JPH11228507A - Production of dimethylamine - Google Patents

Production of dimethylamine

Info

Publication number
JPH11228507A
JPH11228507A JP10025832A JP2583298A JPH11228507A JP H11228507 A JPH11228507 A JP H11228507A JP 10025832 A JP10025832 A JP 10025832A JP 2583298 A JP2583298 A JP 2583298A JP H11228507 A JPH11228507 A JP H11228507A
Authority
JP
Japan
Prior art keywords
catalyst
dimethylamine
silica
monomethylamine
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10025832A
Other languages
Japanese (ja)
Other versions
JP4035676B2 (en
Inventor
Toshio Hidaka
敏雄 日高
Emiko Yokose
恵美子 横瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP02583298A priority Critical patent/JP4035676B2/en
Priority to TW087111286A priority patent/TWI234556B/en
Priority to DE69818571T priority patent/DE69818571T2/en
Priority to EP98250264A priority patent/EP0893159B1/en
Priority to KR1019980029418A priority patent/KR100530450B1/en
Priority to US09/121,307 priority patent/US6153798A/en
Publication of JPH11228507A publication Critical patent/JPH11228507A/en
Application granted granted Critical
Publication of JP4035676B2 publication Critical patent/JP4035676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing dimethylamine in good productivity by reacting methanol with ammonia in the presence of a catalyst to provide mono- and di-methylamines and converting the monomethylamine to the dimethylamine by a disproportionation in the presence of the catalyst. SOLUTION: Raw materials consisting essentially of methanol and ammonia are reacted in the presence of a catalyst at 200 400 deg.C, preferably 250-350 deg.C to provide methylamines including monomethylamine and dimethylamine, and the monomethylamine is disproportionated in the presence of the catalyst to convert the monomethylamine to the dimethylamine in the method for producing the dimethylamine. Silica-modified crystalline silicoaluminophosphate molecular sieves consisting essentially of at least one kind selected from a group of SAPO-11, 17, 18, 26, 31, 33, 34, 35, 42, 43, 44, 47 and 56 are used as the catalyst for at least one of or both of the before two steps.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はジメチルアミンの製造法
に関する。ジメチルアミンはジメチルホルアミドに代表
される溶剤、ゴム製品、医薬品や界面活性剤等の原料と
して重要である。
The present invention relates to a process for producing dimethylamine. Dimethylamine is important as a raw material for solvents such as dimethylformamide, rubber products, pharmaceuticals and surfactants.

【0002】[0002]

【従来の技術】ジメチルアミンを工業的に製造する方法
としてはメタノールとアンモニアから製造する方法が代
表的であり、通常、シリカ−アルミナ等の非晶質固体酸
触媒を用いて400℃前後の温度で気相反応によって製
造されている。良く知られている様に非晶質固体酸触媒
を用いた場合には、モノメチルアミン、ジメチルアミ
ン、トリメチルアミンの三種類の熱力学的な平衡組成混
合物が得られる。メチルアミン類の需要は殆どジメチル
アミンに偏っているので、ジメチルアミン以外のメチル
アミン類は循環して不均化するのが通常である。しか
し、上記の様にトリメチルアミンの生成が多ければアン
モニアやモノメチルアミン、或いはジメチルアミンとの
複雑な共沸混合物の形成によって、プロセス循環量の増
大や装置類の大型化に繋がり、エネルギー消費が大きく
装置費用が嵩む等の欠点がある。この様な欠点を解決す
る為にジメチルアミンを選択的に得る試みが種々、検討
されている。
2. Description of the Related Art As a method for industrially producing dimethylamine, a method for producing dimethylamine from methanol and ammonia is typical. Usually, a temperature of about 400.degree. C. using an amorphous solid acid catalyst such as silica-alumina is used. It is manufactured by a gas phase reaction. As is well known, when an amorphous solid acid catalyst is used, a mixture of three thermodynamic equilibrium compositions of monomethylamine, dimethylamine and trimethylamine is obtained. Since the demand for methylamines is mostly biased toward dimethylamine, methylamines other than dimethylamine are usually circulated and disproportionate. However, if trimethylamine is generated as described above, the formation of a complicated azeotrope with ammonia, monomethylamine, or dimethylamine leads to an increase in the amount of process circulation and an increase in the size of equipment, resulting in large energy consumption. There are drawbacks such as increased costs. In order to solve such disadvantages, various attempts have been made to selectively obtain dimethylamine.

【0003】近年、ゼオライト触媒を用いる熱力学的な
平衡組成を上回るジメチルアミンの製造方法が提案され
ている。例えば、ゼオライトA(特開昭56−6984
6号公報)、FU−1(特開昭54−48708号公
報)、ZSM−5(USP4082805号公報)、フ
ェリェライト及びエリオナイト(特開昭56−1137
47号公報)、ZK−5、Rho、シャバサイト及びエ
リオナイト(特開昭61−254256号公報)、モル
デナイト(特開昭56−46846号公報、特開昭58
−49340号公報、特開昭59−210050号公
報、特開昭59−227841号公報)等やゼオライト
のシリル化(特開平3−262540号公報)、液相シ
リル化処理(特開平8−193057号公報)、或いは
キレート剤による修飾をを施したゼオライト(特開平8
−225498号公報)を用いる方法等が挙げられる。
しかし、これらの方法でも実用的には不充分であった。
その他、ジメチルアミンを製造する方法としてモノメチ
ルアミンとメタノール、或いはモノメチルアミンの不均
化反応による方法が知られているが何れの場合もトリメ
チルアミンの生成は避けられない。この問題点を改良し
たジメチルアミンを選択的に得るモノメチルアミンの不
均化方法が提案されている。例えば、モルデナイト、フ
ェリエライトやクリノプチロライト等のゼオライト類を
用いる方法(特開昭56−46846号公報)である。
しかし、この方法ではジメチルアミンの選択率を高くす
る事は出来るが、実用的な触媒寿命が望める300℃前
後の温度ではモノメチルアミンの転化率が低く、ジメチ
ルアミンの収率が低い為、実際のプロセスに適用するに
は難があるものであった。メタノールとアンモニアから
のジメチルアミンの選択的な製造法は技術的、経済的観
点から見て非常に意義が大きく、この課題の解決が望ま
れている。
In recent years, a method for producing dimethylamine exceeding a thermodynamic equilibrium composition using a zeolite catalyst has been proposed. For example, zeolite A (JP-A-56-684)
No. 6), FU-1 (JP-A-54-48708), ZSM-5 (US Pat. No. 4,082,805), ferrierite and erionite (JP-A-56-1137).
No. 47), ZK-5, Rho, shabasite and erionite (JP-A-61-254256), mordenite (JP-A-56-46846, JP-A-58).
JP-A-49340, JP-A-59-21050, JP-A-59-227841), silylation of zeolite (JP-A-3-262540), and liquid-phase silylation treatment (JP-A-8-193957). Japanese Patent Application Laid-Open No. H8 (1996)) or zeolite modified with a chelating agent
No. 225498).
However, these methods have not been practically sufficient.
In addition, as a method for producing dimethylamine, a method based on a disproportionation reaction between monomethylamine and methanol or monomethylamine is known, but in any case, production of trimethylamine is inevitable. A method for disproportionation of monomethylamine which selectively obtains dimethylamine which has solved this problem has been proposed. For example, a method using zeolites such as mordenite, ferrierite and clinoptilolite (JP-A-56-46846).
However, although this method can increase the selectivity of dimethylamine, the conversion of monomethylamine is low and the yield of dimethylamine is low at a temperature around 300 ° C. where a practical catalyst life can be expected. It was difficult to apply to the process. The selective production of dimethylamine from methanol and ammonia is very significant from a technical and economic point of view, and it is desired to solve this problem.

【0004】[0004]

【課題を解決するための手段】本発明の目的は従来技術
の欠点を克服したメタノールとアンモニアからのジメチ
ルアミンの製造法を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a process for producing dimethylamine from methanol and ammonia which overcomes the disadvantages of the prior art.

【0005】[0005]

【発明が解決しようとする課題】本発明者等はジメチル
アミンを選択的に製造する工業的に実施可能な方法を開
発する為に鋭意検討を重ねた。その結果、メタノールと
アンモニアの反応に於いてトリメチルアミンの生成を抑
えて選択的にモノメチルアミンとジメチルアミンを与え
るシリカ変性モレキュラーシーブ触媒が、驚くべき事
に、モノメチルアミンの不均化反応に於いても高い活性
と選択性を示し、従来に比べてジメチルアミンがより有
利に製造出来ると言う予期せぬ事実を見いだし、本発明
に到達した。
SUMMARY OF THE INVENTION The present inventors have intensively studied to develop an industrially feasible method for selectively producing dimethylamine. As a result, a silica-modified molecular sieve catalyst that selectively produces monomethylamine and dimethylamine by suppressing the formation of trimethylamine in the reaction of methanol and ammonia has surprisingly surprisingly been used in the disproportionation reaction of monomethylamine. It has been found that dimethylamine has high activity and selectivity, and that dimethylamine can be produced more advantageously than in the past.

【0006】即ち、本発明はメタノールとアンモニアと
を主成分とする原料から触媒の存在下モノメチルアミン
とジメチルアミンとを含むメチルアミン類を生成する工
程1と、工程2で得られたモノメチルアミンを触媒の存
在下不均化してジメチルアミンに転化する工程2とを含
み、且つ工程1及び工程2の少なくとも一方に触媒とし
てシリカ変性結晶質シリコアルミノホスフェートモレキ
ュラーシーブを用いる、メタノールとアンモニアからジ
メチルアミンを製造する方法である。
That is, the present invention relates to a process for producing methylamines containing monomethylamine and dimethylamine from a raw material containing methanol and ammonia as main components in the presence of a catalyst, and the monomethylamine obtained in the process 2 Disproportionating to dimethylamine in the presence of a catalyst, and using a silica-modified crystalline silicoaluminophosphate molecular sieve as a catalyst in at least one of step 1 and step 2. It is a manufacturing method.

【0007】[0007]

【発明の実施の形態】本発明の工程1及び工程2で使用
可能な触媒として、有効細孔径が0.3から0.6nm
の範囲にあるモレキュラーシーブを挙げることが出来
る。例えばIUPACのゼオライトとその類縁化合物の
構造コードで言えば、8員環構造のABW,AEI,A
FX,APC,ATN,ATT,ATV,AWW,CH
A,DDR,EAB,ERI,GIS,JBW,KF
I,LEV,LTA,MER,MON,PAU,PH
I,RHO,RTE,RTH,VNI,9員環構造であ
るCHI,LOV,RSN,VSV,10員環構造のD
AC,EPI,FER,LAU,MEL,MFI,MF
S,MTT,NES,TON,WEI,12員環構造の
AFS,AFY,ATO,CAN,GME,MAZ,M
EI,MTW,OFF,RON,VET等が挙げられ、
こうした構造に該当する結晶質アルミノシリケートモレ
キュラーシーブ、及び結晶質シリコアルミノホスフェー
トモレキュラーシーブが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION As a catalyst that can be used in Steps 1 and 2 of the present invention, the effective pore diameter is from 0.3 to 0.6 nm.
Can be listed. For example, in the structural code of zeolite of IUPAC and its analogous compounds, ABW, AEI, A having an 8-membered ring structure
FX, APC, ATN, ATT, ATV, AWW, CH
A, DDR, EAB, ERI, GIS, JBW, KF
I, LEV, LTA, MER, MON, PAU, PH
I, RHO, RTE, RTH, VNI, CHI, LOV, RSN, VSV as a 9-membered ring structure, and D as a 10-membered ring structure
AC, EPI, FER, LAU, MEL, MFI, MF
S, MTT, NES, TON, WEI, AFS, AFY, ATO, CAN, GME, MAZ, M with 12-membered ring structure
EI, MTW, OFF, RON, VET, etc.
A crystalline aluminosilicate molecular sieve and a crystalline silicoaluminophosphate molecular sieve corresponding to such a structure are preferable.

【0008】具体的には結晶質アルミノシリケートモレ
キュラーシーブとして、シャバサイト、モルデナイト、
エリオナイト、フェリエライト、エピスティルバイト、
クリノプチロライト、ポーリンガイト、フィッリップサ
イト、レビナイト、ゼオライト−A、rho、ZK−
5、FU−1、及びZSM−5等が挙げられる。又、結
晶質アルミノシリケートは酸強度や活性増加を目的とし
てイオン交換或いは金属置換等を施しても良く、Li、
Na、K、Rb、Cs、Be、Mg、Ca、Sr、B
a、Be、Mg、Ca、Sr、Ba、Ga、Zn、F
e、Co、B、P、Ge等の原子を用いるのが相応し
い。
Specifically, as crystalline aluminosilicate molecular sieve, shabasite, mordenite,
Elionite, Ferrierite, Epistilite,
Clinoptilolite, Paulingite, Philippite, Levinite, Zeolite-A, rho, ZK-
5, FU-1, and ZSM-5. In addition, the crystalline aluminosilicate may be subjected to ion exchange or metal substitution for the purpose of increasing acid strength and activity, such as Li,
Na, K, Rb, Cs, Be, Mg, Ca, Sr, B
a, Be, Mg, Ca, Sr, Ba, Ga, Zn, F
It is appropriate to use atoms such as e, Co, B, P, and Ge.

【0009】本発明に於ける、結晶質シリコアルミノホ
スフェートモレキュラーシーブとは、結晶質燐酸アルミ
ニウム化合物のP、又はAl−P結合の一部を珪素で同
形置換したものを指し、通常、SAPOと称される。具
体的には、例えば、SAPO−5、11、17、18、
31、34、35、37、40、41、42、44、4
7、或いは56等が挙げられ、更にはこれ等をLi、T
i、Zr、V、Cr、Mn、Fe、Co、Zn、Be、
Mg、Ca、B、Ga、或いはGe等で同形置換した化
合物が挙げられる。この中、SAPO−11、17、1
8、26、31、33、34、35、42、43、4
4、47及び56が特に好ましい。
In the present invention, the crystalline silicoaluminophosphate molecular sieve refers to a crystalline aluminum phosphate compound in which a part of the P or Al-P bond is isomorphously substituted with silicon, and is usually called SAPO. Is done. Specifically, for example, SAPO-5, 11, 17, 18,
31, 34, 35, 37, 40, 41, 42, 44, 4
7, or 56, and the like.
i, Zr, V, Cr, Mn, Fe, Co, Zn, Be,
Compounds isomorphously substituted with Mg, Ca, B, Ga, Ge, or the like can be given. Among them, SAPO-11, 17, 1
8, 26, 31, 33, 34, 35, 42, 43, 4
4, 47 and 56 are particularly preferred.

【0010】この様な結晶質モレキュラーシーブはアル
ミ化合物、シリカ源、必要に応じて燐酸水溶液を加え、
鋳型剤としてアミンや第四級アンモニウム化合物等を用
いて水熱合成する事で比較的容易に所望のものを得る事
が出来る。ジメチルアミン触媒として適当な結晶質モレ
キュラーシーブを得る上で、特に好ましいのは鋳型剤に
用いるアミン、或いは有機アンモニウム塩水溶液を20
℃以下に冷却し、次いでアルミニウムアルコキシドを添
加して加水分解し、均一な水酸化アルミニウムのコロイ
ド又は水溶液を得、シリカ、若しくは珪素源、及び必要
に応じて燐酸、又は燐源、Li、Ti、Zr、V、C
r、Mn、Fe、Co、Zn、Be、Mg、Ca、B、
Ga、及びGe源を加えた混合物を水熱処理する手順に
従う事である。
[0010] Such a crystalline molecular sieve is prepared by adding an aluminum compound, a silica source and, if necessary, a phosphoric acid aqueous solution.
The desired product can be obtained relatively easily by hydrothermal synthesis using an amine or a quaternary ammonium compound as a template agent. In order to obtain a suitable crystalline molecular sieve as a dimethylamine catalyst, it is particularly preferable to use an amine or organic ammonium salt aqueous solution used as a template agent for 20 minutes.
And then hydrolyzed by adding aluminum alkoxide to obtain a homogeneous aluminum hydroxide colloid or aqueous solution, silica or silicon source, and phosphoric acid or phosphorus source as needed, Li, Ti, Zr, V, C
r, Mn, Fe, Co, Zn, Be, Mg, Ca, B,
This is to follow the procedure of hydrothermally treating the mixture to which the Ga and Ge sources have been added.

【0011】上記、結晶性アルミノシリケート、及び結
晶性シリコアルミノホスフェート類は本発明の工程1及
び工程2の触媒として用いる事も出来るが、トリメチル
アミンの生成を抑えるには不充分な場合が多い。ジメチ
ルアミンを選択的に得るには触媒修飾が好適であり、S
i、Ge、B、Ga等の III族及びIV族元素による変性
が好ましい。中でもシリカ変性を行う事が特に好まし
い。シリカ変性法としては、例えば、Si源をシリカ変
性前の触媒に添加しその表面にケイ素原子を堆積、沈殿
又は被覆する処理や、四塩化珪素を用いるCVDによる
気相シリル化や有機珪素化合物を用いるシラン処理等が
ある。シラン処理に用いる有機珪素化合物として、例え
ば、トリエチルシラン、メチルフェニルシラン、フェニ
ルシラン、ジフェニルシランやトリエチルシラン等のア
ルキル、若しくはアラルキルシラン類、メチルジクロロ
シラン、エチルメチルクロロシラン、ジメチルジクロロ
シランやフェニルメチルクロロシラン等のクロロシラン
類、トリメトキシシラン、テトラメトキシシシラン、ト
リエトキシシラン、テトラエトキシシラン、ジエトキシ
メチルシランやアリロキシトリメチルシラン等のアルコ
キシシラン類、ジメチルアミノトリメチルシラン、N、
N−ジメチルアミノジメチルシランやトリス(N、N−ジ
メチルアミノ)メチルシラン等のシリルアミン類、N、O
−ビス(トリメチルシリル)アセトアミド、N−トリメ
チルシリルアセトアミドやビストリメチルシリルウレア
等のシリルアミド類が挙げられる。この中、安価なクロ
ロシラン類やアルコキシシラン類が好ましく、特にアル
コキシシラン類が好ましい。
The above-mentioned crystalline aluminosilicates and crystalline silicoaluminophosphates can be used as catalysts in the steps 1 and 2 of the present invention, but they are often insufficient to suppress the formation of trimethylamine. In order to selectively obtain dimethylamine, catalyst modification is preferable, and S
Modification by group III and group IV elements such as i, Ge, B, Ga, etc. is preferred. Among them, it is particularly preferable to carry out silica modification. As the silica modification method, for example, a process of adding a Si source to a catalyst before silica modification and depositing, precipitating or coating silicon atoms on the surface thereof, gas-phase silylation by CVD using silicon tetrachloride, or an organic silicon compound There is a silane treatment to be used. Examples of the organic silicon compound used for the silane treatment include, for example, alkyl such as triethylsilane, methylphenylsilane, phenylsilane, diphenylsilane and triethylsilane, or aralkylsilanes, methyldichlorosilane, ethylmethylchlorosilane, dimethyldichlorosilane and phenylmethylchlorosilane. Such as chlorosilanes, trimethoxysilane, tetramethoxysilane, triethoxysilane, tetraethoxysilane, alkoxysilanes such as diethoxymethylsilane and allyloxytrimethylsilane, dimethylaminotrimethylsilane, N,
Silylamines such as N-dimethylaminodimethylsilane and tris (N, N-dimethylamino) methylsilane, N, O
And silylamides such as -bis (trimethylsilyl) acetamide, N-trimethylsilylacetamide and bistrimethylsilylurea. Of these, inexpensive chlorosilanes and alkoxysilanes are preferred, and alkoxysilanes are particularly preferred.

【0012】上記、シラン処理剤によるシリカ変性の
際、あらかじめ250から750℃の温度において水蒸
気加熱処理を施したり、酸やアミン、又はキレート剤等
による浸漬処理や適当な調湿処理等を選択して適宜行う
とより効果的である。シラン処理剤による処理条件を一
概に規定する事は難しいが、例えば、室温から700℃
の範囲の温度で、48時間以下の浸漬時間、圧力は0.
1以下、或いは30MPa以下の気相、液相、或いは超
臨界状態において実施する事が出来る。シラン処理を、
より効果的なものとする為に例えば、アルコール類、エ
ステル類炭化水素類等の適当な溶剤を用いて、浸漬処
理、加熱振盪や超音波分散等を適宜実施するのが好まし
い。シラン処理剤の濃度は、通常、1から30重量パー
セントの範囲であれば充分であるが特に制限は無い。シ
ラン処理後、濾別、洗浄、乾燥処理を施した後、好まし
くは酸化雰囲気下に、温度400から750℃の範囲、
2から24時間の条件で焼成する事で高い触媒活性とジ
メチルアミンへの選択性が賦与される。
At the time of the above-mentioned silica modification with the silane treatment agent, a steam heat treatment is performed in advance at a temperature of 250 to 750 ° C., an immersion treatment with an acid, an amine, a chelating agent or the like, or an appropriate humidity control treatment is selected. It is more effective to perform it appropriately. Although it is difficult to stipulate the treatment conditions by the silane treatment agent, for example, from room temperature to 700 ° C.
Immersion time of less than 48 hours at a temperature in the range
It can be carried out in a gas phase, liquid phase of 1 MPa or less, or 30 MPa or less, or in a supercritical state. Silane treatment,
In order to make it more effective, it is preferable to appropriately perform immersion treatment, heat shaking, ultrasonic dispersion, and the like using an appropriate solvent such as alcohols, esters, and hydrocarbons. The concentration of the silane treatment agent is usually sufficient if it is in the range of 1 to 30% by weight, but is not particularly limited. After the silane treatment, filtration, washing, and drying treatments are performed, preferably in an oxidizing atmosphere, at a temperature of 400 to 750 ° C,
Firing under conditions of 2 to 24 hours imparts high catalytic activity and selectivity to dimethylamine.

【0013】この様にして得られるシリカ変性結晶質ア
ルミノシリケート類及びシリカ変性結晶質シリコアルミ
ノホスフェート類のうち、本発明の工程1及び工程2で
用いる触媒としてはシリカ変性結晶質シリコアルミノホ
スフェート類が特に好ましい。従って本発明においては
工程1及び工程2の少なくとも一方にシリカ変性結晶質
シリコアルミノホスフェート類を用いる。工程1及び工
程2の両方にシリカ変性結晶質シリコアルミノホスフェ
ート類を用いる態様が最も好ましい。シリカ変性触媒は
そのまま、或いは適宜バインダーを加えて成型処理をす
る等してジメチルアミンの製造に好適に用いる事が出来
る。
[0013] Among the silica-modified crystalline aluminosilicates and silica-modified crystalline silicoaluminophosphates thus obtained, the catalyst used in Steps 1 and 2 of the present invention includes silica-modified crystalline silicoaluminophosphates. Particularly preferred. Therefore, in the present invention, silica-modified crystalline silicoaluminophosphates are used in at least one of Step 1 and Step 2. The most preferred embodiment uses silica-modified crystalline silicoaluminophosphates in both Step 1 and Step 2. The silica-modified catalyst can be suitably used for the production of dimethylamine as it is, or by subjecting it to a molding treatment by adding an appropriate binder.

【0014】本発明の実施に用いる装置は主に、工程1
の実施に用いる主反応器と工程2の実施に用いる副反応
器とからなる。工程1ではメタノールとアンモニアを主
成分とする原料から触媒の存在下モノメチルアミンとジ
メチルアミンとを含むメチルアミン類を生成する。工程
1の反応後、モノメチルアミンを含むアンモニア回収、
トリメチルアミン回収、脱水、次いでモノメチルアミン
とジメチルアミンの回収を行う。回収は通常蒸留により
行われる。回収されたアンモニア及びトリメチルアミン
は工程1の主反応器に循環される。回収されたモノメチ
ルアミンは工程2の副反応器において不均化反応により
ジメチルアミンに転化される。回収されたモノメチルア
ミンを主反応器に循環し、モノメチルアミンの不均化を
行う事も出来るが、回収したモノメチルアミンを効率的
にジメチルアミンに転化する為には、不均化反応用の副
反応器を設ける事が好ましい。工程1及び工程2で生成
されたジメチルアミンは目的物として得られる。工程1
及び工程2の反応形態は気相固定床、或いは流動床に於
ける流通方式での実施が特に好ましいがこれだけに限る
ものでは無い。これ等の主、副反応器は必要に応じて単
独、或いは複数基を設けて実施しても良い。
The apparatus used for carrying out the present invention is mainly composed of step 1
And a sub-reactor used to perform Step 2. In step 1, methylamines containing monomethylamine and dimethylamine are produced from a raw material mainly containing methanol and ammonia in the presence of a catalyst. After the reaction in Step 1, recover ammonia containing monomethylamine,
Trimethylamine recovery and dehydration, followed by recovery of monomethylamine and dimethylamine. Recovery is usually performed by distillation. The recovered ammonia and trimethylamine are recycled to the main reactor of Step 1. The recovered monomethylamine is converted to dimethylamine by a disproportionation reaction in the side reactor of Step 2. The recovered monomethylamine can be circulated to the main reactor to disproportionate the monomethylamine, but in order to convert the recovered monomethylamine to dimethylamine efficiently, It is preferred to provide a reactor. The dimethylamine produced in Step 1 and Step 2 is obtained as the target substance. Step 1
The reaction mode in step 2 is particularly preferably carried out in a flow system in a fixed-phase gas phase bed or a fluidized bed, but is not limited thereto. These main and sub-reactors may be implemented singly or as required with a plurality of reactors.

【0015】工程1に於ける原料はメタノールとアンモ
ニアであり、これにジメチルエーテルやメチルアミン類
を含む事もある。工程2に於ける原料はモノメチルアミ
ンであり、これにメタノールとジメチルエーテル、或い
は他のメチルアミン類を含む事もある。工程1及び工程
2の何れの場合も200から400℃の温度範囲で行う
事が好ましく、ジメチルアミンの選択率と触媒活性を考
慮すると、250から350℃の範囲が特に好ましい。
主反応器、及び副反応器に充填する触媒は同一であって
も、異なっても特に問題は無い。触媒は、単一、若しく
は複数の層に分けて充填使用する事が好ましく、反応熱
の除去、或いは触媒層の温度上昇に伴い生じる副反応の
抑制や触媒寿命の低下を避ける上で、複数の触媒充填層
を設ける事や原料を分割して複数の触媒層に供給する事
が特に好ましい。
The raw materials in step 1 are methanol and ammonia, which may contain dimethyl ether and methylamines. The starting material in step 2 is monomethylamine, which may include methanol and dimethyl ether, or other methylamines. In both cases of Step 1 and Step 2, it is preferable to carry out the reaction at a temperature in the range of 200 to 400 ° C., and particularly preferably in the range of 250 to 350 ° C. in consideration of the selectivity of dimethylamine and the catalytic activity.
There is no particular problem whether the catalysts charged in the main reactor and the sub-reactor are the same or different. The catalyst is preferably used in a single layer or in a plurality of layers and used in a packed manner.For the purpose of removing the reaction heat or suppressing the side reaction caused by the increase in the temperature of the catalyst layer and avoiding a reduction in the catalyst life, a plurality of catalysts are used. It is particularly preferable to provide a catalyst packed layer or to divide the raw material and supply it to a plurality of catalyst layers.

【0016】工程1及び工程2における反応圧力は、通
常、0.1から10MPaが好ましく、特に0.5から
2MPaの範囲が好ましい。工程1及び工程2における
原料供給速度(GHSV 1/h)は、大きい程生産性
の点で好ましいが、あまり大きくすると原料転化率が低
下するので好ましくない。本発明では、GHSVは通
常、毎時100から10000である事が好ましい。上
記の反応条件によりによって主反応器出口ではトリメチ
ルアミンを殆ど含まず、通常モノメチルアミン含有率2
0から40重量%、ジメチルアミン含有率は60から8
0重量%程度の組成のメチルアミンが得られる。従っ
て、モノメチルアミンをジメチルアミンに効果的に転化
可能な工程2を組み合わせる事でジメチルアミンの収率
を更に改善することが出来る。
The reaction pressure in step 1 and step 2 is usually preferably from 0.1 to 10 MPa, particularly preferably from 0.5 to 2 MPa. The higher the raw material supply rate (GHSV 1 / h) in Steps 1 and 2, the better in terms of productivity. However, if it is too high, it is not preferable because the raw material conversion rate decreases. In the present invention, it is preferable that the GHSV is usually 100 to 10,000 per hour. Due to the above reaction conditions, almost no trimethylamine is contained at the outlet of the main reactor due to the monomethylamine content of 2
0 to 40% by weight, dimethylamine content 60 to 8
Methylamine having a composition of about 0% by weight is obtained. Therefore, the yield of dimethylamine can be further improved by combining step 2 in which monomethylamine can be effectively converted to dimethylamine.

【0017】本発明では不均化に工程1と同じ触媒を用
いる事が可能であり、しかもモノメチルアミンの凡そ8
0%をジメチルアミンに転化可能な為、二段の反応を併
せた全収率は最大で約90%に達する。既存の方法、即
ち平衡型触媒を用いた場合の1段当たりの収率は約25
%であり、ゼオライト触媒を用いた場合でも、高々、6
0%にしか過ぎない。従って、本発明はこれ等に比べ
て、非常に有利なジメチルアミンの製造手段を提供す
る。本発明に依れば、従来の様にアンモニアやトリメチ
ルアミンを主とするプロセス流体を大量に循環する必要
が無くなり、しかも従来の技術に比べ高いジメチルアミ
ン収率が得られる。
In the present invention, it is possible to use the same catalyst as in Step 1 for disproportionation, and moreover, about 8% of monomethylamine is used.
Since 0% can be converted to dimethylamine, the combined overall yield of the two steps reaches a maximum of about 90%. The yield per stage using the existing method, that is, using an equilibrium type catalyst, is about 25.
%, And even when a zeolite catalyst is used,
Only 0%. Therefore, the present invention provides a very advantageous means for producing dimethylamine. According to the present invention, it is not necessary to circulate a large amount of a process fluid mainly composed of ammonia or trimethylamine as in the related art, and a higher dimethylamine yield can be obtained as compared with the related art.

【0018】[0018]

【実施例】次に本発明を、実施例、及び比較例をもって
更に詳細に説明する。以下の実施例、及び比較例に於け
るジメチルアミンへの反応は原料タンク、原料供給ポン
プ、不活性ガス導入用マスフローコントローラー、反応
管(内径13φ、長さ300mm、SUS316L)、試料採取タン
ク、背圧弁、及びメチルアミン類の分離精製装置等を備
えた加圧循環流通反応装置を用いて行った。又、必要に
応じメタノールとアンモニアの反応を行う主反応器と並
列に配置した副反応器を使用した。生成物は反応が定常
状態に達して2から4時間後に試料を約1時間かけて採
取しキャピラリーカラムとしてPora PLOT Aminesを用い
てFID検知方式のガスクロマトグラフで分析し、メチ
ルアミン類の組成分布を求めた。更に、必要に応じてプ
ロセス流体の物質収支を求めた。
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples. In the following Examples and Comparative Examples, the reaction to dimethylamine was carried out using a raw material tank, a raw material supply pump, a mass flow controller for introducing an inert gas, a reaction tube (inner diameter 13φ, length 300 mm, SUS316L), a sample collecting tank, The test was performed using a pressurized circulation circulation reactor equipped with a pressure valve, a device for separating and purifying methylamines, and the like. A sub-reactor arranged in parallel with a main reactor for reacting methanol and ammonia was used as necessary. After 2 to 4 hours after the reaction reaches a steady state, a sample is taken over about 1 hour and analyzed by gas chromatography with FID detection method using Pora PLOT Amines as a capillary column to determine the composition distribution of methylamines. Was. Further, the material balance of the process fluid was determined as required.

【0019】触媒調製例1 シリカ変性SAPO−34:35%−水酸化テトラエチ
ルアンモニウム( 151.47g)と純水(84.2g)の混合物を0
℃に冷却し、アルミニウムイソプロポキシド(81.7g)を
3分かけて添加し、15分間高速攪拌を行った。次に、
シリカゾル( 12g)を加え、5分間均一になる高速攪拌
した。更に、85%燐酸( 46.1g)を加えて、同様に5分
間攪拌し、引き続き擂潰処理を1時間行った。得られた
混合物をオートクレーブ中、200℃で4時間加熱し
た。生成物を遠心分離、水洗操作を4回繰り返した後、
110℃で一晩乾燥した。更に空気中、600℃で4時
間焼成し白色の結晶粉末( 40g)を得た。この粉末はXR
D分析の結果、SAPO−34の回折パターンと一致し
た。又、結晶化度は高く、粒子が均一であり良く揃った
ものであった。この結晶を水分含有量10重量%に調整
した。次いで、13%テトラエトキシシラン(TEO
S)の乾燥トルエン溶液中に16時間浸漬した。浸漬
後、結晶を濾別し、120℃で4時間減圧乾燥した。そ
の後、更に空気中、600℃で3時間焼成を行いシリカ
変性SAPO−34(触媒1)、37.9gを得た。
Catalyst Preparation Example 1 Silica-modified SAPO-34: 35% -A mixture of tetraethylammonium hydroxide (151.47 g) and pure water (84.2 g) was mixed with 0
After cooling to 0 ° C., aluminum isopropoxide (81.7 g) was added over 3 minutes, and high-speed stirring was performed for 15 minutes. next,
Silica sol (12 g) was added, and the mixture was stirred at a high speed for 5 minutes to be uniform. Further, 85% phosphoric acid (46.1 g) was added, and the mixture was similarly stirred for 5 minutes, followed by crushing for 1 hour. The resulting mixture was heated in an autoclave at 200 ° C. for 4 hours. The product is centrifuged and washed four times.
Dry at 110 ° C. overnight. The mixture was further calcined at 600 ° C. for 4 hours in the air to obtain a white crystalline powder (40 g). This powder is XR
The result of D analysis was consistent with the diffraction pattern of SAPO-34. Also, the crystallinity was high, and the particles were uniform and well aligned. The crystals were adjusted to a water content of 10% by weight. Then, 13% tetraethoxysilane (TEO)
It was immersed in a dry toluene solution of S) for 16 hours. After immersion, the crystals were separated by filtration and dried under reduced pressure at 120 ° C. for 4 hours. Thereafter, the mixture was further calcined at 600 ° C. for 3 hours in the air to obtain 37.9 g of silica-modified SAPO-34 (catalyst 1).

【0020】触媒調製例2 シリカ変性CoSAPO−34:金属源として、酢酸コ
バルト( 2.5g)を添加した以外は、触媒調製例1と同
様にしてコバルトを含むSAPO−34を得、更にシラ
ン処理を施してシリカ変性された触媒2を得た。
Catalyst Preparation Example 2 Silica-Modified CoSAPO-34: A cobalt-containing SAPO-34 was obtained in the same manner as in Catalyst Preparation Example 1, except that cobalt acetate (2.5 g) was added as a metal source. Thus, a silica-modified catalyst 2 was obtained.

【0021】触媒調製例3 シリカ変性TiSAPO−34:触媒調製例2に於いて
Ti源としてTiイソプロポキシドを用いた以外は同様
にしてTiSAPO−34を得、更にシラン処理を施し
てシリカ変性された触媒3を得た。
Catalyst Preparation Example 3 Silica-Modified TiSAPO-34: TiSAPO-34 was obtained in the same manner as in Catalyst Preparation Example 2 except that Ti isopropoxide was used as a Ti source, and further subjected to silane treatment to be modified with silica. Catalyst 3 was obtained.

【0022】触媒調製例4 SAPO−34にシリカゲルを珪素として5wt%添加し
た後、乾燥し、更に50℃で焼成した後、打錠成形して
触媒4を得た。
Catalyst Preparation Example 4 5 weight% of silica gel as silicon was added to SAPO-34, dried, calcined at 50 ° C., and tableted to obtain Catalyst 4.

【0023】触媒調製例5 モルデナイト(東ソー、HSZ-630HOA、Si/Al2=16)を、
7重量%のTEOS乾燥エタノール溶液に浸漬し、60
℃で4時間超音波分散処理を施した。次に、遠心離と洗
浄を4回行った後、120℃で2時間減圧乾燥し、更に
空気中、600℃で3時間焼成し、シリカ変性モルデナ
イト(触媒5)を得た。
Catalyst Preparation Example 5 Mordenite (Tosoh, HSZ-630HOA, Si / Al2 = 16)
Dipped in 7% by weight of TEOS dry ethanol solution,
Ultrasonic dispersion treatment was performed at 4 ° C. for 4 hours. Next, after performing centrifugation and washing four times, it was dried under reduced pressure at 120 ° C. for 2 hours, and further calcined in air at 600 ° C. for 3 hours to obtain silica-modified mordenite (catalyst 5).

【0024】触媒調製例6 公知の文献(特開昭59−227841号等)に記載の
方法に準じて水蒸気処理したNaモルデナイト触媒を調
製した(触媒6)。
Catalyst Preparation Example 6 A steam-treated Na mordenite catalyst was prepared according to a method described in a known document (Japanese Patent Laid-Open No. 59-227841, etc.) (catalyst 6).

【0025】実施例1 (主反応:メタノールとアンモニアの反応)触媒1を反
応管に7.5g(容積 13.5ml)充填し、原料(メタ
ノール:アンモニア=1:1)混合物を毎時20g、空
間速度(GHSV: 1/h)1500で供給し、圧力2M
Pa温度320℃で反応を行った。反応成績はメタノー
ル転化率が99.4%、モノ、ジ、及びトリメチルアミ
ンの選択率は其々、35、63、2重量%であった。 (不均化:モノメチルアミンの不均化反応)触媒1を
2.8g(容積5ml)用いて、モノメチルアミンを原
料として、空間速度(GHSV: 1/h)500で供給
し、圧力2MPa、温度320℃で反応を行った。反応
成績はメタノール転化率が80%、ジ、及びトリメチル
アミンの選択率は、其々、99、1重量%であった。
Example 1 (Main reaction: reaction between methanol and ammonia) A reaction tube was charged with 7.5 g (volume: 13.5 ml) of a catalyst, and a raw material (methanol: ammonia = 1: 1) mixture was charged at an hourly space velocity of 20 g. (GHSV: 1 / h) Supply at 1500, pressure 2M
The reaction was performed at a Pa temperature of 320 ° C. The reaction results were as follows: methanol conversion was 99.4%, and selectivities of mono, di and trimethylamine were 35, 63 and 2% by weight, respectively. (Disproportionation: disproportionation reaction of monomethylamine) Using 2.8 g (volume 5 ml) of catalyst 1 and supplying monomethylamine as a raw material at a space velocity (GHSV: 1 / h) of 500, pressure 2 MPa, temperature The reaction was performed at 320 ° C. The reaction results were as follows: methanol conversion was 80%, and selectivities of di and trimethylamine were 99 and 1% by weight, respectively.

【0026】実施例2 実施例1に於いて、触媒2を用いた以外は同様にして反
応を行った。反応成績は表1に記載した。
Example 2 The reaction was carried out in the same manner as in Example 1 except that the catalyst 2 was used. The reaction results are shown in Table 1.

【0027】実施例3 実施例1に於いて、触媒3を用いた以外は同様に反応を
行った。反応成績は表1に記載した。
Example 3 A reaction was carried out in the same manner as in Example 1 except that the catalyst 3 was used. The reaction results are shown in Table 1.

【0028】実施例4 実施例1に於いて、触媒4を用いた以外は同様に反応を
行った。反応成績は表1に記載した。
Example 4 The reaction was carried out in the same manner as in Example 1 except that the catalyst 4 was used. The reaction results are shown in Table 1.

【0029】実施例5 主反応器に触媒1を20ml、副反応器にも同様に触媒
1を4ml充填して、何れの反応器においても、圧力2
MPa、温度320℃に於いて反応を行った。反応工程
の概略を図1に示す。主反応器にはメタノールとアンモ
ニア、及び蒸留系より循環されたメチルアミン類を含む
アンモニアを空間速度(GHSV: 1/h)1580で供
給した。蒸留系で分離回収したモノメチルアミンをSV
470で、副反応器へ供給した。プロセス流体の物質収
支を表2に纏めて記載した。この時のジメチルアミンの
生成量は毎時9.1gであった。
Example 5 The main reactor was filled with 20 ml of the catalyst 1 and the sub-reactor was similarly filled with 4 ml of the catalyst 1.
The reaction was carried out at a pressure of 320 ° C. at a pressure of MPa. The outline of the reaction process is shown in FIG. Methanol and ammonia, and ammonia containing methylamines circulated from the distillation system were supplied to the main reactor at a space velocity (GHSV: 1 / h) of 1580. Monomethylamine separated and recovered by distillation
At 470, it was fed to the side reactor. Table 2 summarizes the material balance of the process fluid. The amount of dimethylamine produced at this time was 9.1 g / hour.

【0030】比較例1 触媒調製例1に準じて、シリカ変性を施さないSAPO
−34を調製し、これを触媒に用いた以外は実施例1と
同様に反応を行った。反応成績は表1に記載した。
Comparative Example 1 According to Catalyst Preparation Example 1, SAPO without silica modification
-34 was prepared and reacted in the same manner as in Example 1 except that this was used as a catalyst. The reaction results are shown in Table 1.

【0031】比較例2 シリカ変性を施さないCoSAPO−34を調製し、こ
れを触媒に用いた以外は実施例1と同様に反応を行っ
た。反応成績は表1に記載した。
Comparative Example 2 CoSAPO-34 without silica modification was prepared and reacted in the same manner as in Example 1 except that this was used as a catalyst. The reaction results are shown in Table 1.

【0032】比較例3 シリカ変性を施さないTiSAPO−34を調製し、こ
れを触媒に用いた以外は実施例1と同様に反応を行っ
た。反応成績は表1に記載した。
Comparative Example 3 A reaction was carried out in the same manner as in Example 1 except that TiSAPO-34 not subjected to silica modification was prepared and used as a catalyst. The reaction results are shown in Table 1.

【0033】比較例4 触媒5を用い、温度320℃、圧力2MPa、空間速度
(GHSV: 1/h)900で主反応を実施した。同様に
触媒4を用いて空間速度(GHSV: 1/h)500で不
均化反応を行った。反応成績は表1に記載した。
Comparative Example 4 The main reaction was carried out using the catalyst 5 at a temperature of 320 ° C., a pressure of 2 MPa and a space velocity (GHSV: 1 / h) 900. Similarly, a disproportionation reaction was performed using the catalyst 4 at a space velocity (GHSV: 1 / h) of 500. The reaction results are shown in Table 1.

【0034】比較例5 主反応器に触媒6を20ml、副反応器にはシリカ−ア
ルミナ触媒(日東化学株式会社製 NH−H3N)を4
ml充填して、何れの反応器においても、圧力2MP
a、温度320℃に於いて反応を行った。反応工程の概
略を図1に示す。主反応器にはメタノールとアンモニ
ア、及び蒸留系より循環されたメチルアミン類を含むア
ンモニアとを空間速度(GHSV: 1/h)1550で供
給した。蒸留系で分離回収したモノメチルアミンとトリ
メチルアミンを、SV800で副反応器へ供給した。プ
ロセス流体の物質収支を表2に纏めて記載した。この時
のジメチルアミンの生成量は毎時6.0gであった。
Comparative Example 5 20 ml of catalyst 6 was used in the main reactor, and 4 silica-alumina catalysts (NH-H3N manufactured by Nitto Chemical Co., Ltd.) were used in the sub-reactor.
ml, and in any reactor, pressure 2MP
a) The reaction was carried out at a temperature of 320 ° C. The outline of the reaction process is shown in FIG. Methanol and ammonia, and ammonia containing methylamines circulated from the distillation system were supplied to the main reactor at a space velocity (GHSV: 1 / h) of 1550. Monomethylamine and trimethylamine separated and recovered in the distillation system were supplied to the sub-reactor by SV800. Table 2 summarizes the material balance of the process fluid. At this time, the amount of dimethylamine produced was 6.0 g / hour.

【0035】[0035]

【表1】 表1 実施例及び比較例の反応成績一覧 転化率 選択率 触媒 温度 GHSV MeOH/モノメルアミン MMA DMA TMA ℃ 1/h % (wt%) 実施例1 主反応 触媒1 320 1500 99.4 35 63 2 不均化 触媒1 320 500 80.0 99 1 実施例2 主反応 触媒2 320 1500 98.6 38 60 2 不均化 触媒2 320 500 78.8 97 3 実施例3 主反応 触媒3 320 1500 99.6 37 62 1 不均化 触媒3 320 500 79.2 98 2 実施例4 主反応 触媒4 320 1500 98.5 35 60 5 不均化 触媒4 320 500 80.0 98 2 比較例1 主反応 SAPO-34 320 1500 83.0 30 30 40 不均化 SAPO-34 320 500 71.0 91 9 比較例2 主反応 CoSAPO-34 320 1500 88.0 33 30 34 不均化 CoSAPO-34 320 500 67.5 92 8 比較例3 主反応 TiSAPO-34 320 1500 76.5 32 28 40 不均化 TioSAPO-34 320 500 67.5 92 8 比較例4 主反応 触媒5 320 900 97.0 35 63 2 不均化 触媒5 320 500 67.2 69 31 主反応:メタノールとアンモニアの反応 不均化:モノメチルアミンの不均化反応[Table 1] List of reaction results of Examples and Comparative Examples Conversion selectivity Catalyst temperature GHSV MeOH / Monomeramine MMA DMA TMA ° C 1 / h% (wt%) Example 1 Main reaction Catalyst 1 320 1500 99.4 35 63 2 Disproportionation catalyst 1 320 500 80.0 99 1 Example 2 main reaction catalyst 2 320 1500 98.6 38 60 2 disproportionation catalyst 2 320 500 78.8 97 3 Example 3 main reaction catalyst 3 320 1500 99.6 37 62 1 disproportionation catalyst 3 320 500 79.2 98 2 Example 4 Main Reaction Catalyst 4 320 1500 98.5 35 60 5 Disproportionation Catalyst 4 320 500 80.0 98 2 Comparative Example 1 Main Reaction SAPO-34 320 1500 83.0 30 30 40 Disproportionation SAPO-34 320 500 71.0 91 9 Comparative Example 2 Main reaction CoSAPO-34 320 1500 88.0 33 30 34 Disproportionation CoSAPO-34 320 500 67.5 92 8 Comparative Example 3 Main reaction TiSAPO-34 320 1500 76.5 32 28 40 Disproportionation TioSAPO-34 320 500 67.5 92 8 Comparative Example 4 Main reaction Catalyst 5 320 900 97.0 35 63 2 Disproportionation Catalyst 5 320 500 67.2 69 31 Main reaction: Reaction of methanol with ammonia Disproportionation: Disproportionation of monomethylamine reaction

【0036】[0036]

【表2】 表1に例示した様に、本発明に依れば従来の製造法に比
べて有利にジメチルアミンを製造可能である事が分か
る。更に、表2に記載の実施例1と比較例5を対比すれ
ば、従来のプロセスに比べてジメチルアミンの生産量の
増加、及び同一生産量で比較した場合のプロセス循環量
の低減に著しい効果がある事が明白である。
[Table 2] As shown in Table 1, it is understood that dimethylamine can be produced more advantageously according to the present invention than in the conventional production method. Furthermore, when Example 1 and Comparative Example 5 described in Table 2 are compared with each other, a remarkable effect is obtained on an increase in the production amount of dimethylamine as compared with the conventional process and a reduction in the process circulation amount when compared with the same production amount. It is clear that there is.

【0037】[0037]

【発明の効果】ジメチルアミンの大きな生産性の向上が
可能であり、触媒の選択性や活性が高い為、未反応原料
の回収操作が不要であり、蒸留負荷が大きく軽減される
等の利点が生じる。その結果、製造工程の簡略化、機器
数の低減、機器類の小型化や生産性の向上等が可能であ
る。従って、本発明は工業的に優れ、価格競争力の高い
ジメチルアミン製造法であり、その意義は極めて大き
い。
As described above, the productivity of dimethylamine can be greatly improved, and the selectivity and activity of the catalyst are high, so that there is no need to recover the unreacted raw material and the load of distillation is greatly reduced. Occurs. As a result, it is possible to simplify the manufacturing process, reduce the number of devices, reduce the size of devices and improve productivity. Therefore, the present invention is a process for producing dimethylamine which is industrially excellent and has high price competitiveness, and its significance is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例5及び比較例5で用いた反応工程の概略FIG. 1 is an outline of the reaction steps used in Example 5 and Comparative Example 5.

【符号の説明】[Explanation of symbols]

1; 流路(主反応器への原料供給) 2; 流路 3; 流路(副反応器への原料供給) 4; 流路 5; 流路(トリメチルアミン) 6; 流路(ジメチルアミン) 1; flow path (supply of raw material to main reactor) 2: flow path 3; flow path (supply of raw material to sub-reactor) 4: flow path 5; flow path (trimethylamine) 6; flow path (dimethylamine)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 メタノールとアンモニアとからジメチル
アミンを製造する方法において、該方法がメタノールと
アンモニアを主成分とする原料から触媒の存在下モノメ
チルアミンとジメチルアミンとを含むメチルアミン類を
生成する工程1と、工程1で得られたモノメチルアミン
を触媒の存在下不均化してジメチルアミンに転化する工
程2とを含み、且つ工程1及び工程2の少なくとも一方
に触媒としてシリカ変性結晶質シリコアルミノホスフェ
ートモレキュラーシーブを用いることを特徴とするジメ
チルアミンの製造法。
1. A method for producing dimethylamine from methanol and ammonia, the method comprising the step of producing methylamines containing monomethylamine and dimethylamine from a raw material mainly comprising methanol and ammonia in the presence of a catalyst. And step 2 of disproportionating monomethylamine obtained in step 1 to dimethylamine by disproportionation in the presence of a catalyst, and in at least one of step 1 and step 2, a silica-modified crystalline silicoaluminophosphate as a catalyst A method for producing dimethylamine, comprising using a molecular sieve.
【請求項2】 工程1及び工程2のいずれにおいても触
媒としてシリカ変性結晶質シリコアルミノホスフェート
モレキュラーシーブを用いる請求項1記載の製造法。
2. The process according to claim 1, wherein a silica-modified crystalline silicoaluminophosphate molecular sieve is used as a catalyst in both Step 1 and Step 2.
【請求項3】 触媒であるシリカ変性結晶質シリコアル
ミノホスフェートモレキュラーシーブの有効細孔径が
0.3から0.6nmの範囲にある請求項1記載の製造
法。
3. The method according to claim 1, wherein the effective pore size of the silica-modified crystalline silicoaluminophosphate molecular sieve as a catalyst is in the range of 0.3 to 0.6 nm.
【請求項4】 触媒であるシリカ変性結晶質シリコアル
ミノホスフェートモレキュラーシーブがSAPO−1
1、17、18、26、31、33、34、35、4
2、43、44、47及び56の中から選択された少な
くとも一種類を主な構成成分とするものである請求項2
記載の製造法。
4. A silica-modified crystalline silicoaluminophosphate molecular sieve as a catalyst is SAPO-1
1, 17, 18, 26, 31, 33, 34, 35, 4
3. At least one selected from 2, 43, 44, 47 and 56 is a main component.
Production method as described.
【請求項5】 シリカ変性結晶質シリコアルミノホスフ
ェートモレキュラーシーブがH型、或いはH型の一部が
Li、Ti、Zr、V、Cr、Mn、Fe、Co、Z
n、Be、Mg、Ca、B、Ga、及びGeの中から選
択された原子によって置換されたものである請求項1記
載の方法。
5. The silica-modified crystalline silicoaluminophosphate molecular sieve is H-type or a part of H-type is Li, Ti, Zr, V, Cr, Mn, Fe, Co, Z
The method according to claim 1, wherein the method is substituted with an atom selected from n, Be, Mg, Ca, B, Ga, and Ge.
【請求項6】シリカ変性結晶質シリコアルミノホスフェ
ートモレキュラーシーブが、シリカ変性する前の該表面
にケイ素原子を堆積、沈殿又は被覆してシリカ変性され
たものである請求項1記載の方法。
6. The method according to claim 1, wherein the silica-modified crystalline silicoaluminophosphate molecular sieve has been silica-modified by depositing, precipitating or coating silicon atoms on the surface before silica-modification.
【請求項7】シリカ変性結晶質シリコアルミノホスフェ
ートモレキュラーシーブがアルコキシシラン、或いはハ
ロゲン化シランより選ばれる少なくとも1種類を用いて
シリカ変性されたものである請求項1記載の方法。
7. The method according to claim 1, wherein the silica-modified crystalline silicoaluminophosphate molecular sieve has been silica-modified using at least one selected from alkoxysilane and halogenated silane.
JP02583298A 1997-07-23 1998-02-06 Method for producing dimethylamine Expired - Fee Related JP4035676B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP02583298A JP4035676B2 (en) 1998-02-06 1998-02-06 Method for producing dimethylamine
TW087111286A TWI234556B (en) 1997-07-23 1998-07-13 Catalysts for methanol conversion reactions
DE69818571T DE69818571T2 (en) 1997-07-23 1998-07-21 Catalysts for chemical conversion reactions
EP98250264A EP0893159B1 (en) 1997-07-23 1998-07-21 Catalysts for chemical conversion reactions
KR1019980029418A KR100530450B1 (en) 1997-07-23 1998-07-22 Methanol Conversion Reaction Catalyst
US09/121,307 US6153798A (en) 1997-07-23 1998-07-23 Catalysts for methanol conversion reactions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02583298A JP4035676B2 (en) 1998-02-06 1998-02-06 Method for producing dimethylamine

Publications (2)

Publication Number Publication Date
JPH11228507A true JPH11228507A (en) 1999-08-24
JP4035676B2 JP4035676B2 (en) 2008-01-23

Family

ID=12176843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02583298A Expired - Fee Related JP4035676B2 (en) 1997-07-23 1998-02-06 Method for producing dimethylamine

Country Status (1)

Country Link
JP (1) JP4035676B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038213A (en) * 1999-08-03 2001-02-13 Mitsubishi Gas Chem Co Inc Catalyst for manufacturing methylamine
JP2002210374A (en) * 2001-01-18 2002-07-30 Mitsubishi Gas Chem Co Inc Molecular sieve tablet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038213A (en) * 1999-08-03 2001-02-13 Mitsubishi Gas Chem Co Inc Catalyst for manufacturing methylamine
JP4506908B2 (en) * 1999-08-03 2010-07-21 三菱瓦斯化学株式会社 Methylamine production catalyst
JP2002210374A (en) * 2001-01-18 2002-07-30 Mitsubishi Gas Chem Co Inc Molecular sieve tablet
JP4736190B2 (en) * 2001-01-18 2011-07-27 三菱瓦斯化学株式会社 Molecular sieve tablet molding

Also Published As

Publication number Publication date
JP4035676B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
EP0893159B1 (en) Catalysts for chemical conversion reactions
JP4168214B2 (en) Methylamine production catalyst and method for producing the catalyst
CN100475699C (en) Aei-type zeolite, synthesis and use in the conversion of oxygenates to olefins
JP4221532B2 (en) Methylamine production catalyst and method for producing methylamines using the catalyst
JP3883326B2 (en) Synthesis of triethylenediamine and piperazine using zeolite catalysts modified with silicon-containing compounds
US7115238B2 (en) Crystalline silicoaluminophosphate salt molecular sieve having octaoxygen-membered ring pore, process for producing the same and process for producing methylamine with the molecular sieve as catalyst
US5382696A (en) Method for preparing methylamines
JP7087636B2 (en) Zeolite catalyst treatment method and lower olefin production method
CN1027632C (en) Process for preparing high-Si zeolite containing rare-earth five-membered ring structure
JP4174634B2 (en) Silica-modified silicoaluminophosphate catalyst, method for producing the same, and method for producing methylamines and the like using the same
JP4273529B2 (en) Method for producing methylamines
JPH11228507A (en) Production of dimethylamine
CN1087976C (en) Method for making methylamines
KR20210103532A (en) CHA-type zeolitic material and method for preparing same
JPH0859566A (en) Production of methylamines
JPH0226607B2 (en)
CN111097503B (en) AEI/MFI composite structure molecular sieve catalyst, preparation method and application thereof
JPH08157428A (en) Production of methylamines
JPH06179640A (en) Production of methylamines
JP3489869B2 (en) Method for producing methylamines
JP3449629B2 (en) Method for producing methylamines
JP3539746B2 (en) Method for producing methylamines
EP0400739B1 (en) Defect-rich crystalline (metallo) silicates and process for preparing such (metallo) silicates
JPH08193057A (en) Production of methylamines
Minchev et al. On The Nature of the Catalytic Activity of SAPO-5

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees