JPH11228296A - Single crystal silicon carbide and its production - Google Patents

Single crystal silicon carbide and its production

Info

Publication number
JPH11228296A
JPH11228296A JP2327198A JP2327198A JPH11228296A JP H11228296 A JPH11228296 A JP H11228296A JP 2327198 A JP2327198 A JP 2327198A JP 2327198 A JP2327198 A JP 2327198A JP H11228296 A JPH11228296 A JP H11228296A
Authority
JP
Japan
Prior art keywords
sic
single crystal
crystal
layer
hydrogen ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2327198A
Other languages
Japanese (ja)
Other versions
JP2896667B1 (en
Inventor
Kichiya Yano
吉弥 谷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2327198A priority Critical patent/JP2896667B1/en
Application granted granted Critical
Publication of JP2896667B1 publication Critical patent/JP2896667B1/en
Publication of JPH11228296A publication Critical patent/JPH11228296A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a single crystal SiC by which the SiC can be efficiently grown to provide a good quality single crystal not having not only a micropipe defect but also lattice distortion and lattice defect by a heat treatment at a low temperature for a short time, and utilization as a semiconductor material and expansion of applicability is promoted. SOLUTION: A β-SiC layer 3 is formed on the surface of an cr-SiC single crystal substrate 1 through a hydrogen ion-containing layer 2' by a thermal CVD method, and the obtained composite body M is subjected to a heat treatment at 2,000-2,200 deg.C to convert a polycrystal body of the β-SiC layer 3 to the α-SiC, and orient the converted α-SiC to the same bearing as the crystal axis of the α-SiC single crystal substrate 1, and to integrally grow the α-SiC single crystal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、単結晶SiC及び
その製造方法に関するもので、詳しくは、発光ダイオー
ドや高温半導体電子素子、パワーデバイスの半導体基板
ウエハなどとして用いられる単結晶SiC及びその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal SiC and a method of manufacturing the same, and more particularly, to a single crystal SiC used as a light emitting diode, a high-temperature semiconductor electronic device, a semiconductor substrate wafer of a power device, and a method of manufacturing the same. It is about.

【0002】[0002]

【従来の技術】SiC(炭化珪素)は、耐熱性および機
械的強度に優れているだけでなく、放射線にも強く、さ
らに不純物の添加によって電子や正孔の価電子制御が容
易である上、広い禁制帯幅を持つ(因みに、6H型のS
iC単結晶で約3.0eV、4H型のSiC単結晶で
3.26eV)ために、Si(シリコン)やGaAs
(ガリウムヒ素)などの既存の半導体材料では実現する
ことができない大容量、高周波、耐圧、耐環境性を実現
することが可能で、次世代のパワーデバイス用半導体材
料として注目され、かつ期待されている。
2. Description of the Related Art SiC (silicon carbide) is not only excellent in heat resistance and mechanical strength, but also resistant to radiation. In addition, it is easy to control valence electrons and holes by adding impurities. Has a wide forbidden band (By the way, 6H type S
about 3.0 eV for an iC single crystal and 3.26 eV for a 4H type SiC single crystal), such as Si (silicon) or GaAs.
(Gallium arsenide) and other materials that can not be realized with existing semiconductor materials, can achieve high capacity, high frequency, withstand voltage and environmental resistance, and are attracting attention and expected as next-generation semiconductor materials for power devices I have.

【0003】ところで、この種のSiC単結晶の成長
(製造)方法として、従来、SiC研磨材の工業的製法
として一般的に知られているもので、種結晶基材をそれ
の外周から高周波電極で加熱することにより種結晶基材
の中心部で多くの核発生を起こして、種結晶基材の中心
部を中心として複数の渦巻き状の結晶成長を進行させる
アチソン法と、このアチソン法で作られた粉状のSiC
を原料として用い、単一の結晶核上に結晶を成長させる
昇華再結晶法などが知られている。
Incidentally, as a method of growing (manufacturing) this kind of SiC single crystal, conventionally, it is generally known as an industrial method for producing an SiC abrasive, a seed crystal base material is placed on the outer periphery of a high-frequency electrode from its periphery. A large number of nuclei are generated at the center of the seed crystal base material by heating at the center, and a plurality of spiral crystal growths are advanced around the center of the seed crystal base material. Powdered SiC
A sublimation recrystallization method for growing a crystal on a single crystal nucleus by using as a raw material is known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来の製造方法のうちアチソン法は、種結晶基材を長
時間かけて加熱することで単結晶がゆっくりと成長する
ものであって、結晶成長速度が1μm/hr.程度と非
常に低いだけでなく、このアチソン法で作られた粉状の
SiCを原料とする昇華再結晶法にあっては、昇華原料
自体が不純物を含んでおり、この不純物が成長する結晶
内に入り込んでマイクロパイプ欠陥と呼ばれ半導体デバ
イスを作製した際の漏れ電流等の原因となる結晶の成長
方向に貫通する直径数ミクロンのピンホールが100〜
1000/cm2 程度成長結晶中に残存しやすく、品質
的に十分なものが得られないという問題があり、このこ
とが既述のようにSiやGaAsなどの既存の半導体材
料に比べて多くの優れた特徴を有しながらも、その実用
化及び適用性の拡大を阻止する要因になっている。
However, among the above-mentioned conventional manufacturing methods, the Acheson method is a method in which a single crystal grows slowly by heating a seed crystal substrate over a long period of time. When the speed is 1 μm / hr. In the sublimation recrystallization method using the powdery SiC produced by the Acheson method as a raw material, the sublimation raw material itself contains impurities. When a pinhole having a diameter of several microns penetrates in a crystal growth direction, which penetrates into a crystal and is called a micropipe defect and causes a leakage current when a semiconductor device is manufactured, etc.
There is a problem that about 1000 / cm 2 is likely to remain in the grown crystal, and it is not possible to obtain a sufficient material in terms of quality. As described above, this is more than that of existing semiconductor materials such as Si and GaAs. Although it has excellent features, it is a factor that prevents its practical application and applicability.

【0005】本出願人らは、上記したアチソン法や昇華
再結晶法による技術的課題を解消する手段として、α−
SiC単結晶基材の表面に熱化学的蒸着法によりβ−S
iC層を形成した後、その複合体を熱処理することによ
りβ−SiC層の多結晶体をα−SiCに相変位(転
化)させてα−SiC単結晶基材の結晶軸と同方位に配
向して単結晶を一体化し育成するようにした単結晶Si
Cの製造方法を既に提案している。
The present applicants have proposed α-methods for solving the technical problems of the Acheson method and the sublimation recrystallization method.
Β-S on the surface of SiC single crystal substrate by thermochemical vapor deposition
After forming the iC layer, the complex is heat-treated to phase-change (convert) the polycrystalline body of the β-SiC layer into α-SiC and oriented in the same direction as the crystal axis of the α-SiC single crystal base material. Single crystal Si that is integrated to grow single crystal
A method for manufacturing C has already been proposed.

【0006】本出願人らが既に提案した上記の単結晶S
iC製造方法によれば、従来のアチソン法や昇華再結晶
法に比べて、結晶成長速度が速く、また、結晶核の発生
や不純物の拡散によるマイクロパイプ欠陥の発生も非常
に少なくすることができるものの、高純度の単結晶と得
るためには、α−SiC単結晶基材とその表面に熱化学
的蒸着法により形成され多結晶体に成長されたβ−Si
C層とを2200〜2300℃の非常に高い温度で長時
間(20時間以上)かけて熱処理することが必要であ
り、そのため、Si原子とC原子の結合が高温度熱処理
時の熱エネルギーにより生じる格子振動に耐えられなく
なって切れるなど分解し、これによって、格子歪みや原
子の空孔によるSiC格子の欠陥を招きやすく、良質な
単結晶の成長には未だ改善の余地があった。
The above-mentioned single crystal S already proposed by the present applicants
According to the iC manufacturing method, the crystal growth rate is faster than that of the conventional Acheson method or sublimation recrystallization method, and the generation of micropipe defects due to the generation of crystal nuclei and the diffusion of impurities can be extremely reduced. However, in order to obtain a high-purity single crystal, an α-SiC single crystal substrate and β-Si grown on a surface thereof by a thermochemical vapor deposition method and grown into a polycrystalline body are used.
It is necessary to heat-treat the C layer at a very high temperature of 2200 to 2300 ° C. for a long time (20 hours or more), so that the bonding between Si atoms and C atoms is generated by the heat energy during the high-temperature heat treatment. Decomposition, such as breakage due to inability to withstand lattice vibrations, easily leads to defects in the SiC lattice due to lattice distortion and vacancies of atoms, and there is still room for improvement in the growth of high-quality single crystals.

【0007】本発明は上記実情に鑑みてなされたもの
で、マイクロパイプ欠陥はもとより格子歪みや格子欠陥
のない非常に良質の単結晶を低温かつ短時間の熱処理に
よって効率よく成長させることができ、半導体材料とし
ての実用化及び適用性の拡大を促進可能とする単結晶S
iCおよびその製造方法を提供することを目的としてい
る。
[0007] The present invention has been made in view of the above-mentioned circumstances, and it is possible to efficiently grow a very high-quality single crystal not only having micropipe defects but also lattice distortion and lattice defects by low-temperature and short-time heat treatment. Single crystal S that can promote practical application as semiconductor material and expansion of applicability
It is intended to provide an iC and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の発明に係る単結晶SiCは、α−
SiC単結晶基材の表面に水素イオンの含有層を介して
熱化学的蒸着法でβ−SiC層を形成してなる複合体を
熱処理することにより、上記β−SiC層の多結晶体を
α−SiCに転化させるとともに上記α−SiC単結晶
基材の結晶軸と同方位に配向させて単結晶を一体に成長
させていることを特徴とするものであり、また、請求項
4に記載の単結晶SiCの製造方法は、α−SiC単結
晶基材の表面に水素イオンの含有層を形成した後、その
水素イオン含有層の表面に熱化学的蒸着法によりβ−S
iC層を形成し、次に、その複合体を熱処理して上記β
−SiC層の多結晶体をα−SiCに転化させるととも
に上記α−SiC単結晶基材の結晶軸と同方位に配向し
て単結晶を一体化し育成することを特徴とするものであ
る。
In order to achieve the above object, a single-crystal SiC according to the first aspect of the present invention has an α-crystal.
By heat-treating the composite formed by forming a β-SiC layer on the surface of a SiC single crystal base material through a hydrogen ion-containing layer by a thermochemical vapor deposition method, the polycrystalline body of the β-SiC layer is converted to α. And a single crystal is grown integrally while being converted into -SiC and oriented in the same direction as the crystal axis of the α-SiC single crystal base material. The method for producing single crystal SiC is to form a hydrogen ion-containing layer on the surface of an α-SiC single crystal base material, and then to form β-S on the surface of the hydrogen ion-containing layer by thermochemical vapor deposition.
forming an iC layer and then heat treating the composite to form the β
The method is characterized in that the polycrystalline body of the -SiC layer is converted into α-SiC and is oriented in the same direction as the crystal axis of the α-SiC single crystal base material to integrate and grow the single crystal.

【0009】すなわち、請求項1に記載の発明及び請求
項4に記載の発明はいずれも、α−SiC単結晶基材の
表面とその表面に熱化学的蒸着法で形成されるβ−Si
C層との界面に水素イオン含有層が介在されており、こ
の層の水素イオンの大部分がSiC格子のすき間に存在
してSiCの原子配列に歪みを与え、それら歪んだ結合
部の原子移動と他の不整合な部分(例えば粒界)の原子
移動との整合化が促進される状態となっている。このよ
うな状態で複合体が熱処理されると、該熱処理時に加え
られる熱エネルギーにより上記原子移動の整合化、つま
り、歪みを含んだSiC格子の原子配列を安定化させよ
うとするSi原子とC原子の移動が早く生起されること
になる。これによって、低温かつ短時間の熱処理によっ
てSiC格子の歪みを解消しつつ、SiC格子が最も安
定なSi原子とC原子の位置への再配列が促進され、マ
イクロパイプ欠陥はもとより歪みや原子の空孔によるS
iC格子の欠陥のない良質の単結晶SiCを熱効率よく
得ることが可能である。
That is, both the invention described in claim 1 and the invention described in claim 4 are directed to the surface of the α-SiC single crystal substrate and the β-Si film formed on the surface by the thermochemical vapor deposition method.
A hydrogen ion-containing layer is interposed at the interface with the C layer, and most of the hydrogen ions in this layer are present in the gaps of the SiC lattice to give a strain to the atomic arrangement of SiC, and the atomic movement of the distorted bond is caused. And the movement of atoms in other inconsistent portions (eg, grain boundaries) are promoted. When the composite is heat-treated in such a state, the heat energy applied at the time of the heat treatment matches the above-mentioned atom transfer, that is, the Si atoms and the C atoms that stabilize the atomic arrangement of the strained SiC lattice. The movement of atoms will occur quickly. This promotes rearrangement of the SiC lattice to the most stable position of Si and C atoms while eliminating distortion of the SiC lattice by low-temperature and short-time heat treatment. S by hole
It is possible to obtain high-quality single-crystal SiC having no defects in the iC lattice with high thermal efficiency.

【0010】ここで、上記水素イオン含有層としては、
請求項2及び請求項5に記載のように、α−SiC単結
晶基材の表面に熱化学的蒸着法により形成された薄いβ
−SiC層への水素イオンの注入により形成されたも
の、または、請求項3及び請求項6に記載のように、α
−SiC単結晶基材の表面への水素イオンの直接注入に
よりそのα−SiC単結晶基材の表面部に形成されたも
の、のいずれであってもよい。
Here, as the hydrogen ion-containing layer,
The thin β formed on the surface of the α-SiC single crystal substrate by a thermochemical vapor deposition method as described in claim 2 and claim 5.
-Formed by implantation of hydrogen ions into the SiC layer, or as described in claim 3 and claim 6,
Any of those formed on the surface portion of the α-SiC single crystal substrate by directly implanting hydrogen ions into the surface of the -SiC single crystal substrate may be used.

【0011】また、上記請求項4に記載の発明に係る単
結晶SiCの製造方法において、請求項7に記載のよう
に、上記α−SiC単結晶基材として、矩形状のα−S
iC単結晶の複数枚を密着状態に並設したものを用いる
ことにより、面積的にも体積的にも十分な大きさを確保
し、かつ、上述したような良質の単結晶SiCを工業的
規模で安定に製造することができる。
Further, in the method for producing single-crystal SiC according to the invention described in claim 4, as in claim 7, the α-SiC single-crystal substrate has a rectangular α-S
By using a plurality of iC single crystals arranged in close contact with each other, a sufficient size is secured in terms of area and volume, and the above-mentioned high-quality single crystal SiC is produced on an industrial scale. And can be manufactured stably.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図面
にもとづいて説明する。図1〜図3は本発明に係る単結
晶SiCの製造方法の一例を製造工程順に説明する模式
図であり、図1は第1成膜工程を示し、アチソン法によ
り縦×横が10mm×10mm、厚さ0.5mmの平板
状に切り出し製作された六方晶系(6H型、4H型)の
α−SiC単結晶基材1の表面1aをRMS500オン
グストロームの表面粗さの鏡面に研磨加工した上、その
表面1aに1200〜1500℃の温度範囲(好ましく
は1400℃)の水素気流中で熱化学的蒸着法により厚
さ50μmの立方晶系β−SiC層2を形成させる。こ
のβ−SiC層2の成膜時においては、初期5分間に亘
って蒸着部に向けてSiCl4 、CH3 の反応ガスを供
給する。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 are schematic views illustrating an example of a method of manufacturing a single crystal SiC according to the present invention in the order of manufacturing steps. FIG. 1 shows a first film forming step, and the vertical and horizontal dimensions are 10 mm × 10 mm by Acheson method. A surface 1a of a hexagonal (6H type, 4H type) α-SiC single crystal substrate 1 cut out into a flat plate having a thickness of 0.5 mm and polished to a mirror surface having a surface roughness of 500 Å RMS. Then, a cubic β-SiC layer 2 having a thickness of 50 μm is formed on the surface 1a by a thermochemical vapor deposition method in a hydrogen stream at a temperature range of 1200 to 1500 ° C. (preferably 1400 ° C.). When the β-SiC layer 2 is formed, a reaction gas of SiCl 4 and CH 3 is supplied to the deposition unit for an initial 5 minutes.

【0013】上記β−SiC層2の表面部の10μm厚
さ部分を、ダイヤモンド粒を用いてRMS500オング
ストロームの表面粗さの鏡面に研磨した上、その表面に
プラズマスパッタ方式のイオン注入装置により印加電圧
4MeVのもとで図2に示すように水素イオンH+ を注
入することによって、水素イオン含有層2´を形成す
る。ここで、水素イオンH+ の注入はドーズ量5×10
14〜5×1015イオン/cm2 程度で、印加電圧を調整
することにより水素原子の濃度分布のピークがα−Si
C単結晶基材1の表面1aとの界面付近になるようにコ
ントロールされている。
A 10 μm thick portion of the surface of the β-SiC layer 2 is polished to a mirror surface having a surface roughness of RMS 500 angstroms using diamond particles, and a voltage applied to the surface by a plasma sputtering type ion implantation apparatus. By implanting hydrogen ions H + at 4 MeV as shown in FIG. 2, a hydrogen ion-containing layer 2 ′ is formed. Here, implantation of hydrogen ions H + is performed at a dose of 5 × 10
When the applied voltage is adjusted to about 14 to 5 × 10 15 ions / cm 2 , the peak of the concentration distribution of hydrogen atoms becomes α-Si.
It is controlled to be near the interface with the surface 1a of the C single crystal substrate 1.

【0014】水素イオン注入後は、SiCl4 及びH2
を蒸着部に向けて供給しながら、熱化学的蒸着法により
厚さ約500μmのβ−SiC層3を水素イオン含有層
2´上に成膜することにより(第2成膜工程)、図3に
示すような複合体Mを得る。
After hydrogen ion implantation, SiCl 4 and H 2
3 is formed on the hydrogen ion-containing layer 2 'by a thermochemical vapor deposition method while supplying the .beta.-SiC layer 3 to the vapor deposition section (second film forming step). To obtain a complex M as shown in FIG.

【0015】しかる後、上記複合体Mの全体を、Arお
よびSiCの飽和蒸気雰囲気中で、2000〜2200
℃の温度範囲、好ましくは2175℃の温度で熱処理す
ることにより、上記β−SiC層3の多結晶体及び水素
イオン含有層2を形成するβ−SiC層2の多結晶体を
α−SiCに転化すると共に上記α−SiC単結晶基材
1の結晶軸と同方位に配向して基材1の単結晶と一体化
させて図4に示すような大きな単結晶SiC4が育成さ
れる。
Thereafter, the whole of the above-mentioned composite M is placed in a saturated steam atmosphere of Ar and SiC in the range of 2000 to 2200.
The polycrystalline body of the β-SiC layer 3 and the polycrystalline body of the β-SiC layer 2 forming the hydrogen ion-containing layer 2 are converted into α-SiC by performing a heat treatment in a temperature range of 2 ° C., preferably 2175 ° C. While being converted, it is oriented in the same direction as the crystal axis of the α-SiC single crystal substrate 1 and integrated with the single crystal of the substrate 1 to grow a large single crystal SiC 4 as shown in FIG.

【0016】上記のようにα−SiC単結晶基材1の表
面に水素イオン含有層2´を形成することによって、大
部分がSiC格子のすき間に存在している水素イオンH
+ によりSiCの原子配列に歪みが与えられ、それら歪
んだ結合部の原子移動と他の不整合な部分(例えば粒
界)の原子移動との整合化が促進される状態となってい
る。この状態で熱化学的蒸着法によりβ−SiC層3が
形成された複合体Mを熱処理することにより、上記水素
イオンH+ がSiC格子のすき間から外部に抜け出して
歪みを含んだSiC格子の原子配列を安定化させようと
するSi原子とC原子の移動が活発に生起されることに
なる。これによって、2175℃程度の低温で、かつ5
時間程度の短時間熱処理によってSiC格子の歪みを解
消しつつ、SiC格子が最も安定なSi原子とC原子の
位置への再配列が促進される。すなわち、歪みを含んで
いたSiC格子が歪みのない単結晶に再配列され、ほぼ
全面に亘ってマイクロパイプ欠陥はもとより歪みや原子
の空孔によるSiC格子の欠陥のない良質の単結晶Si
C4を効率よく得ることが可能である。
By forming the hydrogen ion-containing layer 2 'on the surface of the α-SiC single crystal substrate 1 as described above, the hydrogen ions H which are mostly present in the gaps of the SiC lattice
The + distorts the atomic arrangement of SiC, and promotes the coordination between the atom movement of the distorted bonding portion and the atom movement of another inconsistent portion (for example, a grain boundary). In this state, by heat-treating the composite M on which the β-SiC layer 3 is formed by the thermochemical vapor deposition method, the hydrogen ions H + escape from the gaps of the SiC lattice to the outside, and the atoms of the strained SiC lattice are distorted. The movement of the Si atoms and the C atoms in order to stabilize the arrangement is actively generated. Thereby, at a low temperature of about 2175 ° C. and 5
The short-time heat treatment for about a short time eliminates the distortion of the SiC lattice and promotes the rearrangement of the SiC lattice to the most stable positions of Si atoms and C atoms. That is, the strained SiC lattice is rearranged into an unstrained single crystal, and a high-quality single-crystal Si without defects in the SiC lattice due to strain or vacancies of atoms as well as micropipe defects over almost the entire surface.
C4 can be obtained efficiently.

【0017】図5は本発明に係る単結晶SiCの製造方
法の他の例を説明する模式図であり、この例では、上記
α−SiC単結晶基材1として、矩形状に整えて加工さ
れたα−SiC単結晶1Aの複数枚を密着状態(隙間な
く)に並設したものを使用し、その表面に上記と同様に
水素イオン含有層2´を介して熱化学的蒸着法によりβ
−SiC層3を成膜した後、その複合体Mを上記と同様
に熱処理する方法であり、この場合は、面積的にも体積
的にも十分な大きさを有し、かつ、上述と同様に良質の
単結晶SiC4を工業的規模で安定に製造することがで
きる。
FIG. 5 is a schematic view for explaining another example of the method for producing single-crystal SiC according to the present invention. In this example, the α-SiC single-crystal substrate 1 is processed into a rectangular shape. A plurality of α-SiC single crystals 1A are juxtaposed in a close contact state (with no gap), and β is formed on the surface thereof by a thermochemical vapor deposition method via a hydrogen ion-containing layer 2 ′ in the same manner as described above.
After forming the SiC layer 3, the composite M is heat-treated in the same manner as described above. In this case, the composite M has a sufficient size in terms of area and volume, and Thus, high-quality single crystal SiC4 can be stably produced on an industrial scale.

【0018】なお、上記α−SiC単結晶基材1として
6H型のものを使用するときは、熱処理に伴ってβ−S
iC層2の多結晶体からα−SiCに転化される単結晶
が6H型の単結晶と同じ形態で育成されやすく、また、
4H型の単結晶基材1を使用するときは、熱処理に伴っ
てその4H型の単結晶と同じ形態の単結晶が転化育成さ
れやすいことになる。
When a 6H type α-SiC single crystal substrate 1 is used, β-S
The single crystal converted from the polycrystal of the iC layer 2 to α-SiC is easily grown in the same form as the 6H-type single crystal.
When the 4H-type single crystal substrate 1 is used, a single crystal having the same form as the 4H-type single crystal is easily grown by the heat treatment.

【0019】また、上記の各製造方法例では、上記水素
イオン含有層2´がα−SiC単結晶基材1の表面1a
に熱化学的蒸着法により形成された薄いβ−SiC層2
への水素イオンの注入によって形成されるものについて
説明したが、α−SiC単結晶基材1の表面1aへの水
素イオンH+ の直接注入によってα−SiC単結晶基材
1の表面部に形成されるものであってもよい。
In each of the above-described manufacturing methods, the hydrogen ion-containing layer 2 ′ is formed on the surface 1 a of the α-SiC single crystal substrate 1.
Β-SiC layer 2 formed by thermal chemical vapor deposition
Is formed by implanting hydrogen ions into the surface of the α-SiC single crystal substrate 1 by directly implanting hydrogen ions H + into the surface 1 a of the α-SiC single crystal substrate 1. May be performed.

【0020】[0020]

【発明の効果】以上のように、請求項1に記載の発明お
よび請求項4に記載の発明によれば、α−SiC単結晶
基材の表面とその表面に熱化学的蒸着法で形成されるβ
−SiC層との界面に水素イオン含有層を介在させるこ
とで、SiC格子のすき間に存在する水素イオンによっ
てSiCの原子配列に歪みを与え、それら歪んだ結合部
の原子移動と他の不整合な部分(例えば粒界)の原子移
動との整合化が促進される状態を作っておき、このよう
な状態で複合体を熱処理することにより、該熱処理時に
加えられる熱エネルギーをもって上記原子移動の整合
化、つまり、歪みを含んだSiC格子の原子配列を安定
化させようとするSi原子とC原子の移動を早く生起さ
せることが可能となる。これによって、低温かつ短時間
の熱処理によってSiC格子の歪みを解消しつつ、Si
C格子が最も安定なSi原子とC原子の位置への再配列
を促進して、マイクロパイプ欠陥はもとより歪みや原子
の空孔によるSiC格子の欠陥のない良質の単結晶Si
Cを非常に熱効率よく得ることができるという効果を奏
する。その結果、Si(シリコン)やGaAs(ガリウ
ムヒ素)などの既存の半導体材料に比べて大容量、高周
波、耐圧、耐環境性に優れパワーデバイス用半導体材料
として期待されている単結晶SiCの実用化及び適用性
の拡大が図れる。
As described above, according to the first and fourth aspects of the present invention, the surface of the α-SiC single crystal substrate and the surface thereof are formed by the thermochemical vapor deposition method. Β
-By interposing a hydrogen ion-containing layer at the interface with the SiC layer, hydrogen ions existing in the gaps of the SiC lattice give distortion to the atomic arrangement of SiC, and the atomic movement of these distorted bonds and other mismatches By preparing a state in which the coordination with the atom transfer of a portion (for example, a grain boundary) is promoted, and by heat-treating the composite in such a state, the coordination of the above-mentioned atom transfer is performed by the heat energy applied at the heat treatment. In other words, it is possible to quickly generate the movement of the Si atoms and the C atoms for stabilizing the atomic arrangement of the strained SiC lattice. As a result, the strain of the SiC lattice is eliminated by a low-temperature and short-time heat treatment,
The C lattice promotes rearrangement of the most stable Si atoms and C atoms to the position, so that high-quality single-crystal Si free from defects in the SiC lattice due to micropipe defects as well as strain and vacancies of atoms.
There is an effect that C can be obtained very efficiently. As a result, the practical use of single crystal SiC, which is superior in existing semiconductor materials such as Si (silicon) and GaAs (gallium arsenide), has high capacity, high frequency, withstand voltage and environmental resistance and is expected as a semiconductor material for power devices And the applicability can be expanded.

【0021】特に、請求項7に記載の発明によれば、上
記請求項1及び請求項4に記載の発明で得られる良質の
単結晶SiCを大面積化することができ、一層その適用
性の拡充を図ることができる。
In particular, according to the seventh aspect of the present invention, it is possible to increase the area of the high quality single crystal SiC obtained by the first and fourth aspects of the present invention, and to further improve its applicability. Expansion can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る単結晶SiCの製造方法の一例を
説明する製造工程のうち第1成膜工程が終了した状態を
示す模式図である。
FIG. 1 is a schematic view showing a state in which a first film forming step is completed in a manufacturing step for explaining an example of a method for manufacturing single crystal SiC according to the present invention.

【図2】同上製造工程のうち水素イオンの注入が終了し
た状態を示す模式図である。
FIG. 2 is a schematic view showing a state in which hydrogen ion implantation has been completed in the manufacturing process.

【図3】同上製造工程のうち第2成膜工程が終了した状
態を示す模式図である。
FIG. 3 is a schematic view showing a state in which a second film forming step in the manufacturing process is completed.

【図4】製造された単結晶SiCを示す模式図である。FIG. 4 is a schematic diagram showing a manufactured single crystal SiC.

【図5】本発明に係る単結晶SiCの製造方法の他の例
を説明する製造工程のうち第2成膜工程が終了した状態
を示す模式図である。
FIG. 5 is a schematic diagram showing a state in which a second film forming step is completed in a manufacturing step for explaining another example of the method for manufacturing a single crystal SiC according to the present invention.

【符号の説明】[Explanation of symbols]

1 α−SiC単結晶基材 1A 矩形状のα−SiC単結晶 1a 表面 2´ 水素イオン含有層 3 β−SiC層 4 単結晶SiC M 複合体 REFERENCE SIGNS LIST 1 α-SiC single crystal base material 1A rectangular α-SiC single crystal 1a surface 2 ′ hydrogen ion-containing layer 3 β-SiC layer 4 single crystal SiC M composite

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 α−SiC単結晶基材の表面に水素イオ
ンの含有層を介して熱化学的蒸着法でβ−SiC層を形
成してなる複合体を熱処理することにより、上記β−S
iC層の多結晶体をα−SiCに転化させるとともに上
記α−SiC単結晶基材の結晶軸と同方位に配向させて
単結晶を一体に成長させていることを特徴とする単結晶
SiC。
1. A composite comprising a β-SiC layer formed on a surface of an α-SiC single crystal base material by a thermochemical vapor deposition method via a hydrogen ion-containing layer through a hydrogen ion-containing layer, whereby the β-S
A single crystal SiC, wherein the polycrystal of the iC layer is converted to α-SiC and the single crystal is grown integrally by being oriented in the same direction as the crystal axis of the α-SiC single crystal base material.
【請求項2】 上記水素イオン含有層が、α−SiC単
結晶基材の表面に熱化学的蒸着法により形成された薄い
β−SiC層への水素イオンの注入により形成されたも
のである請求項1に記載の単結晶SiC。
2. The hydrogen ion-containing layer is formed by implanting hydrogen ions into a thin β-SiC layer formed on a surface of an α-SiC single crystal substrate by a thermochemical vapor deposition method. Item 2. Single-crystal SiC according to item 1.
【請求項3】 上記水素イオン含有層が、α−SiC単
結晶基材の表面への水素イオンの直接注入によりそのα
−SiC単結晶基材の表面部に形成されたものである請
求項1に記載の単結晶SiC。
3. The method according to claim 1, wherein the hydrogen ion-containing layer is formed by directly implanting hydrogen ions into the surface of the α-SiC single crystal substrate.
The single-crystal SiC according to claim 1, wherein the single-crystal SiC is formed on a surface of a single-crystal SiC substrate.
【請求項4】 α−SiC単結晶基材の表面に水素イオ
ンの含有層を形成した後、その水素イオン含有層の表面
に熱化学的蒸着法によりβ−SiC層を形成し、次に、
その複合体を熱処理して上記β−SiC層の多結晶体を
α−SiCに転化させるとともに上記α−SiC単結晶
基材の結晶軸と同方位に配向して単結晶を一体化し育成
することを特徴とする単結晶SiCの製造方法。
4. After forming a hydrogen ion-containing layer on the surface of the α-SiC single crystal substrate, a β-SiC layer is formed on the surface of the hydrogen ion-containing layer by a thermochemical vapor deposition method.
Heat treating the composite to convert the polycrystalline body of the β-SiC layer into α-SiC and orienting and growing a single crystal in the same direction as the crystal axis of the α-SiC single crystal base material. A method for producing single-crystal SiC, comprising:
【請求項5】 上記水素イオン含有層が、α−SiC単
結晶基材の表面に熱化学的蒸着法により形成された薄い
β−SiC層への水素イオンの注入により形成されたも
のである請求項4に記載の単結晶SiCの製造方法。
5. The hydrogen ion-containing layer is formed by implanting hydrogen ions into a thin β-SiC layer formed on a surface of an α-SiC single crystal substrate by a thermochemical vapor deposition method. Item 5. The method for producing single-crystal SiC according to Item 4.
【請求項6】 上記水素イオン含有層が、α−SiC単
結晶基材の表面への水素イオンの直接注入によりそのα
−SiC単結晶基材の表面部に形成されたものである請
求項4に記載の単結晶SiCの製造方法。
6. The method according to claim 1, wherein the hydrogen ion-containing layer is formed by direct injection of hydrogen ions into the surface of the α-SiC single crystal base material.
The method for producing a single-crystal SiC according to claim 4, wherein the single-crystal SiC is formed on a surface of a single-crystal SiC base material.
【請求項7】 上記α−SiC単結晶基材が、矩形状の
α−SiC単結晶の複数枚を密着状態に並設されてなる
ものである請求項4ないし6のいずれかに記載の単結晶
SiCの製造方法。
7. The single crystal according to claim 4, wherein the α-SiC single crystal substrate is formed by arranging a plurality of rectangular α-SiC single crystals in close contact with each other. Manufacturing method of crystalline SiC.
JP2327198A 1998-02-04 1998-02-04 Single crystal SiC and method for producing the same Expired - Fee Related JP2896667B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2327198A JP2896667B1 (en) 1998-02-04 1998-02-04 Single crystal SiC and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2327198A JP2896667B1 (en) 1998-02-04 1998-02-04 Single crystal SiC and method for producing the same

Publications (2)

Publication Number Publication Date
JP2896667B1 JP2896667B1 (en) 1999-05-31
JPH11228296A true JPH11228296A (en) 1999-08-24

Family

ID=12105950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2327198A Expired - Fee Related JP2896667B1 (en) 1998-02-04 1998-02-04 Single crystal SiC and method for producing the same

Country Status (1)

Country Link
JP (1) JP2896667B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280531A (en) * 2001-03-19 2002-09-27 Denso Corp Semiconductor substrate and its manufacturing method
JP2003068592A (en) * 2001-08-22 2003-03-07 Toshiba Corp Method for producing epitaxial substrate, method for fabricating semiconductor element, and epitaxial substrate
WO2011148843A1 (en) * 2010-05-28 2011-12-01 住友電気工業株式会社 Silicon carbide substrate and method for producing same
WO2011158532A1 (en) * 2010-06-15 2011-12-22 住友電気工業株式会社 Process for production of silicon carbide single crystal, and silicon carbide substrate
WO2012053253A1 (en) * 2010-10-19 2012-04-26 住友電気工業株式会社 Composite substrate having single crystal silicon carbide substrate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280531A (en) * 2001-03-19 2002-09-27 Denso Corp Semiconductor substrate and its manufacturing method
JP2003068592A (en) * 2001-08-22 2003-03-07 Toshiba Corp Method for producing epitaxial substrate, method for fabricating semiconductor element, and epitaxial substrate
WO2011148843A1 (en) * 2010-05-28 2011-12-01 住友電気工業株式会社 Silicon carbide substrate and method for producing same
US20120168774A1 (en) * 2010-05-28 2012-07-05 Sumitomo Electric Industries, Ltd. Silicon carbide substrate and method for manufacturing same
WO2011158532A1 (en) * 2010-06-15 2011-12-22 住友電気工業株式会社 Process for production of silicon carbide single crystal, and silicon carbide substrate
CN102473605A (en) * 2010-06-15 2012-05-23 住友电气工业株式会社 Process for production of silicon carbide single crystal, and silicon carbide substrate
US9082621B2 (en) 2010-06-15 2015-07-14 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide single crystal, and silicon carbide substrate
WO2012053253A1 (en) * 2010-10-19 2012-04-26 住友電気工業株式会社 Composite substrate having single crystal silicon carbide substrate
CN102668030A (en) * 2010-10-19 2012-09-12 住友电气工业株式会社 Composite substratge having single-crystal silicon carbide substrate

Also Published As

Publication number Publication date
JP2896667B1 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
JP3043689B2 (en) Single crystal SiC and method for producing the same
JP3296998B2 (en) Single crystal SiC and method for producing the same
JP3003027B2 (en) Single crystal SiC and method for producing the same
JP2884085B1 (en) Single crystal SiC and method for producing the same
JPH0455397A (en) Production of alpha-sic single crystal
JPH1129397A (en) Single crystal silicon carbide and its production
JP3043675B2 (en) Single crystal SiC and method for producing the same
JP3248071B2 (en) Single crystal SiC
JP2896667B1 (en) Single crystal SiC and method for producing the same
JP2936479B1 (en) Method and apparatus for growing single crystal SiC
JP3254557B2 (en) Single crystal SiC and method for producing the same
JP3043690B2 (en) Single crystal SiC and method for producing the same
JP2917143B1 (en) Single crystal SiC and method for producing the same
JP2936481B1 (en) Single crystal SiC and method for producing the same
JP2939615B2 (en) Single crystal SiC and method for producing the same
JP2946418B1 (en) Single crystal SiC and method for producing the same
JP3087030B2 (en) SiC composite, method for producing the same, and single crystal SiC
JP2946410B2 (en) Single crystal SiC and method for producing the same
JP2917149B1 (en) Single crystal SiC and method for producing the same
JP2964080B1 (en) Single crystal SiC and method for producing the same
JP3043687B2 (en) Single crystal SiC and method for producing the same
JPH11147793A (en) Single crystal silicon carbide and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees