネルギー効果は少なく、低温から高温までの全体として
の熱効率が低い問題があった。また、加熱炉に間欠燃焼
手段と蓄熱燃焼手投とを併設し、低温度域では間欠燃燃
焼方式とし、高温度域では蓄熱燃焼方式に切り替えるこ
とも検討されているが、上述の蓄熱再生式バーナに関す
る第2の問題については、何ら解決されるものではなか
った。
Therefore, in a low temperature range, it has been studied to use an intermittent combustion system in which a normal burner is burned at a load of 100% and the temperature is controlled by turning on and off the burner for the heating furnace. However, this method is excellent in thermal efficiency because the amount of excess combustion air is suppressed in the low temperature range, but the amount of excess combustion air increases in the high temperature range, so there is little energy saving effect, and the entire system from low to high temperatures There is a problem that the thermal efficiency is low. In addition, it has been considered to install an intermittent combustion means and a regenerative combustion method in the heating furnace, switch to the intermittent combustion method in the low temperature range, and switch to the regenerative combustion method in the high temperature range. The second problem with burners was not solved at all.

【0006】[0006]

【発明が解決しようとする課題】本発明は上述した従来
の問題点を解決し、炉内温度が低温度域から高温度域に
至る広い範囲で優れた省エネルギー効果を得ることがで
き、また、炉内の攪拌効果に優れ良好な温度分布が確保
できる蓄熱再生式バーナの運転方法を提供するためにな
されたものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and can obtain excellent energy saving effects in a wide range of furnace temperatures from a low temperature range to a high temperature range. The purpose of the present invention is to provide a method for operating a regenerative heat burner which is excellent in a stirring effect in a furnace and can secure a good temperature distribution.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明は、炉に配置された複数本の蓄熱再
生式バーナを、炉内温度に応じてバーナの燃焼周期に対
する燃焼時間の比率及びバーナの燃焼時間を変更しつつ
燃焼させることを特徴とするものである。なお、低温度
域ではバーナの燃焼周期に対する燃焼時間の比率及びバ
ーナの燃焼時間を減少させ、高温度域ではバーナの燃焼
周期に対する燃焼時間の比率及びバーナの燃焼時間を増
加させて燃焼させるようにする。また高温度域では、同
時に燃焼させるバーナの本数を、全バーナ本数の50%
を越える本数とすることが好ましい。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is directed to a method for regenerating a plurality of regenerative burners disposed in a furnace by changing a combustion time with respect to a combustion cycle of the burner in accordance with a temperature in the furnace. And the combustion time of the burner is changed. In the low temperature range, the ratio of the combustion time to the burner combustion cycle and the burner combustion time are reduced, and in the high temperature range, the ratio of the combustion time to the burner combustion cycle and the burner combustion time are increased to perform combustion. I do. In the high temperature range, the number of burners burned simultaneously is reduced to 50% of the total number of burners.
It is preferable to set the number to exceed the number.

【0008】[0008]

【発明の実施の形態】次に本発明の実施形態を詳細に説
明する。図1は本発明の実施形態を示すもので、1は
炉、2a、2b、2c、2dは炉1に取り付けられた複
数本の蓄熱再生式バーナである。各バーナ2a、2b、
2c、2dの燃焼空気流路にはそれぞれセラミックハニ
カム等の蓄熱体3が備えられており、燃焼空気は蓄熱体
3を通る際に予熱され、また燃焼排ガスは蓄熱体3を通
過する際に排熱が回収される。各バーナ2a、2b、2
c、2dは給気と排気を繰り返しながら、燃焼するバー
ナが順次切り替わって間欠燃焼が行われる。尚、設定温
度に対する温度コントロールはバーナの燃焼周期に対す
る燃焼時間の比率(以下、燃焼時間比率という)及びバ
ーナの燃焼時間を変更することにより行なわれるが、燃
料出力を変更して微調整を行わせることができる。バー
ナ本数は奇数本でも偶数本であっても差し支えなく間欠
燃焼できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail. FIG. 1 shows an embodiment of the present invention, wherein 1 is a furnace, 2a, 2b, 2c, and 2d are a plurality of heat storage regeneration burners attached to the furnace 1. Each burner 2a, 2b,
Each of the combustion air passages 2c and 2d is provided with a heat storage body 3 such as a ceramic honeycomb. The combustion air is preheated when passing through the heat storage body 3, and the combustion exhaust gas is exhausted when passing through the heat storage body 3. Heat is recovered. Each burner 2a, 2b, 2
In c and 2d, the burners to be burned are sequentially switched to repeat intermittent combustion while repeating supply and exhaust. The temperature control with respect to the set temperature is performed by changing the ratio of the combustion time to the combustion cycle of the burner (hereinafter referred to as the combustion time ratio) and the combustion time of the burner. Fine adjustment is made by changing the fuel output. be able to. The number of burners may be odd or even and intermittent combustion can be performed.

【0009】図2は本発明におけるバーナの間欠燃焼動
作の一例を示す。図中、Xはバーナの燃焼周期を示し、
Yは燃焼時間を示す。燃焼時間比率はY/Xで現され
る。この図3は低温度域でのバーナの間欠燃焼動作を示
しており、燃焼時間比率は15%、燃焼時間は5秒で順
次間欠燃焼させている。この例では4本のバーナが燃焼
時間比率15%で順次燃焼するため、燃焼周期X中の6
0%はいずれかのバーナが燃焼しているが、40%はど
のバーナも燃焼していない。Zはバーナの燃料出力であ
り、設定温度に対する温度コントロールの微調整はこの
燃料出力Zを変更して行われる。バーナの点火順序は必
ずしも固定する必要はなく、例えば炉内の温度の低いと
ころのバーナを優先して点火させてもよい。また、燃焼
の直前に排気動作を行わせると、蓄熱体3が高温に保た
れ燃焼用空気の予熱効果が大きい利点があるが、本発明
では必ずしも燃焼の直前に限るものではない。
FIG. 2 shows an example of the intermittent combustion operation of the burner according to the present invention. In the figure, X indicates the burner combustion cycle,
Y indicates the burning time. The burning time ratio is expressed as Y / X. FIG. 3 shows an intermittent combustion operation of the burner in a low temperature range, in which the combustion time ratio is 15%, the combustion time is 5 seconds, and the combustion is performed intermittently. In this example, four burners sequentially burn at a combustion time ratio of 15%.
0% is burning either burner, but 40% is not burning any burners. Z is the fuel output of the burner, and fine adjustment of the temperature control with respect to the set temperature is performed by changing the fuel output Z. The firing order of the burners does not necessarily have to be fixed. For example, a burner having a low temperature in the furnace may be preferentially ignited. When the exhaust operation is performed immediately before the combustion, there is an advantage that the regenerator 3 is maintained at a high temperature and the effect of preheating the combustion air is great. However, the present invention is not necessarily limited to immediately before the combustion.

【0010】図3は、高温度域でのバーナの間欠燃焼動
作を示している。炉に2a、2b、2c、2dの4本の
バーナを配置し、燃焼時間比率は70%、燃焼時間は4
0秒で順次間欠燃焼させている。この例では4本のバー
ナの内の2本又は3本が燃焼しており、1本が排気動作
を行なっている。図5に示したように、従来の蓄熱燃焼
方式はバーナ2本を1組としているため、50%を越え
るバーナ本数で燃焼ができない。このため、昇温スピー
ドを300℃/Hr程度と速くし、かつ良好な温度分布
を確保したい場合には、炉の設計時に予めバーナ容量を
大きくしておくか、バーナの本数を増加しておく必要が
あり設備コストがかかっていた。これに対して本発明で
は、高温度域で燃焼するバーナの本数は全数の50%を
越え、上述の問題を解消することができる。
FIG. 3 shows an intermittent combustion operation of the burner in a high temperature range. Four burners 2a, 2b, 2c and 2d are arranged in the furnace, the burning time ratio is 70%, and the burning time is 4
Intermittent combustion is performed sequentially in 0 seconds. In this example, two or three of the four burners are burning, and one is performing an exhaust operation. As shown in FIG. 5, in the conventional heat storage combustion method, two burners are used as one set, so that the number of burners exceeding 50% cannot be burned. For this reason, in order to increase the heating rate to about 300 ° C./Hr and to secure a good temperature distribution, the burner capacity is increased in advance when the furnace is designed or the number of burners is increased. It was necessary and the equipment cost was high. On the other hand, in the present invention, the number of burners burning in the high temperature range exceeds 50% of the total number, and the above problem can be solved.

【0011】[0011]

【実施例】次に本発明の実施例を示す。図4はこの実施
例における炉内温度と各バーナの燃焼時間比率及び燃焼
時間との関係を示したものである。炉内温度に合わせて
バーナの燃焼時間比率と燃焼時間を変更させる。600
℃以下の低温度域では、燃焼時間比率を10〜20%と
小さくし、また燃焼時間を3〜5秒と短くする。一方、
600〜1500℃の高温度域では、燃焼時間比率を2
5〜70%と大きくし、燃焼時間を10〜40秒と長く
して間欠燃焼を行わせる。この実施形態では燃焼時間比
率と燃焼時間をステップで変更しているが、勾配を設け
て変更してもよい。また、この実施形態では炉内温度の
増加に対して、燃焼時間比率と燃焼時間を増加さている
が、昇温途中で減少させてもよい。
Next, examples of the present invention will be described. FIG. 4 shows the relationship between the furnace temperature, the burning time ratio of each burner, and the burning time in this embodiment. The burner burning time ratio and burning time are changed according to the furnace temperature. 600
In a low temperature range of not more than ℃, the burning time ratio is reduced to 10 to 20%, and the burning time is reduced to 3 to 5 seconds. on the other hand,
In the high temperature range of 600 to 1500 ° C, the combustion time ratio is 2
Intermittent combustion is performed by increasing the combustion time to 5 to 70% and increasing the combustion time to 10 to 40 seconds. In this embodiment, the combustion time ratio and the combustion time are changed in steps, but may be changed by providing a gradient. Further, in this embodiment, the combustion time ratio and the combustion time are increased with respect to the increase in the furnace temperature, but may be decreased during the temperature rise.

【0012】表1はこの実施例で、燃焼時間比率及び燃
焼時間を変更した際の炉内温度分布と燃料消費量を示し
たものである。比較例1は従来の蓄熱燃焼方式、比較例
2は従来の定常燃焼方式を示す。本発明によれば、20
0℃〜600℃の低温度域では、比較例1、2と同一の
温度分布条件下において、燃料消費量を減少することが
できる。比較例1、2では良好な温度分布を確保するた
めに、低温度域では過剰の空気を導入して燃焼温度を下
げる必要があり、排気熱量が大きくなって省エネ効果を
低下させている。これに対して本発明の実施例では、燃
焼時間比率を小さく、燃焼時間を短くして間欠燃焼させ
ることにより、過剰空気の導入が抑えられる。また、前
記条件により最適なバーナ出力で燃焼させることができ
るため、低温度域で低昇温を行う場合にバーナ出力を絞
った状態(排熱温度が低い状態)で燃焼させる必要が無
く、蓄熱体による排熱回収の効果を低下させることが無
い。
Table 1 shows the temperature distribution in the furnace and the fuel consumption when the combustion time ratio and the combustion time are changed in this embodiment. Comparative Example 1 shows a conventional heat storage combustion method, and Comparative Example 2 shows a conventional steady combustion method. According to the invention, 20
In the low temperature range of 0 ° C. to 600 ° C., the fuel consumption can be reduced under the same temperature distribution conditions as Comparative Examples 1 and 2. In Comparative Examples 1 and 2, in order to ensure a good temperature distribution, it is necessary to introduce excess air in a low temperature range to lower the combustion temperature, and the amount of exhaust heat increases to lower the energy saving effect. In contrast, in the embodiment of the present invention, the combustion time ratio is reduced, the combustion time is shortened, and the combustion is performed intermittently, thereby suppressing the introduction of excess air. Further, since combustion can be performed with an optimum burner output under the above conditions, when performing low temperature rise in a low temperature range, there is no need to perform combustion in a state where the burner output is reduced (a state in which the exhaust heat temperature is low). The effect of exhaust heat recovery by the body is not reduced.

【0013】また800〜1400℃の高温度域では、
本発明によれば比較例1に比べ、温度分布を小さくでき
る。これは、従来の蓄熱燃焼方式はバーナ2本を1組と
して炉に設置されているため、炉内のガス流の方向が固
定されてしまい、単純な往復流となり、炉内温度を均一
化するための炉内流の攪拌効果に限界があったのに対
し、本発明では燃焼時間比率を大きく、燃焼時間を長く
して間欠燃焼させることにより、炉内流の攪拌効果を増
し、炉内温度の均一化が図れる。また、前記条件によ
り、最適なバーナ出力で燃焼させることができ、高温度
域で急昇温を行う場合にもバーナ出力を100%に近い
状態で燃焼させる必要が無いため、省エネ効果を損なわ
ない。従って、表1に示すように従来の蓄熱燃焼方式
(比較例1)に比べ、燃料消費量が少なくできる。
In a high temperature range of 800 to 1400 ° C.,
According to the present invention, the temperature distribution can be made smaller than in Comparative Example 1. This is because, in the conventional regenerative combustion system, since two burners are installed as one set in the furnace, the direction of the gas flow in the furnace is fixed, the reciprocating flow becomes simple, and the temperature in the furnace is made uniform. However, in the present invention, the combustion time ratio is increased, the combustion time is increased, and the combustion time is increased to perform intermittent combustion, thereby increasing the stirring effect of the furnace flow and increasing the furnace temperature. Can be made uniform. Further, under the above conditions, it is possible to burn with an optimum burner output, and even when performing rapid temperature rise in a high temperature range, there is no need to burn the burner output at a state close to 100%, so that the energy saving effect is not impaired. . Therefore, as shown in Table 1, the fuel consumption can be reduced as compared with the conventional heat storage combustion system (Comparative Example 1).

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】上述したように、本発明の蓄熱再生式バ
ーナの運転方法によれば、炉内温度が低温度域から高温
度域までの全温度域において、優れた省エネルギー効果
を得ることができ、また、炉内の攪拌効果に優れるた
め、良好な温度分布が確保できる。更に、良好な温度分
布を得るための、バーナ容量増加やバーナの本数増加の
必要がないため、設備コストが安価となる。また、間欠
燃焼方式から蓄熱燃焼方式に切り替える必要も無いの
で、両方の手段を併設する必要が無いことからも設備コ
ストが安価とすることができる。
As described above, according to the method of operating the regenerative regenerative burner of the present invention, an excellent energy saving effect can be obtained in the entire furnace temperature range from a low temperature range to a high temperature range. And a good stirring effect in the furnace, so that a good temperature distribution can be secured. Further, since there is no need to increase the burner capacity or the number of burners for obtaining a good temperature distribution, the equipment cost is reduced. Further, since there is no need to switch from the intermittent combustion system to the heat storage combustion system, it is not necessary to provide both means, so that the equipment cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す炉の平面図である。FIG. 1 is a plan view of a furnace showing an embodiment of the present invention.

【図2】低温度域における各バーナの作動を示すタイム
チャートである。
FIG. 2 is a time chart showing the operation of each burner in a low temperature range.

【図3】高温度域における各バーナの作動を示すタイム
チャートである。
FIG. 3 is a time chart showing the operation of each burner in a high temperature range.

【図4】実施例における炉内温度に対応する燃焼時間比
率と燃焼時間のグラフである。
FIG. 4 is a graph of a combustion time ratio and a combustion time corresponding to a furnace temperature in an example.

【図5】従来技術を示す平面図である。FIG. 5 is a plan view showing a conventional technique.

【図6】従来技術における各バーナの作動を示すタイム
チャートである。
FIG. 6 is a time chart showing the operation of each burner in the prior art.

【符号の説明】[Explanation of symbols]

1 炉、 バーナ、3 蓄熱体 1 furnace, burner, 3 heat storage

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炉に配置された複数本の蓄熱再生式バー
ナを、炉内温度に応じてバーナの燃焼周期に対する燃焼
時間の比率及びバーナの燃焼時間を変更しつつ燃焼させ
ることを特徴とする蓄熱再生式バーナの運転方法。
The present invention is characterized in that a plurality of regenerative regenerative burners arranged in a furnace are burned while changing the ratio of the burning time to the burning cycle of the burner and the burning time of the burner according to the furnace temperature. How to operate a heat storage regeneration burner.
【請求項2】 低温度域ではバーナの燃焼周期に対する
燃焼時間の比率及びバーナの燃焼時間を減少させ、高温
度域ではバーナの燃焼周期に対する燃焼時間の比率及び
バーナの燃焼時間を増加させて燃焼させる請求項1に記
載の蓄熱再生式バーナの運転方法。
2. In a low temperature range, the ratio of the combustion time to the burner combustion cycle and the burner combustion time are decreased, and in a high temperature range, the ratio of the combustion time to the burner combustion cycle and the burner combustion time are increased to perform combustion. The method for operating a heat storage regeneration burner according to claim 1.
【請求項3】 高温度域では、同時に燃焼させるバーナ
の本数を、全バーナ本数の50%を越える本数とする請
求項1又は2に記載の蓄熱再生式バーナの運転方法。
3. The method according to claim 1, wherein the number of burners to be burned simultaneously in the high temperature range is more than 50% of the total number of burners.
JP10029737A 1998-02-12 1998-02-12 Operation method of heat storage regenerative-type burner Pending JPH11230543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10029737A JPH11230543A (en) 1998-02-12 1998-02-12 Operation method of heat storage regenerative-type burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10029737A JPH11230543A (en) 1998-02-12 1998-02-12 Operation method of heat storage regenerative-type burner

Publications (1)

Publication Number Publication Date
JPH11230543A true JPH11230543A (en) 1999-08-27

Family

ID=12284433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10029737A Pending JPH11230543A (en) 1998-02-12 1998-02-12 Operation method of heat storage regenerative-type burner

Country Status (1)

Country Link
JP (1) JPH11230543A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129244A (en) * 2000-08-18 2002-05-09 Chugai Ro Co Ltd Bell type annealing furnace
JP2007333218A (en) * 2006-05-15 2007-12-27 Miyamoto Kogyosho Co Ltd Heating furnace for regenerative burner
JP2011252211A (en) * 2010-06-03 2011-12-15 Chugai Ro Co Ltd Method of controlling combustion of regenerative combustion type heat treatment furnace
CN104456569A (en) * 2013-09-24 2015-03-25 湖南巴陵炉窑节能股份有限公司 Progressive switchover heat storage type combustion device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129244A (en) * 2000-08-18 2002-05-09 Chugai Ro Co Ltd Bell type annealing furnace
JP2007333218A (en) * 2006-05-15 2007-12-27 Miyamoto Kogyosho Co Ltd Heating furnace for regenerative burner
JP2011252211A (en) * 2010-06-03 2011-12-15 Chugai Ro Co Ltd Method of controlling combustion of regenerative combustion type heat treatment furnace
CN104456569A (en) * 2013-09-24 2015-03-25 湖南巴陵炉窑节能股份有限公司 Progressive switchover heat storage type combustion device

Similar Documents

Publication Publication Date Title
CA2403221A1 (en) Heating furnace with regenerative burners and method of operating the heating furnace
KR19990013605A (en) Combustion device
JPH11230543A (en) Operation method of heat storage regenerative-type burner
JP3248634B2 (en) Bright flame generation combustion method
JP3074147B2 (en) Operating method of regenerative burner
JP3282955B2 (en) Hot air circulation system
JP3090883B2 (en) Operating method of regenerative burner
JPH09287013A (en) Device for utilizing heat in hot stove
JP2927700B2 (en) Heating furnace and its operation method
JP2598345B2 (en) Heating method of steel strip heating furnace
JP2997655B2 (en) Combustion method for industrial combustion equipment
JP3029977B2 (en) Firing furnace
JP2996618B2 (en) Thermal storage combustion burner
KR100494093B1 (en) BURNER APPARATUS FOR REDUCING NOx
JPH06193818A (en) Method for alternating combustion by recirculation of exhaust gas and use of oxygen
JPH10253047A (en) Alternative combustion heating furnace
JP2001012717A (en) Combustion deodorizing furnace
JP3722857B2 (en) Combustion control method for combustion heating device
JPH11223467A (en) Ceramic burning furnace
JPS5851172B2 (en) Combustion heating device
JP3017013B2 (en) Radiant heating furnace
JP3859180B2 (en) Roller hearth kiln
JP2996589B2 (en) Thermal storage combustion method and apparatus
JPH11182818A (en) Burner
JPS61264127A (en) Heater for furnace

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060224