JPH11224873A - Substrate processor - Google Patents

Substrate processor

Info

Publication number
JPH11224873A
JPH11224873A JP2465998A JP2465998A JPH11224873A JP H11224873 A JPH11224873 A JP H11224873A JP 2465998 A JP2465998 A JP 2465998A JP 2465998 A JP2465998 A JP 2465998A JP H11224873 A JPH11224873 A JP H11224873A
Authority
JP
Japan
Prior art keywords
chemical
liquid
concentration
pressure
substrate processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2465998A
Other languages
Japanese (ja)
Other versions
JP3630543B2 (en
Inventor
Yoshiyuki Nakagawa
良幸 中川
Tomomi Iwata
智巳 岩田
Yusuke Muraoka
祐介 村岡
Akihiro Shibata
晃宏 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP02465998A priority Critical patent/JP3630543B2/en
Publication of JPH11224873A publication Critical patent/JPH11224873A/en
Application granted granted Critical
Publication of JP3630543B2 publication Critical patent/JP3630543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately decide the point of time of completing a rinsing processing and to accurately control the density. SOLUTION: This substrate processor for executing a prescribed processing to a substrate is provided with a substrate processing part 1 for performing the surface treatment of the substrate by a processing liquid, a circulation path 2 for supplying discharged processing liquid to the substrate processing part 1 again, a processing liquid circulation pump 5 for circulating the processing liquid, a pure water supply path 3 the one end of which is communicated and connected to the circulation path other end is communicated and connected to a pure water supply source, a liquid chemical injection part 4 for which one end is communicated and connected to the circulation path 2, and a liquid chemical supply path 16 is communicated and connected to the circulation path 2 for injecting liquid chemical from a liquid chemical supply source communicated and connected to the other end to the circulation path 2, a density measurement sensor 8 for measuring the density of the processing liquid and a control part 30A for operating the liquid chemical injection part 4 and controlling the density of the processing liquid, based on the measured density of the processing liquid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体ウエハ、フ
ォトマスク用のガラス基板、液晶表示装置用のガラス基
板、光ディスク用の基板など(以下、単に基板と称す
る)に対して、処理液で表面処理を施す基板処理装置に
係り、特に、基板処理部に循環路を介して処理液を循環
させながら濃度調整を行う技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a semiconductor wafer, a glass substrate for a photomask, a glass substrate for a liquid crystal display, a substrate for an optical disk (hereinafter simply referred to as a substrate) with a processing liquid. The present invention relates to a substrate processing apparatus for performing processing, and more particularly, to a technique for performing concentration adjustment while circulating a processing liquid through a circulation path in a substrate processing unit.

【0002】[0002]

【従来の技術】従来のこの種の基板処理装置として、例
えば、特開平9−199468号公報に示すような装置
が挙げられる。この装置は、基板に表面処理を施す処理
槽とこの槽から溢れ出た処理液を受ける外槽とからなる
基板処理部と、この基板処理部の処理槽と外槽とに連通
して、溢れ出た処理液を再び処理槽へと循環させて供給
するための循環路とを備え、目標とする濃度になるよう
に純水と薬液とを混合して得られた処理液あるいは純水
のみが供給ユニットにより外槽の上方から供給されるよ
うに構成されている。
2. Description of the Related Art As a conventional substrate processing apparatus of this type, there is, for example, an apparatus disclosed in Japanese Patent Application Laid-Open No. 9-199468. This apparatus is provided with a substrate processing section comprising a processing tank for performing a surface treatment on a substrate and an outer tank for receiving a processing solution overflowing from the tank, and an overflowing tank communicating with the processing tank and the outer tank of the substrate processing section. A circulation path for circulating the supplied processing solution again to the processing tank and supplying the same, and only the processing solution or pure water obtained by mixing the pure water and the chemical solution to a target concentration is obtained. The supply unit is configured to be supplied from above the outer tank.

【0003】また、上記の循環路には、流通する処理液
の一部を採取するために分岐した採取管が配設されてお
り、採取した処理液を対象にして濃度を測定し、目標と
する濃度との偏差に基づいてコントローラが供給ユニッ
トにおける薬液の混合比などを調整して濃度を目標値に
調整するようになっている。
[0003] Further, in the above-mentioned circulation path, a collecting pipe branched to collect a part of the processing liquid flowing through is provided, and the concentration of the collected processing liquid is measured, and a target is determined. The controller adjusts the concentration to a target value by adjusting the mixing ratio of the chemical solution in the supply unit and the like based on the deviation from the concentration.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな構成を有する従来例の場合には、次のような問題が
ある。すなわち、処理液によって基板に処理を施した後
は、通常、薬液を含む処理液を純水で置換してリンス処
理を行い、純水の比抵抗が上がってある一定の基準値
(例えば、18MΩcm)に達した時点でリンス処理が
完了したと判断するようになっている。しかしながら、
純水が供給ユニットによって外槽の上方から供給される
ように構成されている関係上、空気中に含まれている炭
酸ガスがその中に溶け込んで純水の比抵抗を下げること
になる。したがって、実際には処理液が純水で完全に置
換されているにも係わらず比抵抗としては上記基準値に
到達せず低いままであることからリンス処理が不完全で
あると判断され、リンス処理の完了時点を適切に判断す
ることができないという問題点がある。このようにリン
ス処理の完了時点が適切に判断できない場合には、リン
ス処理時の純水の使用量が極めて多くなって無駄とな
る。
However, the prior art having such a structure has the following problems. That is, after the substrate is treated with the treatment liquid, the treatment liquid containing the chemical solution is usually replaced with pure water to perform a rinsing treatment, and the specific resistance of the pure water is increased to a certain reference value (for example, 18 MΩcm). ) Is reached, it is determined that the rinsing process has been completed. However,
Since the pure water is supplied from above the outer tank by the supply unit, the carbon dioxide gas contained in the air dissolves therein and lowers the specific resistance of the pure water. Therefore, although the treatment liquid is actually completely replaced with pure water, the specific resistance does not reach the above-mentioned reference value and remains low. There is a problem that it is not possible to appropriately judge the completion point of the processing. As described above, when the completion time of the rinsing process cannot be properly determined, the amount of pure water used in the rinsing process becomes extremely large and is wasted.

【0005】また、処理液の濃度測定は、循環路から分
岐した採取管に処理液を採取してから行われるようにな
っているため、測定値と濃度の目標値との偏差に基づい
てコントローラが供給ユニットを制御するのに遅れが生
じ、濃度制御を正確に行うことができないという問題も
生じている。
Since the concentration of the processing solution is measured after collecting the processing solution in a collecting pipe branched from the circulation path, the controller measures the concentration of the processing solution based on the deviation between the measured value and the target value of the concentration. However, there is a problem in that a delay occurs in controlling the supply unit, and the concentration control cannot be performed accurately.

【0006】本発明は、このような事情に鑑みてなされ
たものであって、純水への炭酸ガスの溶け込みを防止す
ることによってリンス処理の完了時点を正確に判断する
ことができ、しかも、循環している処理液の濃度を直接
的に測定することによって正確に濃度制御を行うことが
できる基板処理装置を提供することを目的とする。
The present invention has been made in view of such circumstances, and it is possible to accurately determine the completion time of a rinsing process by preventing the dissolution of carbon dioxide gas into pure water. It is an object of the present invention to provide a substrate processing apparatus capable of accurately controlling the concentration by directly measuring the concentration of a circulating processing solution.

【0007】[0007]

【課題を解決するための手段】本発明は、このような目
的を達成するために、次のような構成をとる。すなわ
ち、請求項1に記載の基板処理装置は、基板に対して所
定の処理を施す基板処理装置であって、純水と薬液とを
混合して得られた処理液で基板の表面処理を行う基板処
理部と、前記基板処理部から排出された処理液を再び前
記基板処理部へ供給する循環路と、前記循環路内の処理
液を循環させる処理液循環手段と、前記循環路に一端が
連通接続され、他端が純水供給源に連通接続されている
純水供給路と、前記循環路に一端が連通接続され、他端
が薬液供給源に連通接続されている薬液供給路と、前記
薬液供給路から前記循環路へ注入される薬液の注入量を
調節する薬液注入量調節手段と、前記循環路内を流通す
る処理液の濃度を測定する濃度測定手段と、前記濃度測
定手段により測定された処理液の濃度に基づいて、前記
薬液注入量調節手段を制御する制御手段と、を備えてい
ることを特徴とするものである。
The present invention has the following configuration in order to achieve the above object. That is, the substrate processing apparatus according to claim 1 is a substrate processing apparatus that performs a predetermined processing on a substrate, and performs a surface treatment of the substrate with a processing liquid obtained by mixing pure water and a chemical solution. A substrate processing unit, a circulation path for supplying the processing liquid discharged from the substrate processing unit to the substrate processing unit again, a processing liquid circulation unit for circulating the processing liquid in the circulation path, and one end of the circulation path. A pure water supply path that is connected in communication and the other end is connected to a pure water supply source, and a chemical supply path that is connected to the circulation path at one end and the other end is connected to a chemical supply source, A chemical solution injection amount adjusting means for adjusting an injection amount of the chemical solution injected from the chemical solution supply path into the circulation path, a concentration measurement means for measuring the concentration of the treatment liquid flowing in the circulation path, and the concentration measurement means Based on the measured concentration of the processing solution, And it is characterized in that it comprises a control means for controlling the section means.

【0008】また、請求項2に記載の基板処理装置は、
請求項1に記載の基板処理装置において、前記濃度測定
手段は、前記薬液供給路が前記循環路に連通接続されて
いる箇所より下流側に配設されていることを特徴とする
ものである。
[0008] Further, the substrate processing apparatus according to claim 2 is
2. The substrate processing apparatus according to claim 1, wherein the concentration measuring unit is provided downstream of a location where the chemical solution supply passage is connected to the circulation passage. 3.

【0009】また、請求項3に記載の基板処理装置は、
請求項1に記載の基板処理装置において、前記濃度測定
手段は、前記薬液供給路が前記循環路に連通接続されて
いる箇所より上流側に配設されていることを特徴とする
ものである。
Further, the substrate processing apparatus according to claim 3 is
2. The substrate processing apparatus according to claim 1, wherein the concentration measuring means is provided upstream of a location where the chemical solution supply passage is connected to the circulation passage.

【0010】また、請求項4に記載の基板処理装置は、
請求項1に記載の基板処理装置において、前記濃度測定
手段は、前記薬液供給路が前記循環路に連通接続されて
いる箇所の下流側と上流側にそれぞれ配設された第1の
濃度測定手段と第2の濃度測定手段とを備えたことを特
徴とするものである。
Further, the substrate processing apparatus according to claim 4 is
2. The substrate processing apparatus according to claim 1, wherein the concentration measuring unit is a first concentration measuring unit disposed on a downstream side and an upstream side of a location where the chemical solution supply path is connected to the circulation path. 3. And a second concentration measuring means.

【0011】また、請求項5に記載の基板処理装置は、
請求項1ないし請求項4のいずれかに記載の基板処理装
置において、前記薬液供給路が前記循環路に連通接続さ
れている箇所は、前記純水供給路が前記循環路に連通接
続されている箇所の下流であることを特徴とするもので
ある。
Further, the substrate processing apparatus according to claim 5 is
5. The substrate processing apparatus according to claim 1, wherein, at a location where the chemical liquid supply path is connected to the circulation path, the pure water supply path is connected to the circulation path. 6. It is characterized by being downstream of the location.

【0012】また、請求項6に記載の基板処理装置は、
請求項1ないし請求項5のいずれかに記載の基板処理装
置において、前記薬液注入量調節手段は、薬液圧力調節
器を備え、薬液の圧力を調節して注入量を調節するよう
に構成されていることを特徴とするものである。
Further, the substrate processing apparatus according to claim 6 is
6. The substrate processing apparatus according to claim 1, wherein the chemical solution injection amount adjusting means includes a chemical solution pressure regulator, and is configured to adjust the injection amount by adjusting the pressure of the chemical solution. It is characterized by having.

【0013】また、請求項7に記載の基板処理装置は、
請求項1ないし請求項5のいずれかに記載の基板処理装
置において、前記薬液注入量調節手段は、薬液流量調節
弁を備え、薬液の流量を調節して注入量を調節するよう
に構成されていることを特徴とするものである。
Further, the substrate processing apparatus according to claim 7 is
6. The substrate processing apparatus according to claim 1, wherein the chemical solution injection amount adjusting means includes a chemical solution flow rate control valve, and is configured to adjust a flow rate of the chemical solution to adjust the injection amount. It is characterized by having.

【0014】また、請求項8に記載の基板処理装置は、
請求項1ないし請求項7のいずれかに記載の基板処理装
置において、前記循環路内の処理液の圧力をほぼ一定に
調節する処理液圧力一定化手段を備えていることを特徴
とするものである。
Further, the substrate processing apparatus according to claim 8 is
The substrate processing apparatus according to any one of claims 1 to 7, further comprising a processing liquid pressure stabilizing means for adjusting a pressure of the processing liquid in the circulation path to be substantially constant. is there.

【0015】また、請求項9に記載の基板処理装置は、
請求項8に記載の基板処理装置において、前記処理液圧
力一定化手段は、前記循環路を流通する処理液の圧力を
ほぼ一定に調整する処理液圧力調節器で構成されている
ことを特徴とするものである。
Further, the substrate processing apparatus according to claim 9 is
9. The substrate processing apparatus according to claim 8, wherein the processing liquid pressure stabilizing means includes a processing liquid pressure regulator for adjusting a pressure of the processing liquid flowing through the circulation path to be substantially constant. Is what you do.

【0016】また、請求項10に記載の基板処理装置
は、請求項8に記載の基板処理装置において、前記処理
液圧力一定化手段は、前記循環路を流通する処理液の流
量をほぼ一定に調整する処理液流量調節弁で構成されて
いることを特徴とするものである。
According to a tenth aspect of the present invention, in the substrate processing apparatus of the eighth aspect, the processing liquid pressure stabilizing means makes the flow rate of the processing liquid flowing through the circulation path substantially constant. It is characterized by comprising a processing liquid flow control valve to be adjusted.

【0017】また、請求項11に記載の基板処理装置
は、請求項1ないし請求項10のいずれかに記載の基板
処理装置において、前記循環路内の処理液の圧力と前記
薬液供給路内の薬液の圧力との差圧をほぼ一定に保持す
る差圧一定化手段を備えていることを特徴とするもので
ある。
The substrate processing apparatus according to the eleventh aspect is the substrate processing apparatus according to any one of the first to tenth aspects, wherein the pressure of the processing liquid in the circulation path and the pressure of the processing liquid in the chemical supply path are different from each other. It is characterized in that it is provided with a differential pressure stabilizing means for maintaining the differential pressure from the pressure of the chemical solution almost constant.

【0018】また、請求項12に記載の基板処理装置
は、請求項6に記載の基板処理装置において、前記薬液
圧力調節器は、前記循環路内の処理液の圧力と前記薬液
供給路内の薬液の圧力との差圧をほぼ一定に保持するよ
うに、処理液の圧力の変動に応じて薬液の圧力を調節す
ることを特徴とするものである。
According to a twelfth aspect of the present invention, in the substrate processing apparatus of the sixth aspect, the chemical solution pressure regulator adjusts the pressure of the processing solution in the circulation path and the pressure of the processing solution in the chemical supply path. The method is characterized in that the pressure of the chemical is adjusted according to the fluctuation of the pressure of the processing liquid so that the pressure difference from the pressure of the chemical is maintained substantially constant.

【0019】また、請求項13に記載の基板処理装置
は、請求項7に記載の基板処理装置において、前記薬液
流量調節弁は、前記循環路内の処理液の圧力と前記薬液
供給路内の薬液の圧力との差圧をほぼ一定に保持するよ
うに、処理液の圧力の変動に応じて薬液の流量を調節す
ることを特徴とするものである。
According to a thirteenth aspect of the present invention, in the substrate processing apparatus according to the seventh aspect, the chemical liquid flow control valve is configured to control a pressure of the processing liquid in the circulation path and a pressure in the chemical liquid supply path. The method is characterized in that the flow rate of the chemical is adjusted according to the change in the pressure of the processing liquid so that the pressure difference from the pressure of the chemical is maintained substantially constant.

【0020】[0020]

【作用】請求項1に記載の発明の作用は次のとおりであ
る。純水供給源から純水供給路を経て純水が供給され、
薬液供給源から薬液供給路を介して薬液注入量調節手段
によって薬液の注入量が調節されて循環路に処理液が供
給される。そして、処理液循環手段が処理液を循環させ
ることにより、薬液と純水とを含む処理液が循環路から
基板処理部へ流通し、基板処理部から循環路へと流通し
てそれらを循環する。処理液の濃度は、循環路に設けら
れた濃度測定手段によって直接的に測定されるので、循
環路から分岐した採取管に処理液を採取して濃度を測定
する従来例に比較して濃度の変化を応答性良く素早く検
出できる。制御手段は、このようにして測定された濃度
に基づいて薬液注入量調節手段を操作して処理液の濃度
を制御する。
The operation of the first aspect of the invention is as follows. Pure water is supplied from a pure water supply source via a pure water supply path,
The injection amount of the chemical is adjusted from the chemical supply source via the chemical supply path by the chemical injection amount adjusting means, and the processing liquid is supplied to the circulation path. Then, the processing liquid circulating means circulates the processing liquid, whereby the processing liquid containing the chemical solution and the pure water flows from the circulation path to the substrate processing section, flows from the substrate processing section to the circulation path, and circulates them. . Since the concentration of the treatment liquid is directly measured by the concentration measuring means provided in the circulation path, the concentration of the treatment liquid is compared with a conventional example in which the treatment liquid is collected in a collection pipe branched from the circulation path and the concentration is measured. Changes can be detected quickly with good responsiveness. The control means controls the concentration of the processing liquid by operating the chemical liquid injection amount adjusting means based on the concentration measured in this way.

【0021】処理液による基板への表面処理の後、制御
手段が薬液注入量調節手段を操作して薬液の注入を停止
し、純水供給路から純水のみを供給して循環路および基
板処理部内を純水で置換する。リンス処理のための純水
は純水供給路から循環路に直接供給されるので、その際
に空気中の炭酸ガスの溶け込みを防止できる。
After the surface treatment of the substrate with the treatment liquid, the control means operates the chemical liquid injection amount adjusting means to stop the injection of the chemical liquid, and supplies only pure water from the pure water supply path to the circulation path and the substrate processing. Replace the inside with pure water. Since the pure water for the rinsing process is directly supplied from the pure water supply path to the circulation path, it is possible to prevent carbon dioxide gas from being dissolved in the air at that time.

【0022】また、請求項2に記載の発明によれば、薬
液供給路が循環路に連通接続されている箇所より下流で
処理液の濃度を測定するので、注入された薬液による濃
度変化を素早く検出することができる。
According to the second aspect of the present invention, the concentration of the treatment liquid is measured downstream of the point where the chemical supply path is connected to the circulation path, so that the concentration change due to the injected chemical can be quickly performed. Can be detected.

【0023】また、請求項3に記載の発明によれば、薬
液供給路が循環路に連通接続されている箇所より上流で
処理液の濃度を測定するので、注入された薬液が循環路
を循環してほぼ一巡してきた処理液の濃度を測定するこ
とになり、薬液が純水中にある程度拡散して均等に混ざ
り合った状態で濃度を測定することになるので、安定し
て濃度を測定することができる。
According to the third aspect of the present invention, the concentration of the processing liquid is measured upstream of the portion where the chemical liquid supply path is connected to the circulation path, so that the injected chemical liquid circulates in the circulation path. As a result, the concentration of the processing solution that has almost completed one round will be measured, and the concentration will be measured in a state where the chemical solution is diffused to some extent in pure water and evenly mixed, so the concentration is measured stably be able to.

【0024】また、請求項4に記載の発明によれば、薬
液供給路が循環路に連通接続されている箇所より下流に
配設された第1の濃度測定手段と、薬液供給路が循環路
に連通接続されている箇所より上流に配設された第2の
濃度測定手段によって同じ時点で測定された処理液の濃
度に基づいて、循環路に注入される薬液の流量を求める
ことができるので、薬液の注入量を検出するための流量
を検出する手段を備えることなく濃度を制御できる。
According to the fourth aspect of the present invention, the first concentration measuring means provided downstream of the portion where the chemical supply path is connected to the circulation path, and the chemical supply path is connected to the circulation path. Since the flow rate of the chemical solution injected into the circulation path can be obtained based on the concentration of the processing solution measured at the same time by the second concentration measuring means disposed upstream of the portion connected to In addition, the concentration can be controlled without a means for detecting a flow rate for detecting the injection amount of the chemical solution.

【0025】また、請求項5に記載の発明によれば、薬
液供給路の循環路に連通接続されている箇所は純水供給
路が循環路に連通接続されている箇所の下流に位置する
ので、循環路を純水で満たすことなく、空の循環路に純
水を供給しながら薬液を注入することも可能となる。
According to the fifth aspect of the present invention, the portion connected to the circulation path of the chemical liquid supply path is located downstream of the point where the pure water supply path is connected to the circulation path. It is also possible to inject a chemical solution while supplying pure water to an empty circuit without filling the circuit with pure water.

【0026】また、請求項6に記載の発明によれば、薬
液圧力調節器により薬液の圧力を調節することによって
循環路への薬液の注入量を調節することができる。
According to the sixth aspect of the present invention, the injection amount of the chemical into the circulation path can be adjusted by adjusting the pressure of the chemical with the chemical pressure regulator.

【0027】また、請求項7に記載の発明によれば、薬
液流量調節弁により薬液の流量を調節することによって
循環路への薬液の注入量を調節することができる。
According to the present invention, the amount of the chemical solution injected into the circulation path can be adjusted by adjusting the flow rate of the chemical solution by the chemical solution flow rate control valve.

【0028】また、請求項8に記載の発明によれば、処
理液は処理液循環手段によって循環路内を流通するが、
処理液には薬液が含まれるため処理液循環手段としてベ
ローズポンプが一般的に利用されている。このようなポ
ンプには、その構造上、圧力が脈を打つように変動する
『脈動』と呼ばれる現象が生じるので、循環路を流通す
る処理液の圧力が脈動に応じて変動することになる。処
理液の圧力が変動すると薬液注入量調節手段における薬
液の圧力または流量を一定に保持したとしても差圧が変
動するため薬液の注入量が変動してしまうことになる
が、脈動による影響を防止して処理液の圧力を一定に保
持する処理液圧力一定化手段を備えることによりそのよ
うな不都合を防止できる。
According to the eighth aspect of the present invention, the processing liquid is circulated in the circulation path by the processing liquid circulating means.
Since the treatment liquid contains a chemical solution, a bellows pump is generally used as treatment liquid circulation means. In such a pump, a phenomenon called "pulsation" occurs in which the pressure fluctuates so as to form a pulse, so that the pressure of the processing liquid flowing through the circulation path fluctuates in accordance with the pulse. If the pressure of the treatment liquid fluctuates, the pressure difference will fluctuate even if the pressure or flow rate of the chemical liquid in the chemical liquid injection amount adjustment means is kept constant, but the injection amount of the chemical liquid will fluctuate. Such inconvenience can be prevented by providing the processing liquid pressure stabilizing means for keeping the pressure of the processing liquid constant.

【0029】また、請求項9に記載の発明によれば、処
理液圧力調整器で直接的に循環路内の処理液の圧力をほ
ぼ一定に調節することにより、脈動に起因する悪影響を
防止することができる。
According to the ninth aspect of the present invention, the pressure of the processing liquid in the circulation path is directly adjusted to be substantially constant by the processing liquid pressure regulator, thereby preventing an adverse effect due to pulsation. be able to.

【0030】また、請求項10に記載の発明によれば、
処理液流量調整弁で循環路内の処理液の流量をほぼ一定
に調節することによって、循環路内の処理液圧力を一定
化でき、脈動に起因する悪影響を防止することができ
る。
According to the tenth aspect of the present invention,
By adjusting the flow rate of the processing liquid in the circulation path to be substantially constant by the processing liquid flow rate adjusting valve, the pressure of the processing liquid in the circulation path can be made constant, and adverse effects due to pulsation can be prevented.

【0031】また、請求項11に記載の発明によれば、
処理液循環手段の脈動に起因して循環路内の処理液圧力
と薬液供給路内の薬液圧力との差圧が変動すると、薬液
の注入量が変動してしまうことになるが、差圧をほぼ一
定に保持する差圧一定化手段により脈動による差圧変動
を防止することができるので、そのような不都合を防止
することができる。
According to the eleventh aspect of the present invention,
If the pressure difference between the processing liquid pressure in the circulation path and the chemical pressure in the chemical supply path fluctuates due to the pulsation of the processing liquid circulation means, the injection amount of the chemical liquid fluctuates. Since the differential pressure fluctuation due to pulsation can be prevented by the differential pressure stabilizing means that keeps substantially constant, such inconvenience can be prevented.

【0032】また、請求項12に記載の発明によれば、
処理液の圧力変動に応じて薬液の圧力を調節する薬液圧
力調節器により脈動に起因する差圧変動を抑制すること
ができるので、薬液の注入量が変動することを防止でき
る。
According to the twelfth aspect of the present invention,
Fluctuation of the differential pressure due to pulsation can be suppressed by the chemical pressure regulator that adjusts the pressure of the chemical in accordance with the pressure fluctuation of the processing liquid, so that the injection amount of the chemical can be prevented from fluctuating.

【0033】また、請求項13に記載の発明によれば、
処理液の圧力変動に応じて薬液の流量を直接的に調節す
る薬液流量調節弁により、例えば、処理液の圧力が高く
なった場合には薬液の流量が減少して循環路への注入量
が減少するので、その流量の減少を補う分だけ薬液流量
調節弁を開けることにより、脈動に起因する差圧変動で
薬液の注入量が変動することを防止できる。
According to the thirteenth aspect of the present invention,
With a chemical liquid flow rate control valve that directly adjusts the flow rate of the chemical liquid according to the pressure fluctuation of the processing liquid, for example, when the pressure of the processing liquid increases, the flow rate of the chemical liquid decreases and the injection amount into the circulation path decreases. Since the amount decreases, the amount of the chemical solution injected can be prevented from fluctuating due to the differential pressure fluctuation caused by the pulsation by opening the chemical flow control valve by an amount that compensates for the decrease in the flow rate.

【0034】[0034]

【発明の実施の形態】以下、図面を参照して本発明の一
実施例を説明する。 <第1実施例>本実施例に係る基板処理装置の概略構成
を図1を参照して説明する。この基板処理装置は、純水
と薬液とを混合して得られた処理液で半導体ウエハなど
の基板Wに対して表面処理を行うためのものである。こ
の基板処理装置は、大きく分けて処理液を貯留して基板
Wの表面処理を行うための『基板処理部1』と、この基
板処理部1に対して処理液を供給する『処理液供給系』
と、処理液が純水で置換され、リンス処理が完了したこ
とを確認するための『比抵抗測定系』と、処理液供給系
を制御する『制御系』とから構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. <First Embodiment> A schematic configuration of a substrate processing apparatus according to the present embodiment will be described with reference to FIG. This substrate processing apparatus is for performing a surface treatment on a substrate W such as a semiconductor wafer with a processing liquid obtained by mixing pure water and a chemical solution. This substrate processing apparatus is roughly divided into a “substrate processing section 1” for storing a processing liquid and performing a surface treatment on the substrate W, and a “processing liquid supply system” for supplying the processing liquid to the substrate processing section 1. 』
A "resistivity measuring system" for confirming that the processing liquid has been replaced with pure water and the rinsing process has been completed, and a "control system" for controlling the processing liquid supply system.

【0035】『基板処理部1』は、処理槽1aと外槽1
bとを備えており、処理槽1aは槽底部から処理液の供
給を受け、外槽1bは処理槽1aから溢れた出た余剰の
処理液を貯留して排出するようになっている。一般的に
は、この種の基板処理装置は、複数個の基板処理部1を
備え、各基板処理部1には個別の処理液供給系統によっ
て処理液が供給されるように構成されている。但し、本
明細書では説明の簡単のために単一の基板処理部1を備
えた基板処理装置を例に採って説明するが、本発明は複
数個の基板処理部1を備えた装置にも適用することが可
能である。また、本発明は複数枚の基板Wを浸漬させて
処理を施す処理槽1aを用いるものではなく、基板を1
枚ずつ処理する処理部を備えた装置であっても適用可能
である。
The “substrate processing section 1” includes a processing tank 1 a and an outer tank 1.
b, the processing tank 1a receives the supply of the processing liquid from the bottom of the tank, and the outer tank 1b stores and discharges the excess processing liquid overflowing from the processing tank 1a. Generally, this type of substrate processing apparatus includes a plurality of substrate processing units 1 and is configured such that a processing liquid is supplied to each substrate processing unit 1 by an individual processing liquid supply system. However, in the present specification, for simplicity of description, a substrate processing apparatus having a single substrate processing unit 1 will be described as an example, but the present invention is also applicable to an apparatus having a plurality of substrate processing units 1. It is possible to apply. Further, the present invention does not use the processing tank 1a for performing processing by immersing a plurality of substrates W,
The present invention can be applied to an apparatus having a processing unit for processing sheets one by one.

【0036】『処理液供給系統』は、処理槽1aと外槽
1bとに連通接続された循環路2と、この循環路2に、
三方弁で構成された給水循環切替え弁3aを介して純水
供給源から純水を直接的に供給するための純水供給路3
と、循環路2中に薬液を注入するために薬液供給路16
が循環路2に連通接続されている薬液注入部4と、外槽
1bに溢れ出た処理液を循環路2に送り込んで再び処理
槽1aに供給するように循環させるための処理液循環手
段に相当し、耐薬品性を有するベローズ式の処理液循環
ポンプ5と、この処理液循環ポンプ5がベローズ式であ
ることから生じる脈動に起因する圧力変動を抑制するた
めのポンプ脈動緩衝器6(オートアキュームレータなど
とも呼ばれる)と、循環路2内の処理液や純水を三方弁
で構成された排水循環切替え弁7aの切り換えによって
排出するための排液路7とを備えている。また、薬液注
入部4と処理槽1aの底部との間、すなわち、薬液注入
部4の下流側には循環路2を流通する処理液の濃度を測
定するための処理液濃度センサ8(濃度測定手段)が取
り付けられており、下流濃度検出信号が後述する制御部
30Aに与えられる。この処理液濃度センサ8として
は、例えば、処理液の透過光強度を測定して吸光度に基
づき濃度を求めるフローセル式のものが好ましい。
The "processing liquid supply system" includes a circulation path 2 connected to the processing tank 1a and the outer tank 1b.
A pure water supply path 3 for directly supplying pure water from a pure water supply source via a feed water circulation switching valve 3a constituted by a three-way valve.
And a chemical supply path 16 for injecting the chemical into the circulation path 2.
Are connected to the chemical liquid injection section 4 connected to the circulation path 2 and the processing liquid circulating means for sending the processing liquid overflowing to the outer tank 1b to the circulation path 2 and circulating the processing liquid again to the processing tank 1a. Correspondingly, a bellows type processing liquid circulating pump 5 having chemical resistance and a pump pulsation damper 6 (automatic) for suppressing pressure fluctuation caused by pulsation caused by this processing liquid circulating pump 5 being a bellows type. And a drainage passage 7 for discharging the processing liquid or pure water in the circulation passage 2 by switching a drainage circulation switching valve 7a formed of a three-way valve. Further, between the chemical liquid injection section 4 and the bottom of the processing tank 1a, that is, downstream of the chemical liquid injection section 4, a processing liquid concentration sensor 8 (concentration measurement) for measuring the concentration of the processing liquid flowing through the circulation path 2 ) Is attached, and a downstream concentration detection signal is given to a control unit 30A described later. The processing liquid concentration sensor 8 is preferably, for example, a flow cell type sensor that measures the transmitted light intensity of the processing liquid and obtains the concentration based on the absorbance.

【0037】さらに循環路2の給水循環切替え弁3aと
薬液注入部4の間には処理液流量センサ9が取り付けら
れ、この処理液流量センサ9と薬液注入部4の間には処
理液の圧力を一定に保持するための処理液圧力調節器1
0が、また、薬液注入部4と処理液濃度センサ8の間に
は、循環路2内を流通する処理液の圧力を測定する処理
液圧力センサ11が取り付けられている。処理液圧力調
節器10は、電空変換器12から与えられた空気圧(以
下、パイロット圧と称する)に応じて処理液圧力調節器
10の二次側の処理液圧力を調節する制御弁である。な
お、上記の処理液流量センサ9と処理液圧力センサ11
の取り付け位置は好ましい例であって、特にそれらの位
置に限定されるものではない。
Further, a processing liquid flow rate sensor 9 is mounted between the water supply circulation switching valve 3a of the circulation path 2 and the chemical liquid injection section 4, and a pressure of the processing liquid is applied between the processing liquid flow sensor 9 and the chemical liquid injection section 4. Pressure regulator 1 for keeping the pressure constant
A processing liquid pressure sensor 11 for measuring the pressure of the processing liquid flowing in the circulation path 2 is provided between the chemical liquid injection section 4 and the processing liquid concentration sensor 8. The treatment liquid pressure regulator 10 is a control valve that regulates the treatment liquid pressure on the secondary side of the treatment liquid pressure regulator 10 according to the air pressure (hereinafter, referred to as pilot pressure) given from the electropneumatic converter 12. . The processing liquid flow sensor 9 and the processing liquid pressure sensor 11
Are preferred examples, and are not particularly limited to those positions.

【0038】処理液圧力調節器10についてより具体的
に説明すると、これはその内部にダイアフラムに連動す
る弁体を備えている。このダイアフラムの一方面にパイ
ロット圧が、他方面に二次側の処理液圧力がそれぞれ作
用する。両圧力に差圧があるとダイアフラムが変形して
弁体の開度が変わり、両圧力が平衡したところで弁体が
静止する。つまり、処理液圧力調節器10の二次側の処
理液圧力がパイロット圧に平衡するように弁体が変位す
る。したがって、一定のパイロット圧を与えることによ
って処理液圧力調整器10の二次側の処理液圧力を一定
にすることができる。
The processing liquid pressure regulator 10 will be described in more detail. The processing liquid pressure regulator 10 has a valve body interlocked with a diaphragm therein. The pilot pressure acts on one surface of the diaphragm, and the processing liquid pressure on the secondary side acts on the other surface. If there is a pressure difference between the two pressures, the diaphragm is deformed and the opening degree of the valve body changes, and when the two pressures are balanced, the valve body stops. That is, the valve element is displaced so that the processing liquid pressure on the secondary side of the processing liquid pressure regulator 10 is balanced with the pilot pressure. Therefore, by applying a constant pilot pressure, the processing liquid pressure on the secondary side of the processing liquid pressure regulator 10 can be made constant.

【0039】処理液圧力調節器10を操作する電空変換
器12は、供給された加圧空気を、後述する制御系であ
る制御部30Aからの操作電圧に応じた空気圧(パイロ
ット圧)に変換して出力する。処理液流量センサ9は循
環路2を流通する処理液の流量を検出し、その処理液流
量検出信号が後述する制御部30Aに入力される。ま
た、処理液圧力センサ11は、その処理液圧力検出信号
が後述する制御部30Aに対して与えられるようになっ
ている。
The electropneumatic converter 12 operating the processing liquid pressure regulator 10 converts the supplied pressurized air into an air pressure (pilot pressure) corresponding to an operation voltage from a control unit 30A which is a control system described later. And output. The processing liquid flow rate sensor 9 detects the flow rate of the processing liquid flowing through the circulation path 2, and a processing liquid flow rate detection signal is input to a control unit 30A described later. Further, the processing liquid pressure sensor 11 is configured to supply a processing liquid pressure detection signal to a control unit 30A described later.

【0040】薬液注入部4には、循環路2の純水中に異
なる種類の薬液を個別に導入する複数個の薬液導入弁1
5と、各薬液導入弁15の出口側にそれぞれ接続されて
薬液供給路16を開閉する薬液供給弁17とが配設され
ている。
The chemical injection section 4 has a plurality of chemical introduction valves 1 for individually introducing different types of chemicals into pure water in the circulation path 2.
5 and a chemical supply valve 17 which is connected to the outlet side of each chemical introduction valve 15 and opens and closes the chemical supply path 16, respectively.

【0041】図2は、上述した薬液導入弁15の構造を
示しており、薬液供給弁17の機能も兼ね備えている。
薬液導入弁15は、図2に示すように、循環路2の途中
に介在する導入弁連結管18に連結されている。薬液導
入弁15の底面部と、導入弁連結管18に穿たれた有底
穴とが相まって弁室15aが形成されている。この弁室
15aは、接続孔15bを介して薬液供給路16に連通
接続されている。また、弁室15aには、薬液導入口1
5gを介して、導入弁連結管18の処理液流路18aに
連通接続されている。弁室15aには、薬液導入口15
gの開閉を行い、かつ開口度を調節する絞り弁15cが
設けられている。絞り弁15cの基端は、弁本体15d
内を摺動変位する支持体15eに連結されている。この
支持体15eは、バネ15hによって下方に押し付けら
れる。パイロットエア供給口15iにエアを供給しない
状態では、バネ15hのバネ力によって支持体15eお
よび絞り弁15cは下方向に押し付けられており、この
とき薬液導入口15gは閉じられている。パイロットエ
ア供給口15iにエアを供給した状態では、支持体15
eおよび絞り弁15cがバネ15hのバネ力に勝って上
昇し、弁本体15d内にねじ込み挿入された調整ボルト
15fの先端に当接して停止する。この状態では薬液導
入口15gは開いている。この調整ボルト15fのねじ
込み量を手操作で調節することにより、絞り弁15cと
調整ボルト15fとが当接して、薬液導入口15gの開
口度が調節されるようになっている。この薬液導入弁1
5によれば、出口側の処理液流路18aを流通する処理
液の圧力が、入口側の薬液供給路16を流通する薬液の
圧力よりも低くなるように各圧力を設定することによ
り、入口側の薬液圧力と出口側の処理液圧力との差圧に
応じた流量の薬液が、処理液流路18aの処理液中に導
入される。
FIG. 2 shows the structure of the above-described chemical liquid introduction valve 15, which also has the function of the chemical liquid supply valve 17.
As shown in FIG. 2, the chemical solution introduction valve 15 is connected to an introduction valve connecting pipe 18 provided in the middle of the circulation path 2. A valve chamber 15a is formed by combining a bottom surface of the chemical solution introduction valve 15 and a bottomed hole drilled in the introduction valve connecting pipe 18. The valve chamber 15a is connected to the chemical supply path 16 through a connection hole 15b. Further, the valve chamber 15a has a chemical solution inlet 1 therein.
Through 5 g, it is connected to the treatment liquid flow path 18 a of the introduction valve connecting pipe 18. In the valve chamber 15a, a chemical solution inlet 15 is provided.
A throttle valve 15c that opens and closes g and adjusts the degree of opening is provided. The base end of the throttle valve 15c is
It is connected to a support 15e that slides inside. This support 15e is pressed downward by a spring 15h. In a state where air is not supplied to the pilot air supply port 15i, the support 15e and the throttle valve 15c are pressed downward by the spring force of the spring 15h, and at this time, the chemical solution introduction port 15g is closed. When air is supplied to the pilot air supply port 15i, the support 15
e and the throttle valve 15c rise by virtue of the spring force of the spring 15h, come into contact with the tip of the adjusting bolt 15f screwed into the valve body 15d, and stop. In this state, the liquid inlet 15g is open. By manually adjusting the screwing amount of the adjustment bolt 15f, the throttle valve 15c and the adjustment bolt 15f are brought into contact with each other, and the degree of opening of the chemical solution inlet 15g is adjusted. This chemical introduction valve 1
According to 5, each pressure is set such that the pressure of the processing liquid flowing through the processing liquid flow path 18a on the outlet side is lower than the pressure of the chemical liquid flowing through the chemical liquid supply path 16 on the inlet side. A chemical solution having a flow rate corresponding to the pressure difference between the chemical solution pressure on the side and the processing solution pressure on the outlet side is introduced into the processing solution in the processing solution channel 18a.

【0042】『薬液供給系統』は、本装置で使用する処
理液の種類に応じた個数だけ設けられ、各薬液供給系統
が薬液注入部4の各薬液導入弁15に接続されている。
各薬液供給系統は同一構成であるので、以下の説明では
図1に示した1つの薬液供給系統について説明する。
The number of “chemical solution supply systems” is provided in accordance with the type of treatment liquid used in the present apparatus, and each chemical solution supply system is connected to each chemical solution introduction valve 15 of the chemical solution injection section 4.
Since each of the chemical supply systems has the same configuration, one chemical supply system shown in FIG. 1 will be described below.

【0043】薬液供給路16は、その一端が薬液供給源
19に連通接続されており、不活性ガスによって加圧さ
れることによって、薬液供給路16に薬液が供給され
る。また、薬液供給源19側から順に、薬液流量を検出
する薬液流量センサ20と、二次側の薬液圧力を調節
し、薬液注入量調節手段となる薬液圧力調節器21が設
けられている。この薬液圧力調節器21の二次側が上述
した薬液導入弁15に接続されている。薬液流量センサ
20の薬液流量検出信号は、後述する制御部30Aに与
えられる。薬液圧力調節器21は、上述した処理液圧力
調節器10と同様の構成を備えた制御弁であり、電空変
換器22から与えられたパイロット圧に応じて、その二
次側の薬液圧力を調節するように作動する。電空変換器
22は、後述する制御部30Aからの操作電圧に応じた
パイロット圧を出力する。
One end of the chemical supply path 16 is connected to a chemical supply source 19, and the chemical is supplied to the chemical supply path 16 when pressurized by an inert gas. In addition, a chemical liquid flow rate sensor 20 for detecting a chemical liquid flow rate and a chemical liquid pressure regulator 21 as a chemical liquid injection amount adjusting means for adjusting the chemical liquid pressure on the secondary side are provided in order from the chemical liquid supply source 19 side. The secondary side of this chemical liquid pressure regulator 21 is connected to the above-mentioned chemical liquid introduction valve 15. The chemical liquid flow rate detection signal of the chemical liquid flow rate sensor 20 is given to a control unit 30A described later. The chemical liquid pressure regulator 21 is a control valve having a configuration similar to that of the above-described processing liquid pressure regulator 10, and adjusts the chemical liquid pressure on the secondary side according to the pilot pressure given from the electropneumatic converter 22. Operate to adjust. The electropneumatic converter 22 outputs a pilot pressure according to an operation voltage from a control unit 30A described later.

【0044】なお、本実施例では、薬液注入部4が薬液
だけを注入する構成として説明するが、薬液注入部4を
構成している薬液導入弁15の一つに純水供給源を接続
して純水を供給するようにしてもよい。これにより処理
液の濃度が濃度目標値を越えたとしても、純水を注入し
て濃度を下げる方向に調整することができるようにな
る。
In this embodiment, a description is given of a configuration in which the chemical liquid injection section 4 injects only the chemical liquid. However, a pure water supply source is connected to one of the chemical liquid introduction valves 15 constituting the chemical liquid injection section 4. Pure water may be supplied. Thus, even if the concentration of the processing solution exceeds the concentration target value, the concentration can be adjusted in a direction of lowering the concentration by injecting pure water.

【0045】『比抵抗測定系』は、基板処理部1の処理
槽1aに連通接続された採取管25aと、この採取管2
5aに純水を導入するための開閉弁25bと、採取管2
5aに取り込まれて流通する純水の比抵抗を測定する比
抵抗測定器25cとを備えている。開閉弁25bを設け
ているのは、通常、比抵抗測定器25cの検出部には耐
薬品性がないため、それが損傷しないように処理液濃度
が十分に低下して、処理液が十分に純水で置換されてか
ら取り込むようにするためである。比抵抗測定器25c
によって測定された比抵抗値は、制御部30Aに出力さ
れ、純水による置換度合いの判断に利用される。
The “resistivity measuring system” includes a sampling pipe 25 a communicatively connected to the processing tank 1 a of the substrate processing section 1,
Opening / closing valve 25b for introducing pure water into 5a;
And a specific resistance measuring device 25c for measuring the specific resistance of pure water taken in and circulated by 5a. The on-off valve 25b is usually provided because the detection part of the resistivity measuring instrument 25c does not have chemical resistance, so that the concentration of the processing liquid is sufficiently reduced so that it is not damaged, and the processing liquid is sufficiently supplied. This is because it is taken in after being replaced with pure water. Specific resistance measuring instrument 25c
Is output to the control unit 30A and used for determining the degree of replacement with pure water.

【0046】『制御系』である制御部30Aはコンピュ
ータ機器などによって構成されている。この制御部30
Aを機能的に大別すると、図3に示すように目標値設定
部40と、濃度制御調整部50と、薬液制御調整部60
と、薬液操作信号補正部70と、濃度補正調整部80A
と、処理液制御調整部90と、処理液操作信号補正部1
00となる。
The control section 30A, which is a "control system", is constituted by computer equipment or the like. This control unit 30
A is roughly divided into functional groups, as shown in FIG. 3, the target value setting unit 40, the concentration control adjusting unit 50, and the chemical liquid control adjusting unit 60.
, A chemical operation signal correction unit 70, and a concentration correction adjustment unit 80A
Processing liquid control adjusting section 90, processing liquid operation signal correction section 1
00.

【0047】目標値設定部40は、制御量の目標値を設
定するためのものである。基板処理装置の場合、最終的
には処理液の濃度を所望の濃度にすることが目標であ
る。この処理液は純水と薬液とを混合して生成されるの
で、処理液流量と薬液流量とが定まると処理液の濃度は
一義的に決まる。したがって、処理液の濃度を所望濃度
にすることが目標であっても、制御量として必ずしも処
理液の濃度を選択する必要はない。つまり、「処理液濃
度」、「処理液流量」、「薬液流量」のうちいずれか2
つを制御量として設定すればよい。制御量として何を選
択するかは、管理したい項目によって決定されるが、本
実施例では制御量として「処理液濃度」と「薬液流量」
とを用いている。つまり、目標値設定部40は、制御量
としての処理液濃度と薬液流量の各目標値を設定する。
The target value setting section 40 is for setting a target value of the control amount. In the case of a substrate processing apparatus, the goal is to finally bring the concentration of the processing solution to a desired concentration. Since this processing liquid is generated by mixing pure water and a chemical liquid, the concentration of the processing liquid is uniquely determined when the flow rate of the processing liquid and the flow rate of the chemical liquid are determined. Therefore, even if the target is to set the concentration of the processing liquid to a desired concentration, it is not always necessary to select the concentration of the processing liquid as the control amount. That is, any one of “treatment solution concentration”, “treatment solution flow rate”, and “chemical solution flow rate”
One may be set as the control amount. What is selected as the control amount is determined depending on the item to be managed. In the present embodiment, the “processing solution concentration” and the “chemical solution flow rate” are used as the control amounts.
And are used. That is, the target value setting unit 40 sets each target value of the processing solution concentration and the chemical solution flow rate as the control amount.

【0048】目標値設定部40は、変数指定部41と、
目標値出力部42と、目標値変換部43とから構成され
ている。変数指定部41は、設定しようとする目標値の
種別の指定と、指定された目標値について、その変化パ
ターンを決定するための変数を指定するためのものであ
る。目標値出力部42は、変数指定部41を介して指定
された変数に基づいて、例えば、時間に係わらず一定の
薬液流量目標値a1と、時間の経過とともに変化する濃
度目標値a3とを出力する(図5参照)。また、目標値
変換部43は、目標値出力部42からの目標値に基づ
き、処理液流量目標値a2と濃度目標値a3とに変換し
て出力する。
The target value setting section 40 includes a variable specifying section 41,
A target value output unit 42 and a target value conversion unit 43 are provided. The variable specifying section 41 is for specifying the type of the target value to be set and for specifying the variable for determining the change pattern of the specified target value. The target value output unit 42 outputs, for example, a constant chemical solution flow rate target value a1 regardless of time and a concentration target value a3 that changes with time, based on a variable specified via the variable specifying unit 41. (See FIG. 5). The target value converter 43 converts the target value from the target value output unit 42 into a processing liquid flow rate target value a2 and a concentration target value a3 and outputs the target value.

【0049】濃度制御調整部50は、処理液の濃度が濃
度目標値a3と一致するようにフィードバック制御を行
うものであり、図3および図4に示すように、処理液濃
度センサ8による下流濃度検出信号b1と濃度目標値a
3との偏差c1を求め、この濃度偏差c1を打ち消すよ
うに薬液流量操作量d1を調節する。この薬液流量操作
量d1が、薬液制御調整部60において薬液流量検出信
号b2に応じた補正を加えられ、流量−電圧変換部53
で薬液流量操作電圧Vd1に変換されて薬液操作信号補
正部70に出力される。
The concentration control adjusting section 50 performs feedback control so that the concentration of the processing liquid coincides with the target concentration value a3. As shown in FIGS. Detection signal b1 and target density value a
The deviation c1 from 3 is obtained, and the chemical liquid flow rate operation amount d1 is adjusted so as to cancel the concentration deviation c1. The chemical liquid flow rate operation amount d1 is corrected by the chemical liquid control adjustment unit 60 according to the chemical liquid flow rate detection signal b2, and the flow rate-voltage conversion unit 53
Is converted into the chemical liquid flow operation voltage Vd1 and output to the chemical liquid operation signal correction unit 70.

【0050】本実施例装置は、薬液注入部4の下流に処
理液濃度センサ8が設けられているので薬液の注入によ
る濃度変化を素早く検出することが可能である。濃度補
正調整部80Aは、処理液濃度センサ8からの下流濃度
検出信号b1と、薬液流量センサ20からの薬液流量検
出信号b2と、処理液流量センサ9からの処理液流量検
出信号b3とに基づき一巡処理液濃度計算部81で一巡
処理液濃度fbcrc、すなわち処理槽1aからオーバ
ーフローした後、循環路2を通って薬液注入部4まで戻
ってきた処理液の濃度を算出する。そして、濃度補正信
号1計算部82でその値にゲインと時定数を付加して補
正を行い、このようにして求めた帰還補正信号ffcp
1を濃度制御調整部50にフィードフォワードすること
により、濃度制御調整部50の制御偏差をより小さくす
るように制御する。
In the apparatus of this embodiment, since the processing liquid concentration sensor 8 is provided downstream of the chemical liquid injection section 4, it is possible to quickly detect a change in concentration due to the injection of the chemical liquid. The concentration correction adjustment section 80A is based on the downstream concentration detection signal b1 from the processing liquid concentration sensor 8, the chemical liquid flow detection signal b2 from the chemical liquid flow sensor 20, and the processing liquid flow detection signal b3 from the processing liquid flow sensor 9. The cycle processing solution concentration calculator 81 calculates the cycle processing solution concentration fbcrc, that is, the concentration of the processing solution that has overflowed from the processing tank 1a and returned to the chemical solution injector 4 through the circulation path 2. Then, the density correction signal 1 calculation unit 82 performs correction by adding a gain and a time constant to the value, and obtains the feedback correction signal ffcp thus obtained.
By feeding forward 1 to the density control adjustment unit 50, control is performed so as to further reduce the control deviation of the density control adjustment unit 50.

【0051】ところで循環路2に処理液を循環させる方
式による基板処理装置の薬液混合を式で表すと、 処理液濃度=一巡処理液濃度+薬液流量に相当する濃度
上昇分 となり、循環させながら処理液の濃度制御を行うには、
上記の一巡処理液濃度fbcrcに応じて薬液流量を変
化させてゆく必要がある。
By the way, chemical liquid mixing in the substrate processing apparatus by the method of circulating the processing liquid through the circulation path 2 is expressed by the following equation: processing liquid concentration = circular processing liquid concentration + concentration increase corresponding to the flow rate of the chemical liquid. To perform liquid concentration control,
It is necessary to change the flow rate of the chemical solution according to the above-mentioned one cycle processing solution concentration fbcrc.

【0052】上記の濃度補正調整部80Aを備えていな
い場合は、一巡処理液濃度fbcrcが変化すると上述
した濃度偏差c1が大きくなり、これを修正するため濃
度偏差c1を抑制するように濃度帰還調整部51が動作
するので、この部分の帰還動作に大きく依存してしま
う。一方、本実施例のように濃度補正調整部80Aを備
えている場合は、一巡処理液濃度fbcrcを計算して
フィードバックすることにより、最初から必要な薬液流
量を流すようにするので、濃度偏差c1をより小さくす
ることができ、濃度制御を精度良くできて処理槽1aに
おける処理を高精度に行うことができる。
When the above-mentioned concentration correction adjusting section 80A is not provided, the above-mentioned concentration deviation c1 becomes large when the cycle processing solution concentration fbcrc changes, and the concentration feedback adjustment is performed so as to suppress the concentration deviation c1 in order to correct this. Since the unit 51 operates, it greatly depends on the feedback operation of this part. On the other hand, in the case where the concentration correction adjusting unit 80A is provided as in the present embodiment, the required chemical liquid flow rate is caused to flow from the beginning by calculating and feeding back the cycle processing solution concentration fbcrc, so that the concentration deviation c1 Can be made smaller, the concentration can be controlled with high precision, and the processing in the processing tank 1a can be performed with high precision.

【0053】処理液制御調整部90は、処理液流量検出
信号b3を用いてフィードバック制御を行うことによっ
て処理液流量を安定させるものである。処理液帰還調整
部91において目標値設定部40からの処理液流量目標
値a2と処理液流量検出信号b3との偏差に基づく処理
液流量操作量d2を求め、この値に基づき処理液操作量
変換部92が処理液流量操作電圧Vd2を求める。この
処理液流量操作電圧Vd2は、処理液操作信号補正部1
00に出力され、ここで電空変換器12や処理液圧力調
節器10に応じた補正が加えられる。
The processing liquid control adjustment section 90 stabilizes the processing liquid flow rate by performing feedback control using the processing liquid flow rate detection signal b3. The processing liquid feedback adjusting unit 91 obtains a processing liquid flow operation amount d2 based on a deviation between the processing liquid flow target value a2 from the target value setting unit 40 and the processing liquid flow detection signal b3, and converts the processing liquid operation amount based on this value. The unit 92 obtains the processing liquid flow rate operation voltage Vd2. This processing liquid flow rate operation voltage Vd2 is the processing liquid operation signal correction unit 1
00, where correction is made in accordance with the electropneumatic converter 12 and the processing liquid pressure regulator 10.

【0054】なお、上記の処理液操作信号補正部100
では、予め設定されている処理液圧力基準値と処理液圧
力センサ11からの処理液圧力検出信号b4との偏差
(処理液圧力の変動分を表している)を一定に保持する
補正も行っている。つまり、処理液制御調整部90から
出力される処理液流量操作電圧Vd2からその偏差に応
じた電圧を減算する。したがって、ポンプ脈動緩衝器6
によって除去しきれなかった脈動を抑制して処理液圧力
の変動を吸収し、薬液注入部4からの注入量が変動する
ことを防止できるようになっている。上記処理液操作信
号補正部100、処理液圧力センサ11、処理液圧力調
節器10は、本発明の処理液圧力一定化手段に相当す
る。
The processing liquid operation signal correction unit 100 described above
Then, a correction is also performed to keep the deviation between the preset reference value of the processing liquid pressure and the processing liquid pressure detection signal b4 from the processing liquid pressure sensor 11 (representing the fluctuation of the processing liquid pressure) constant. I have. That is, a voltage corresponding to the deviation is subtracted from the processing liquid flow rate operation voltage Vd2 output from the processing liquid control adjustment unit 90. Therefore, the pump pulsation damper 6
This suppresses the pulsation that could not be completely removed, absorbs fluctuations in the processing liquid pressure, and prevents fluctuations in the injection amount from the chemical liquid injection section 4. The processing liquid operation signal correction unit 100, the processing liquid pressure sensor 11, and the processing liquid pressure regulator 10 correspond to a processing liquid pressure stabilizing unit of the present invention.

【0055】また、上述した薬液操作信号補正部70で
は、同様にして偏差を求めるが、この偏差に応じた電圧
を処理液制御調整部50からの処理液操作電圧Vd2に
加算することによって、処理液の圧力変動分だけ薬液の
圧力を変位させて処理液圧力と薬液圧力との差圧を一定
化するように作用する。したがって、処理液圧力が変動
しても薬液圧力も同様に同じ方向へ変動するのでこれら
の差圧が一定化され、薬液の注入量が変動することが防
止できる。薬液操作信号補正部70、処理液圧力センサ
11、薬液圧力調節器21は、本発明における差圧一定
化手段に相当する。
In the chemical liquid operation signal correction unit 70 described above, a deviation is obtained in the same manner. By adding a voltage corresponding to this deviation to the processing liquid operation voltage Vd2 from the processing liquid control adjustment unit 50, the processing is performed. The pressure of the chemical solution is displaced by an amount corresponding to the fluctuation of the pressure of the solution, so that the pressure difference between the processing solution pressure and the chemical solution pressure is made constant. Therefore, even if the processing liquid pressure fluctuates, the chemical liquid pressure also fluctuates in the same direction, so that these pressure differences are made constant, and the fluctuation of the injection amount of the chemical liquid can be prevented. The chemical operation signal correction unit 70, the processing liquid pressure sensor 11, and the chemical pressure regulator 21 correspond to a differential pressure stabilizing unit in the present invention.

【0056】次に上記のように構成された装置の動作に
ついて説明する。 (1)目標値の設定 まず、オペレータが変数指定部41を操作して、目標値
の種別、本実施例では図5に示すように薬液流量目標値
a1と濃度目標値a3の指定と、これらの目標値につい
て、その変化パターンを決定するための変数を指定す
る。目標値出力部42からこれらの指定に基づく薬液流
量目標値a1と濃度目標値a3が出力され、目標値変換
部43からは時間の経過とともに変化する処理液流量目
標値a2と濃度目標値a3が出力される。
Next, the operation of the apparatus configured as described above will be described. (1) Setting of target value First, the operator operates the variable specifying section 41 to specify the type of the target value, in this embodiment, the designation of the chemical flow rate target value a1 and the concentration target value a3 as shown in FIG. For the target value, a variable for determining the change pattern is specified. The target value output section 42 outputs a chemical liquid flow rate target value a1 and a concentration target value a3 based on these designations, and the target value conversion section 43 outputs a processing liquid flow rate target value a2 and a concentration target value a3 that change over time. Is output.

【0057】上記の目標値の設定は、複数種類の処理液
を順に用いて基板の処理を行う場合、各処理液について
適用される。処理槽1aに処理液の供給を開始すると
き、排水循環切替え弁7aが閉じられるとともに給水循
環切替え弁3aが開放されて純水が供給され、処理槽1
aおよび循環路2内は純水で満たされている。これはあ
る処理液を使って基板の処理を行った後、次の処理液で
基板の処理を行う場合も同様である。すなわち、ある処
理液を使って基板の処理が終わると、排水循環切替え弁
7aと給水循環切替え弁3aが共に開放され、使用済み
の処理液を排出しながら循環路2に純水だけを供給し、
処理槽1a内の使用済の処理液を一旦、純水で置換す
る。続いて、開放弁25bを開放して採取管25aに処
理槽1a内の純水を採取して比抵抗測定器25cにより
比抵抗を測定し、置換の度合いを判断する。そして、比
抵抗値が十分に高まった場合には置換が完了してリンス
処理が完了したと判断し、処理槽1aに純水が供給され
ている状態で、純水中への薬液の注入を開始することに
より、新たな処理液を処理槽1aに供給して処理槽1a
の純水を新たな処理液で置換する。以下の説明では、純
水が供給され続けている処理槽1aに純水が満たされて
いる状態を置換の初期状態とし、この状態から循環路2
の純水中に薬液が注入され始めた時点が、処理槽1aへ
の処理液の供給開始時点であるとして説明する。
The above-described setting of the target value is applied to each processing liquid when the substrate is processed using a plurality of types of processing liquids in order. When the supply of the processing liquid to the processing tank 1a is started, the drainage circulation switching valve 7a is closed and the water supply circulation switching valve 3a is opened to supply pure water.
a and the inside of the circulation path 2 are filled with pure water. The same applies to the case where a substrate is processed using a certain processing liquid and then the substrate is processed using the next processing liquid. That is, when the processing of the substrate is finished using a certain processing liquid, the drainage circulation switching valve 7a and the water supply circulation switching valve 3a are both opened to supply only pure water to the circulation path 2 while discharging the used processing liquid. ,
The used processing liquid in the processing tank 1a is once replaced with pure water. Subsequently, the open valve 25b is opened to collect the pure water in the processing tank 1a into the collection pipe 25a, and the specific resistance is measured by the specific resistance measuring device 25c to determine the degree of replacement. When the specific resistance value is sufficiently increased, it is determined that the replacement is completed and the rinsing process is completed, and the injection of the chemical solution into the pure water is performed in a state where the pure water is supplied to the treatment tank 1a. By starting, a new processing liquid is supplied to the processing tank 1a and the processing tank 1a
Of pure water is replaced with a new treatment liquid. In the following description, a state in which the processing tank 1a to which pure water is continuously supplied is filled with pure water is referred to as an initial state of replacement.
The description will be made assuming that the time when the chemical solution is started to be injected into the pure water is the time when the supply of the processing liquid to the processing tank 1a is started.

【0058】なお、本実施例装置は、図1に示すように
純水供給路3と給水循環切替え弁3aの下流に薬液注入
部4を設けているので、処理槽1aと循環路2に純水を
完全に満たすことなく純水を供給しながら薬液を供給す
ることができる。したがって、処理液による表面処理を
開始するまでの時間を短縮可能である。
In the apparatus of this embodiment, as shown in FIG. 1, since the chemical liquid injection section 4 is provided downstream of the pure water supply path 3 and the water supply circulation switching valve 3a, pure water is supplied to the processing tank 1a and the circulation path 2. The chemical can be supplied while supplying pure water without completely filling the water. Therefore, it is possible to shorten the time until the surface treatment with the treatment liquid is started.

【0059】(2)濃度制御調整部50,濃度補正調整
部80Aの動作 目標値変換部43から出力された濃度目標値a3は、濃
度帰還調整部51に与えられ、処理液流量目標値a2は
濃度−流量変換部52に与えられる。濃度目標値a3
は、図4に示すように減算器51a,51bに与えられ
る。そして、減算器51aでは濃度偏差c1が算出され
てPII2 D計算部51cに与えられる。ここでは、減
算器51aから与えられた濃度偏差c1に比例して濃度
操作量を決定する比例動作(P動作)と、濃度偏差c1
の積分に比例して濃度操作量を決定する積分動作(I動
作)と、濃度偏差c1の二重積分に例して濃度操作量を
決定する二重積分動作(I2 動作)と、濃度偏差c1の
微分に比例して濃度操作量を決定する微分動作(D動
作)とを含む制御則によって、処理液の濃度偏差c1を
打ち消すような処理液の濃度制御操作量を算出する。こ
の濃度制御操作量は、スイッチ51dを介して加算器5
1eに与えられる。スイッチ51dは、循環路2の純水
中に薬液が注入され始めた時点から一定時間の間、OF
F状態となってPII2 D計算部51cの出力を禁止し
(PII2 D計算部51cを非動作にし)、一定時間経
過後にON状態に切り換わってPII2 D計算部51c
の出力を許す(PII2 D計算部51cを動作させ
る)。このようにスイッチ51dを設けるのは、薬液の
注入開始初期において、濃度偏差c1が極めて大きいこ
とに起因して生じるオーバーシュートを抑制するためで
ある。
(2) Operation of Concentration Control Adjustment Unit 50 and Density Correction Adjustment Unit 80A The target concentration value a3 output from the target value conversion unit 43 is given to the concentration feedback adjustment unit 51, and the processing liquid flow rate target value a2 is It is provided to the concentration-flow rate converter 52. Density target value a3
Is given to the subtracters 51a and 51b as shown in FIG. Then, the subtracter 51a calculates the density deviation c1 and supplies it to the PII 2 D calculator 51c. Here, a proportional operation (P operation) for determining the density manipulated variable in proportion to the density deviation c1 given from the subtractor 51a, and a density deviation c1
An integral operation (I operation) for determining the concentration manipulated variable in proportion to the integral of ( 2 ), a double integral operation (I2 operation) for determining the concentration manipulated variable as an example of the double integration of the concentration deviation c1, and a density deviation Based on a control rule including a differential operation (D operation) for determining the concentration manipulated variable in proportion to the derivative of c1, a concentration control manipulated variable of the treatment solution that cancels the concentration deviation c1 of the treatment solution is calculated. This concentration control operation amount is supplied to the adder 5 via the switch 51d.
1e. The switch 51d is turned on for a certain period of time from the time when the chemical solution is started to be injected into the pure water in the circulation path 2.
The state becomes the F state, the output of the PII 2 D calculation unit 51c is prohibited (the PII 2 D calculation unit 51c is deactivated), and after a certain time has elapsed, the state is switched to the ON state and the PII 2 D calculation unit 51c is turned on.
(The PII 2 D calculation unit 51c is operated). The reason why the switch 51d is provided in this way is to suppress overshoot caused by the extremely large concentration deviation c1 at the beginning of the injection of the drug solution.

【0060】加算器51eは、減算器51bによって補
正された濃度目標値a3に、スイッチ51dを介してP
II2 D計算部51cから与えられた濃度制御操作量を
加算する。濃度目標値a3に対する補正は、上述した濃
度補正調整部80Aから与えられる帰還補正信号ffc
p1を濃度目標値a3から差し引くことにより行われ
る。
The adder 51e adds the P value to the density target value a3 corrected by the subtractor 51b via the switch 51d.
The density control operation amount given from the II 2 D calculation unit 51c is added. The correction for the density target value a3 is performed by the feedback correction signal ffc given from the density correction adjustment unit 80A described above.
This is performed by subtracting p1 from the density target value a3.

【0061】ここで帰還補正信号ffcp1の求め方に
ついて説明する。まず濃度補正調整部80Aは、処理液
濃度センサ8からの下流濃度検出信号b1と、薬液流量
センサ20からの薬液流量検出信号b2と、処理液流量
センサ9からの処理液流量検出信号b3とから一巡処理
液濃度fbcrcを求める。処理液濃度センサ8が薬液
注入部4の下流に設けられている関係上、処理液濃度セ
ンサ8からの下流濃度検出信号b1は、薬液流量センサ
20からの薬液流量検出信号b2に対して一定時間だけ
時間的に遅れる。したがって、時間的に整合をとらなけ
れば、これらの検出信号に基づいて正確に制御を行うこ
とはできない。そこで、時間的に進んでいる薬液流量セ
ンサ20からの薬液流量検出信号b2を、遅れ時間(濃
度変位遅れ時間)後の信号に相当する時間遅れ信号fb
fd[cc/min]にして計算に用いることによってこれら
の信号間の時間的な整合をとる。一巡処理液濃度fbc
rc[%]は、次の(1)式で求められる。 fbcrc = b1 −(C0 −b1)×fbfd/(1000×b3) ………(1) 但し、 b1 は、処理液濃度[%] b3 は、処理液流量[リットル/min ] C0 は、原薬液濃度[%] fbfdは、薬液流量検出信号b2の時間遅れ信号[cc/mi
n]
Here, a method of obtaining the feedback correction signal ffcp1 will be described. First, the concentration correction adjustment unit 80A calculates the downstream concentration detection signal b1 from the processing liquid concentration sensor 8, the chemical liquid flow detection signal b2 from the chemical liquid flow sensor 20, and the processing liquid flow detection signal b3 from the processing liquid flow sensor 9. The circuit solution concentration fbcrc is determined. Due to the fact that the treatment liquid concentration sensor 8 is provided downstream of the chemical liquid injection section 4, the downstream concentration detection signal b1 from the treatment liquid concentration sensor 8 is fixed for a certain time with respect to the chemical liquid flow detection signal b2 from the chemical liquid flow sensor 20. Only late in time. Therefore, accurate control cannot be performed based on these detection signals unless the time is matched. Therefore, the chemical solution flow rate detection signal b2 from the chemical solution flow rate sensor 20 which is temporally advanced is converted to a time delay signal fb corresponding to a signal after a delay time (concentration displacement delay time).
By using fd [cc / min] for calculation, a time matching between these signals is obtained. One cycle treatment liquid concentration fbc
rc [%] is obtained by the following equation (1). fbcrc = b1 - (C 0 -b1 ) × fbfd / (1000 × b3) ......... (1) where, b1, the processing solution concentration [%] b3, the processing fluid flow rate [liters / min] C 0 is The drug substance concentration [%] fbfd is a time delay signal [cc / mi] of the drug solution flow rate detection signal b2.
n]

【0062】なお、時間的な整合をとるための上記時間
遅れ信号fbfd[cc/min]は、例えば、時系列的に順
次に出力されてくる薬液流量検出信号b2をバッファに
蓄えてゆき、下流濃度検出信号b1が測定された時間の
濃度変位遅れ時間前に収集した信号b2をバッファから
読み出すことにより得ることができる。
The time delay signal fbfd [cc / min] for time matching is used, for example, to store the chemical solution flow rate detection signal b2 sequentially output in a time series in a buffer, and to downstream the signal. It can be obtained by reading out the signal b2 collected from the buffer before the density displacement delay time of the time when the density detection signal b1 was measured.

【0063】次に、濃度補正信号1計算部82は、上記
のようにして求められた一巡処理液濃度fbcrcに対
してゲインと時定数を付加して補正を行い、帰還補正信
号ffcp1を求める。このようにして求められた帰還
補正信号ffcp1は、上述したように減算器51bに
出力され、ここで濃度目標値a3に補正が加えられる。
そして、補正された濃度目標値a3が加算器51eでP
II2 D計算部51cから与えられた濃度制御操作量に
加算され濃度操作量d3とされる。
Next, the concentration correction signal 1 calculation unit 82 performs correction by adding a gain and a time constant to the loop processing solution concentration fbcrc obtained as described above, and obtains a feedback correction signal ffcp1. The feedback correction signal ffcp1 obtained in this manner is output to the subtractor 51b as described above, where the correction is applied to the density target value a3.
Then, the corrected density target value a3 is added to P by the adder 51e.
The result is added to the density control operation amount given from the II 2 D calculation unit 51c to obtain a density operation amount d3.

【0064】濃度−流量変換部52は、処理液の濃度操
作量d3を薬液流量操作量d1に変換する。この変換の
ために、濃度−流量変換部52は、処理液流量目標値a
2を参照して次の(2)式によって薬液流量操作量d1
[cc/min]を得ている。 d1=1000×d3×a2/(C0 −d3) ………(2) 但し、 a2は、処理液流量目標値[リットル/min ] d3は、濃度操作量[%] C0 は、原薬液濃度[%]
The concentration-flow rate conversion section 52 converts the concentration manipulated variable d3 of the processing liquid into the chemical fluid flow manipulated variable d1. For this conversion, the concentration-flow rate conversion unit 52 sets the processing solution flow rate target value a
Referring to FIG. 2, the chemical liquid flow rate operation amount d1 is calculated by the following equation (2).
[Cc / min]. d1 = 1000 × d3 × a2 / (C 0 −d3) (2) where a2 is the target value of the treatment liquid flow rate [liter / min] d3 is the concentration operation amount [%] C 0 is the drug substance solution concentration[%]

【0065】この薬液流量操作量d1は薬液制御調整部
60に与えられ、ここで薬液流量センサ20からの薬液
流量検出信号b2に基づくPID制御が行われ、濃度制
御調整部50の流量−電圧変換部53に出力される。こ
こでは、次の(3)式によって薬液流量操作量d1を薬
液操作信号補正部70に与える薬液流量操作電圧Vd1
[V]に変換する。 Vd1 =Ac×d12 +Bc×d1+Cc ………(3) 但し、 d1は、薬液流量操作量[cc/min] Ac,Bcは、電空変換器22および薬液圧力調節器21の
各仕様と、薬液導入弁15の弁開度から決まる定数 Ccは、処理液圧力基準値と薬液圧力調節器21の仕様か
ら決まる定数 上記の定数Ac,Bc,Ccは、実験によって求めることがで
きる。
The chemical liquid flow rate operation amount d1 is given to the chemical liquid control adjusting section 60, where PID control based on the chemical liquid flow rate detection signal b2 from the chemical liquid flow rate sensor 20 is performed, and the flow rate-voltage conversion of the concentration control adjusting section 50 is performed. It is output to the unit 53. Here, the chemical liquid flow operation voltage Vd1 for giving the chemical liquid flow operation amount d1 to the chemical liquid operation signal correction unit 70 by the following equation (3).
[V]. Vd1 = Ac × d1 2 + Bc × d1 + Cc ......... (3) where, d1 is chemical flow operation amount [cc / min] Ac, Bc are each specification of electropneumatic transducer 22 and the chemical liquid pressure regulator 21, The constant Cc determined from the valve opening degree of the chemical liquid introduction valve 15 is a constant determined from the processing liquid pressure reference value and the specification of the chemical liquid pressure regulator 21. The above constants Ac, Bc, and Cc can be obtained by experiments.

【0066】薬液流量操作電圧Vd1は薬液操作信号補
正部70に出力され、上述したように処理液圧力センサ
11からの処理液圧力検出信号b4に基づき、薬液圧力
と処理液圧力との差圧が一定となるように補正される。
The chemical liquid flow operation voltage Vd1 is output to the chemical liquid operation signal correction unit 70, and based on the processing liquid pressure detection signal b4 from the processing liquid pressure sensor 11, the differential pressure between the chemical liquid pressure and the processing liquid pressure is determined as described above. It is corrected to be constant.

【0067】上述したように濃度制御調整部50と濃度
補正調整部80Aは、処理液の濃度目標値a3と、循環
路2に設けられた処理液濃度センサ8からの下流濃度検
出信号b1との濃度偏差c1を打ち消すように薬液流量
操作量d1を調節しているので、従来例のように採取管
に処理液を採取してから測定した濃度値の基づき濃度を
制御する方式に比較して濃度変位を素早く検出すること
ができ濃度制御を正確にできる。
As described above, the density control adjustment section 50 and the density correction adjustment section 80A are configured to calculate the target concentration a3 of the processing liquid and the downstream density detection signal b1 from the processing liquid density sensor 8 provided in the circulation path 2. Since the chemical liquid flow rate operation amount d1 is adjusted so as to cancel the concentration deviation c1, the concentration is compared with a method of controlling the concentration based on the concentration value measured after collecting the treatment liquid in the collection tube as in the conventional example. Displacement can be detected quickly, and density control can be performed accurately.

【0068】(3)処理液制御調整部90の動作 目標値変換部43から出力された処理液流量目標値a2
は、処理液制御調整部90に与えられる。処理液帰還調
整部91では処理液流量目標値a2と処理液流量センサ
9からの処理液流量検出信号b3とから処理液流量偏差
が求められ、これを打ち消すようにPID制御が行わ
れ、処理液流量操作量d2が出力される。これを与えら
れた処理液操作量変換部92は、処理液操作電圧Vd2
を出力する。この処理液操作電圧Vd2[V]は、次の
(4)式で与えられる。 Vd2 =(d2−Cc)/Dc ………(4) 但し、 d2は、処理液流量操作量[リットル/min] Cc,Dcは、電空変換器12および処理液圧力調節器10
の各仕様と、循環路2の管路の抵抗係数などから決まる
定数 上記の定数Cc,Dcは、実験によって求めることができ
る。
(3) Operation of the Processing Liquid Control Adjustment Unit 90 The processing liquid flow rate target value a2 output from the target value conversion unit 43
Is given to the processing liquid control adjustment unit 90. In the processing liquid feedback adjusting unit 91, a processing liquid flow rate deviation is obtained from the processing liquid flow rate target value a2 and the processing liquid flow rate detection signal b3 from the processing liquid flow rate sensor 9, and PID control is performed so as to cancel the deviation. The flow manipulated variable d2 is output. Given this, the processing liquid operation amount conversion unit 92 outputs the processing liquid operation voltage Vd2.
Is output. This treatment liquid operation voltage Vd2 [V] is given by the following equation (4). Vd2 = (d2-Cc) / Dc (4) where d2 is the processing liquid flow rate operation amount [liter / min] Cc and Dc are the electropneumatic converter 12 and the processing liquid pressure regulator 10
And the constants Cc and Dc determined from the resistance coefficient of the pipeline of the circulation path 2 can be determined by experiments.

【0069】処理液操作電圧Vd2を与えられた処理液
操作信号補正部100は、上述したように処理液圧力セ
ンサ11からの処理液圧力検出信号b4に基づき処理液
の圧力が一定になるようにその電圧を補正する。補正さ
れた操作電圧は電空変換器12に出力され、電空変換器
12からその電圧に応じたパイロット圧が処理液圧力調
節器10に与えられる。したがって、脈動に起因する処
理液圧力の変動が抑制され、濃度制御の精度を向上させ
ることができる。
The processing liquid operation signal correction unit 100 to which the processing liquid operation voltage Vd2 has been applied makes the processing liquid pressure constant based on the processing liquid pressure detection signal b4 from the processing liquid pressure sensor 11 as described above. Correct the voltage. The corrected operating voltage is output to the electropneumatic converter 12, and a pilot pressure corresponding to the voltage is supplied from the electropneumatic converter 12 to the processing liquid pressure regulator 10. Therefore, the fluctuation of the processing liquid pressure due to the pulsation is suppressed, and the accuracy of the concentration control can be improved.

【0070】上記のように指定された変数に応じて濃度
制御された処理液により基板Wに表面処理が施される
が、この処理が終了すると、排水循環切替え弁7aと給
水循環切替え弁3aを共に開放し、使用済みの処理液を
排出しながら処理槽1aに純水だけを供給し、処理槽1
a内の使用済の処理液を一旦、純水で置換してリンス処
理を行う。続いて、開閉弁25bを開放して処理槽1a
に連通した採取管25aに純水を採取し、その比抵抗を
比抵抗測定器25cによって測定する。そして、比抵抗
値がある一定値に達するまで純水を供給し続ける。この
閾値となる比抵抗値は、例えば、18MΩcmのように
高い値であるが、本実施例の場合、循環路2に純水を直
接導入する構成を採っているので、測定値がほぼ閾値と
同じ値となりリンス処理の完了を正確に判断することが
できる。したがって、従来例のように炭酸ガスの混入に
より、リンス処理が十分にできているにも係わらず比抵
抗値が閾値に達しないため必要以上にリンス処理を行う
ような不都合が防止でき、リンス処理に要する純水の供
給量を抑制することができる。
The surface treatment is performed on the substrate W with the treatment liquid whose concentration is controlled in accordance with the variables designated as described above. When this treatment is completed, the drainage circulation switching valve 7a and the water supply circulation switching valve 3a are switched off. Both are opened, and pure water is supplied to the processing tank 1a while discharging the used processing liquid.
The used processing solution in a is once replaced with pure water to perform a rinsing process. Subsequently, the on-off valve 25b is opened to open the processing tank 1a.
The pure water is sampled in a sampling tube 25a communicating with the sample, and its specific resistance is measured by a specific resistance measuring device 25c. Then, pure water is continuously supplied until the specific resistance reaches a certain value. The specific resistance value serving as the threshold value is a high value such as, for example, 18 MΩcm. However, in the case of this embodiment, since the configuration in which pure water is directly introduced into the circulation path 2 is adopted, the measured value is substantially equal to the threshold value. The values become the same, and the completion of the rinsing process can be accurately determined. Therefore, it is possible to prevent the inconvenience of performing unnecessary rinsing processing because the specific resistance value does not reach the threshold value even though the rinsing processing is sufficiently performed due to the mixing of carbon dioxide gas as in the conventional example. Supply amount of pure water required for the above can be suppressed.

【0071】次なる表面処理がある場合には、排水循環
切替え弁7aと給水循環切替え弁3aを閉止するととも
に上述したようにして純水中への薬液の注入を開始する
ことにより、新たな処理液を処理槽1aに供給して処理
槽1aの純水を新たな処理液で置換する。
When the next surface treatment is performed, the drainage circulation switching valve 7a and the water supply circulation switching valve 3a are closed, and the injection of the chemical solution into pure water is started as described above, whereby a new treatment is performed. The liquid is supplied to the processing tank 1a, and the pure water in the processing tank 1a is replaced with a new processing liquid.

【0072】<第2実施例>上述した第1実施例は、処
理液濃度センサ8を薬液注入部4の下流に設けている
が、本実施例は図1中に点線で示すようにその上流に処
理液濃度センサ8を設けたものである。なお、上記の第
1実施例と共通する構成には、上記と同じ符号を付ける
ことで詳細な説明については省略する。
<Second Embodiment> In the above-described first embodiment, the processing liquid concentration sensor 8 is provided downstream of the chemical liquid injection unit 4, but in this embodiment, as shown by a dotted line in FIG. Is provided with a processing liquid concentration sensor 8. The same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description is omitted.

【0073】薬液注入部4の上流に設けられた処理液濃
度センサ8からは、上流濃度検出信号b5が出力され、
図6に示すように、制御部30Bを構成している濃度補
正調整部80Bの濃度補正信号1計算部82と混合後処
理液濃度計算部110に与えられる。
An upstream concentration detection signal b5 is output from the processing solution concentration sensor 8 provided upstream of the chemical solution injection section 4,
As shown in FIG. 6, it is provided to the concentration correction signal 1 calculation unit 82 and the post-mixing treatment liquid concentration calculation unit 110 of the concentration correction adjustment unit 80B constituting the control unit 30B.

【0074】混合後処理液濃度計算部110は、処理液
濃度センサ8からの上流濃度検出信号b5と、薬液流量
センサ20からの薬液流量検出信号b2と、処理液流量
センサ9からの処理液流量検出信号b3とに基づいて、
薬液注入部4で薬液を注入されて循環路2を循環してき
た処理液の濃度(混合後処理液濃度 fbc)を求める。但
し、処理液濃度センサ8は、薬液流量センサ20に対し
て時間的に進んでいるので、時間的な整合をとるために
処理液濃度センサ8からの上流濃度検出信号b5を、濃
度変位遅れ時間後の信号に相当する時間遅れ信号fbc
d2[%]にして計算に用いる。混合後処理液濃度 fbc
[%]は、次の(5)式を用いることにより算出され
る。 fbc = (1000×b3×fbcd2 +C0 ×b2) /(1000 ×b3+b2) ……(5) 但し、 b2 は、薬液流量[cc/min] b3 は、処理液流量[リットル/min ] C0 は、原薬液濃度[%] fbcd2 は、上流濃度検出信号b5の時間遅れ信号[%]
The post-mixing processing solution concentration calculator 110 calculates the upstream concentration detection signal b5 from the processing solution concentration sensor 8, the chemical solution flow detection signal b2 from the chemical solution flow sensor 20, and the processing solution flow rate from the processing solution flow sensor 9. Based on the detection signal b3,
The concentration of the treatment liquid (the concentration of the treatment liquid after mixing, fbc) that has been injected into the chemical liquid injection section 4 and circulated through the circulation path 2 is determined. However, since the processing solution concentration sensor 8 is temporally advanced with respect to the chemical solution flow sensor 20, the upstream concentration detection signal b5 from the processing solution concentration sensor 8 is used for the purpose of time matching. Time delay signal fbc corresponding to the later signal
Use d2 [%] for the calculation. Post-mixing treatment solution concentration fbc
[%] Is calculated by using the following equation (5). fbc = (1000 × b3 × fbcd2 + C 0 × b2) / (1000 × b3 + b2) ...... (5) where, b2 is chemical flow rate [cc / min] b3, the processing fluid flow rate [liters / min] C 0 is , Drug substance concentration [%] fbcd2 is a time delay signal [%] of the upstream concentration detection signal b5

【0075】このようにして算出された混合後処理液濃
度 fbcは、濃度帰還調整部51に与えられる。
The post-mixing treatment solution concentration fbc calculated in this manner is supplied to the concentration feedback adjusting section 51.

【0076】濃度補正調整部80Bは、処理液濃度セン
サ8からの上流濃度検出信号b5を直接的に利用し、濃
度補正信号1計算部82にてゲインと時定数を付加する
補正を施す。このように補正された上流濃度検出信号b
5’は、濃度帰還調整部51に与えられる。この補正さ
れた上流濃度検出信号b5’を濃度帰還調整部51にフ
ィードフォワードすることにより濃度制御調整部50の
制御偏差を小さくすることができる。
The concentration correction adjusting section 80B directly uses the upstream concentration detection signal b5 from the processing solution concentration sensor 8 and performs correction for adding a gain and a time constant in the concentration correction signal 1 calculation section 82. The upstream concentration detection signal b thus corrected
5 ′ is given to the concentration feedback adjusting unit 51. By feeding forward the corrected upstream concentration detection signal b5 'to the concentration feedback adjustment unit 51, the control deviation of the concentration control adjustment unit 50 can be reduced.

【0077】混合後処理液濃度fbc と補正された上流濃
度検出信号b5’を与えられた濃度帰還調整部51は、
上述した第1実施例と同様に、濃度目標値a3と混合後
処理液濃度fbc から求まる濃度偏差c1と、補正された
上流濃度検出信号b5’とに基づいて濃度操作量d3を
出力する。この濃度操作量d3に基づき濃度制御が行わ
れる。
The concentration feedback adjusting unit 51, which is provided with the post-mixing treatment solution concentration fbc and the corrected upstream concentration detection signal b5 ′,
In the same manner as in the above-described first embodiment, a concentration manipulated variable d3 is output based on the concentration deviation c1 obtained from the concentration target value a3 and the post-mixing treatment solution concentration fbc, and the corrected upstream concentration detection signal b5 '. Density control is performed based on the density operation amount d3.

【0078】したがって、上記第1実施例と同様に濃度
制御を正確に行うことができるが、処理液濃度センサ8
が上流側に設けたものであるので、遅れのない上流濃度
検出信号b5に基づき濃度調整を行うことができ、上記
第1実施例に比較してより安定して濃度を制御すること
が可能である。
Therefore, the concentration control can be performed accurately as in the first embodiment, but the processing liquid concentration sensor 8
Is provided on the upstream side, the concentration can be adjusted based on the upstream concentration detection signal b5 without delay, and the concentration can be more stably controlled as compared with the first embodiment. is there.

【0079】<第3実施例>上述した第1/第2実施例
は、処理液濃度センサ8を薬液注入部4の下流/上流の
いずれか一方に設けているが、本実施例は図7に示すよ
うにそれらを組み合わせて下流に第1の処理液濃度セン
サ1Aを設け、上流に第2の処理液濃度センサ8Bを設
けたものである。なお、上述した各実施例と共通する構
成には、上記と同じ符号を付けることで詳細な説明につ
いては省略する。
<Third Embodiment> In the first and second embodiments described above, the processing liquid concentration sensor 8 is provided at either the downstream or the upstream of the chemical solution injection section 4, but this embodiment is shown in FIG. As shown in (1), a first processing solution concentration sensor 1A is provided downstream and a second processing solution concentration sensor 8B is provided upstream. In addition, the same reference numerals as those described above denote the same components as those in the above-described embodiments, and a detailed description thereof will be omitted.

【0080】図8のブロック図に示すように、本発明の
第1の濃度測定手段に相当する第1の処理液濃度センサ
8Aからの上流濃度検出信号b1は、制御部30Cを構
成している濃度制御調整部50と薬液流量計算部120
に与えられ、本発明の第2の濃度測定手段に相当する第
2の処理液濃度センサ8Bからの下流濃度検出信号b5
は、濃度補正調整部80Bと薬液流量計算部120に与
えられる。
As shown in the block diagram of FIG. 8, the upstream concentration detection signal b1 from the first processing solution concentration sensor 8A corresponding to the first concentration measuring means of the present invention constitutes the control unit 30C. Concentration control adjusting section 50 and chemical liquid flow rate calculating section 120
And a downstream concentration detection signal b5 from a second processing solution concentration sensor 8B corresponding to the second concentration measuring means of the present invention.
Is supplied to the concentration correction adjustment unit 80B and the chemical solution flow rate calculation unit 120.

【0081】薬液流量計算部120は、上流濃度検出信
号b1と、下流濃度検出信号b5と、処理液流量検出信
号b3とに基づき薬液流量を求める。しかし、上流濃度
検出信号b5は、第1の処理液濃度センサ8Aから出力
される下流濃度検出信号b1に対して濃度変位遅れ時間
だけ進んでいるので、時間的な整合をとるために上流濃
度検出信号b5を、濃度変位遅れ時間後の信号に相当す
る時間遅れ信号fbcd2[%]にして計算に用いる。
薬液流量fbf[リットル/min ]は、次の(6)式を
用いることにより算出される。 fbf = 1000 ×b3×(b1 −fbcd2)/ (C0 −b1) ……(6) 但し、 b1 は、下流濃度検出信号[%] b3 は、処理液流量[リットル/min ] C0 は、原薬液濃度[%] fbcd2 は、上流濃度検出信号b5の時間遅れ信号[%]
The chemical liquid flow rate calculation section 120 calculates the chemical liquid flow rate based on the upstream concentration detection signal b1, the downstream concentration detection signal b5, and the processing liquid flow rate detection signal b3. However, since the upstream concentration detection signal b5 leads the downstream concentration detection signal b1 output from the first processing solution concentration sensor 8A by the concentration displacement delay time, the upstream concentration detection signal b5 is used for time matching. The signal b5 is used for calculation as a time delay signal fbcd2 [%] corresponding to the signal after the concentration displacement delay time.
The chemical solution flow rate fbf [liter / min] is calculated by using the following equation (6). fbf = 1000 × b3 × (b1 -fbcd2) / (C 0 -b1) ...... (6) where, b1 is the downstream concentration detection signal [%] b3, the processing fluid flow rate [liters / min] C 0 is The drug substance concentration [%] fbcd2 is a time delay signal [%] of the upstream concentration detection signal b5.

【0082】このようにして算出された薬液流量fbf
は、薬液制御調整部60に与えられ、ここで薬液流量操
作量d1に対して薬液流量fbfに基づくPID制御が
行われ、濃度制御調整部50の流量−電圧変換部53に
出力される。
The chemical solution flow rate fbf thus calculated
Is supplied to the chemical liquid control adjusting section 60, where the PID control based on the chemical liquid flow rate fbf is performed on the chemical liquid flow rate operation amount d 1, and is output to the flow rate-voltage conversion section 53 of the concentration control adjusting section 50.

【0083】係る構成によると薬液流量センサ20を設
ける必要がなく(図7参照)、構成を簡単化できる。特
に、使用する薬液の種類が多い場合には、薬液供給路1
6(図1参照)もそれに応じた数だけ薬液流量センサ2
0が必要になってその数も増大するので、本実施例の構
成を採用すると効果的である。
According to this configuration, it is not necessary to provide the chemical liquid flow sensor 20 (see FIG. 7), and the configuration can be simplified. In particular, when there are many types of chemicals to be used, the chemical supply path 1
6 (refer to FIG. 1) as many as the number of chemical liquid flow sensors 2 corresponding thereto.
Since 0 is required and the number increases, it is effective to adopt the configuration of this embodiment.

【0084】<変形例>上述した各実施例では、薬液圧
力調節器21により薬液の圧力を調節して薬液の注入量
を調節し、処理液圧力調節器10により処理液の圧力を
調節して処理液の流量を調節する構成としたが、図9に
示すように、開閉弁と流量調節弁の機能を兼ね備えた薬
液流量調節弁23と、処理液流量調節弁24とにより構
成するようにしてもよい。
<Modifications> In each of the above-described embodiments, the pressure of the chemical solution is adjusted by the chemical solution pressure regulator 21 to adjust the injection amount of the chemical solution, and the pressure of the processing solution is adjusted by the processing solution pressure regulator 10. Although the configuration is such that the flow rate of the processing liquid is adjusted, as shown in FIG. 9, the processing liquid flow rate adjusting valve 23 and the processing liquid flow rate adjusting valve 23 having both functions of an opening / closing valve and a flow rate adjusting valve. Is also good.

【0085】薬液流量調節弁23により薬液の流量を調
節しても薬液の注入量を調節することができ、さらに、
処理液の圧力が変動した場合には、薬液圧力と処理液圧
力の差圧による薬液流量変動を補う分だけ弁開度を変化
させることにより注入量の変動を防止できる。また、処
理液流量調節弁24により弁開度を変化させて処理液の
流量を調節しても処理液流量を調節することができ、循
環路2を流通する処理液の圧力を一定化することができ
る。したがって、係る構成によっても上述した構成と同
様の効果を得ることができる。
Even if the flow rate of the chemical solution is adjusted by the chemical solution flow control valve 23, the injection amount of the chemical solution can be adjusted.
When the pressure of the processing liquid fluctuates, the fluctuation of the injection amount can be prevented by changing the valve opening by an amount that compensates for the fluctuation in the flow rate of the chemical liquid due to the pressure difference between the chemical liquid pressure and the processing liquid pressure. Further, even if the flow rate of the processing liquid is adjusted by changing the opening degree of the processing liquid by the processing liquid flow rate control valve 24, the flow rate of the processing liquid can be adjusted, and the pressure of the processing liquid flowing through the circulation path 2 can be made constant. Can be. Therefore, the same effect as the above-described configuration can be obtained by such a configuration.

【0086】[0086]

【発明の効果】以上の説明から明らかなように、請求項
1に記載の発明によれば、リンス処理のための純水は純
水供給路を介して循環路に直接供給され、その際に空気
中の炭酸ガスの溶け込みを防止できるので、リンス処理
の完了時点を正確に判断することができる。また、処理
液の濃度は循環路に設けられた濃度測定手段によって直
接的に測定され、循環路から分岐した採取管に処理液を
採取して濃度を測定する従来例に比較して濃度の変化を
応答性良く素早く検出できるため、正確に濃度制御を行
うことができる。
As is apparent from the above description, according to the first aspect of the present invention, pure water for rinsing is directly supplied to the circulation path via the pure water supply path. Since the dissolution of carbon dioxide gas in the air can be prevented, the completion point of the rinsing process can be accurately determined. In addition, the concentration of the processing solution is directly measured by the concentration measuring means provided in the circulation path, and the change in the concentration is compared to a conventional example in which the processing liquid is collected in a collection pipe branched from the circulation path and the concentration is measured. Can be detected quickly with good responsiveness, so that concentration control can be performed accurately.

【0087】また、請求項2に記載の発明によれば、薬
液供給路が循環路に連通接続されている箇所より下流で
処理液の濃度を測定することによって、注入された薬液
による濃度変化を素早く検出することができ、請求項3
に記載の発明によれば、薬液が純水中にある程度拡散し
て均等に混ざり合った状態で濃度を測定することによ
り、安定して濃度を測定することができる。
According to the second aspect of the present invention, by measuring the concentration of the processing liquid downstream from the point where the chemical supply path is connected to the circulation path, the concentration change due to the injected chemical can be reduced. Claim 3 which can be quickly detected.
According to the invention described in (1), the concentration can be measured stably by measuring the concentration in a state in which the chemical liquid is diffused to some extent in pure water and mixed uniformly.

【0088】また、請求項4に記載の発明によれば、第
1/第2の濃度測定手段により同じ時点で測定された処
理液の濃度に基づいて、循環路に注入される薬液の流量
を求めることができ、薬液の注入量を検出するための流
量を検出する手段を備えることなく濃度を制御できるの
で、装置の構成を簡単化できる。
According to the fourth aspect of the present invention, the flow rate of the chemical solution injected into the circulation path is determined based on the concentration of the processing solution measured at the same time by the first / second concentration measuring means. Since the concentration can be obtained and the concentration can be controlled without providing a means for detecting the flow rate for detecting the injection amount of the chemical solution, the configuration of the apparatus can be simplified.

【0089】また、請求項5に記載の発明によれば、循
環路を純水で満たすことなく、空の循環路に純水を供給
しながら薬液を注入することも可能となるので、表面処
理を開始するまでの時間を短縮可能である。
According to the fifth aspect of the present invention, it is possible to inject a chemical solution while supplying pure water to an empty circulation path without filling the circulation path with pure water. It is possible to shorten the time until starting.

【0090】また、請求項6に記載の発明によれば、薬
液圧力調節器で薬液の圧力を調節することによって循環
路への薬液の注入量を調節することができ、請求項7に
記載の発明によれば、薬液流量調節弁で薬液の流量を調
節することによって循環路への薬液の注入量を調節する
ことができる。
According to the sixth aspect of the present invention, the injection amount of the chemical into the circulation path can be adjusted by adjusting the pressure of the chemical with the chemical pressure regulator. ADVANTAGE OF THE INVENTION According to this invention, the injection | pouring amount of a chemical | medical solution to a circulation path can be adjusted by adjusting the flow rate of a chemical | medical solution by a chemical | medical-solution flow control valve.

【0091】また、請求項8に記載の発明によれば、処
理液の圧力を一定に保持する処理液圧力一定化手段によ
り、脈動に起因して薬液の注入量が変動してしまう不都
合を防止できるので、より正確に濃度制御を行うことが
できる。
According to the eighth aspect of the present invention, the inconvenience that the injection amount of the chemical solution fluctuates due to the pulsation is prevented by the processing solution pressure stabilizing means for maintaining the processing solution pressure constant. Therefore, the density control can be performed more accurately.

【0092】また、請求項9に記載の発明によれば、直
接的に循環路内の処理液の圧力をほぼ一定に調節するこ
とで、請求項10に記載の発明によれば、循環路内の処
理液の流量をほぼ一定に調節することで、循環路内の処
理液圧力を一定化できるので、脈動に起因する悪影響を
防止することができる。
According to the ninth aspect of the present invention, the pressure of the processing liquid in the circulation path is directly adjusted to be substantially constant. By adjusting the flow rate of the processing liquid to a substantially constant value, the processing liquid pressure in the circulation path can be made constant, so that adverse effects due to pulsation can be prevented.

【0093】また、請求項11に記載の発明によれば、
差圧をほぼ一定に保持する差圧一定化手段により脈動に
よる差圧変動を防止することができるので、差圧変動に
起因する薬液の注入量が変動することを防止でき、濃度
制御の精度をより高めることができる。
According to the eleventh aspect of the present invention,
Since the differential pressure fluctuation caused by the pulsation can be prevented by the differential pressure stabilizing means that keeps the differential pressure almost constant, it is possible to prevent the injection amount of the chemical solution from being fluctuated due to the differential pressure fluctuation, thereby improving the accuracy of the concentration control. Can be more enhanced.

【0094】また、請求項12に記載の発明によれば、
薬液圧力調節器により脈動に起因する差圧変動を抑制す
ることで、差圧を一定にして脈動に起因する差圧変動で
薬液の注入量が変動することを防止できる。
According to the twelfth aspect of the present invention,
By suppressing the differential pressure fluctuation caused by the pulsation by the chemical liquid pressure regulator, it is possible to keep the differential pressure constant and prevent the injection amount of the chemical liquid from being changed by the differential pressure fluctuation caused by the pulsation.

【0095】また、請求項13に記載の発明によれば、
薬液流量調節弁で流量を可変させることで、脈動に起因
する流量変動を補償し、薬液の注入量が変動することを
防止できる。
According to the thirteenth aspect of the present invention,
Varying the flow rate with the chemical liquid flow control valve compensates for flow fluctuations due to pulsation, and prevents fluctuations in the injection amount of the chemical liquid.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例および第2実施例に係る基板処理装
置の概略構成を示すブロック図である。
FIG. 1 is a block diagram illustrating a schematic configuration of a substrate processing apparatus according to a first embodiment and a second embodiment.

【図2】薬液導入弁の構造を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing a structure of a chemical liquid introduction valve.

【図3】第1実施例に係る制御部の構成を示すブロック
図である。
FIG. 3 is a block diagram illustrating a configuration of a control unit according to the first embodiment.

【図4】第1実施例に係る濃度制御調整部および濃度補
正調整部の構成を示すブロック図である。
FIG. 4 is a block diagram illustrating a configuration of a density control adjustment unit and a density correction adjustment unit according to the first embodiment.

【図5】目標値の変化パターンの一例を示す図である。FIG. 5 is a diagram illustrating an example of a change pattern of a target value.

【図6】第2実施例に係る制御部の構成を示すブロック
図である。
FIG. 6 is a block diagram illustrating a configuration of a control unit according to a second embodiment.

【図7】第3実施例に係る基板処理装置の概略構成を示
すブロック図である。
FIG. 7 is a block diagram illustrating a schematic configuration of a substrate processing apparatus according to a third embodiment.

【図8】第3実施例に係る制御部の構成を示すブロック
図である。
FIG. 8 is a block diagram illustrating a configuration of a control unit according to a third embodiment.

【図9】基板処理装置の変形例を示すブロック図であ
る。
FIG. 9 is a block diagram showing a modification of the substrate processing apparatus.

【符号の説明】[Explanation of symbols]

W … 基板 1 … 基板処理部 2 … 循環路 3 … 純水供給路 4 … 薬液注入部 5 … 処理液循環ポ
ンプ 6 … ポンプ脈動緩衝器 7 … 排液路 8 … 処理液濃度センサ 10 … 処理液圧力調
節器 11 … 処理液圧力センサ 15 … 薬液導入弁 17 … 薬液供給弁 19 … 純水供給源 20 … 薬液流量センサ 21 … 薬液圧力調節器 22 … 電空変換器 30A〜30C … 制御部 40 … 目標値設定
部 50 … 濃度制御調整部 60 … 薬液制御調
整部 70 … 薬液操作信号補正部 80A,80B …
濃度補正調整部 90 … 処理液制御調整部 100 … 処理液操
作信号補正部 a1 … 薬液流量目標値 a2 … 処理液流量
目標値 a3 … 濃度目標値 b1 … 下流濃度検出信号 b2 … 薬液流量検
出信号 b3 … 処理液流量検出信号 b4 … 処理液圧力
検出信号 b5 … 下流濃度検出信号 c1 … 濃度偏差 d1 … 薬液流量操作量 d2 … 処理液流量
操作量 d3 … 濃度操作量 Vd1 … 薬液流量操作電圧 Vd2 … 処理液流
量操作電圧 fbf … 薬液流量 fbc … 混合後処
理液濃度 fbfd … 薬液流量検出信号の時間遅れ信号 fbfd2 … 上流濃度検出信号の時間遅れ信号
W ... Substrate 1 ... Substrate processing section 2 ... Circulation path 3 ... Pure water supply path 4 ... Chemical liquid injection section 5 ... Processing liquid circulation pump 6 ... Pump pulsation buffer 7 ... Drainage path 8 ... Treatment liquid concentration sensor 10 ... Treatment liquid Pressure regulator 11… Treatment liquid pressure sensor 15… Chemical liquid introduction valve 17… Chemical liquid supply valve 19… Pure water supply source 20… Chemical liquid flow rate sensor 21… Chemical liquid pressure regulator 22… Electropneumatic converters 30A to 30C… Control unit 40… Target value setting unit 50: concentration control adjustment unit 60: chemical liquid control adjustment unit 70: chemical liquid operation signal correction unit 80A, 80B ...
Concentration correction adjusting section 90 Processing liquid control adjusting section 100 Processing liquid operation signal correcting section a1 Chemical liquid flow target value a2 Processing liquid flow target value a3 Density target value b1 Downstream concentration detection signal b2 Chemical liquid flow detection signal b3 ... Processing liquid flow rate detection signal b4 ... Processing liquid pressure detection signal b5 ... Downstream concentration detection signal c1 ... Concentration deviation d1 ... Chemical liquid flow rate operation amount d2 ... Processing liquid flow rate operation amount d3 ... Concentration operation amount Vd1 ... Chemical liquid flow rate operation voltage Vd2 ... Processing Liquid flow rate operation voltage fbf ... Chemical liquid flow rate fbc ... Post-mixing treatment liquid concentration fbfd ... Time delay signal of chemical liquid flow rate detection signal fbfd2 ... Time delay signal of upstream concentration detection signal

フロントページの続き (72)発明者 村岡 祐介 滋賀県野洲郡野洲町大字三上字口ノ川原 2426番1 大日本スクリーン製造株式会社 野洲事業所内 (72)発明者 柴田 晃宏 京都府京都市伏見区羽束師古川町322 大 日本スクリーン製造株式会社洛西事業所内Continuation of the front page (72) Inventor Yusuke Muraoka Yasucho, Yasu-machi, Yasu-gun, Shiga Prefecture 2426-1 Daino Screen Manufacturing Co., Ltd. Yasu Office (72) Inventor Akihiro Shibata Hashizushi, Fushimi-ku, Kyoto, Kyoto, Japan 322 Furukawacho Dai Nippon Screen Manufacturing Co., Ltd.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 基板に対して所定の処理を施す基板処理
装置であって、 純水と薬液とを混合して得られた処理液で基板の表面処
理を行う基板処理部と、 前記基板処理部から排出された処理液を再び前記基板処
理部へ供給する循環路と、 前記循環路内の処理液を循環させる処理液循環手段と、 前記循環路に一端が連通接続され、他端が純水供給源に
連通接続されている純水供給路と、 前記循環路に一端が連通接続され、他端が薬液供給源に
連通接続されている薬液供給路と、 前記薬液供給路から前記循環路へ注入される薬液の注入
量を調節する薬液注入量調節手段と、 前記循環路内を流通する処理液の濃度を測定する濃度測
定手段と、 前記濃度測定手段により測定された処理液の濃度に基づ
いて、前記薬液注入量調節手段を制御する制御手段と、 を備えていることを特徴とする基板処理装置。
1. A substrate processing apparatus for performing a predetermined process on a substrate, comprising: a substrate processing unit configured to perform a surface treatment of the substrate with a processing solution obtained by mixing pure water and a chemical solution; A circulation path that supplies the processing liquid discharged from the unit to the substrate processing unit again; a processing liquid circulation unit that circulates the processing liquid in the circulation path; one end connected to the circulation path; A pure water supply path connected to a water supply source, a chemical supply path having one end connected to the circulation path, and a second end connected to a chemical supply source; and a circulation path from the chemical supply path. Chemical solution injection amount adjusting means for adjusting the injection amount of the chemical solution to be injected into the processing solution; concentration measuring means for measuring the concentration of the processing solution flowing in the circulation path; and concentration of the processing solution measured by the concentration measuring means. Control means for controlling the liquid injection amount adjusting means based on the Substrate processing apparatus, characterized in that it comprises a and.
【請求項2】 請求項1に記載の基板処理装置におい
て、 前記濃度測定手段は、前記薬液供給路が前記循環路に連
通接続されている箇所より下流側に配設されていること
を特徴とする基板処理装置。
2. The substrate processing apparatus according to claim 1, wherein the concentration measuring unit is provided downstream of a location where the chemical solution supply path is connected to the circulation path. Substrate processing equipment.
【請求項3】 請求項1に記載の基板処理装置におい
て、 前記濃度測定手段は、前記薬液供給路が前記循環路に連
通接続されている箇所より上流側に配設されていること
を特徴とする基板処理装置。
3. The substrate processing apparatus according to claim 1, wherein the concentration measuring unit is disposed upstream of a location where the chemical solution supply path is connected to the circulation path. Substrate processing equipment.
【請求項4】 請求項1に記載の基板処理装置におい
て、 前記濃度測定手段は、前記薬液供給路が前記循環路に連
通接続されている箇所の下流側と上流側にそれぞれ配設
された第1の濃度測定手段と第2の濃度測定手段とを備
えたことを特徴とする基板処理装置。
4. The substrate processing apparatus according to claim 1, wherein the concentration measuring means is provided on a downstream side and an upstream side of a point where the chemical solution supply path is connected to the circulation path. A substrate processing apparatus comprising: a first concentration measuring means and a second concentration measuring means.
【請求項5】 請求項1ないし請求項4のいずれかに記
載の基板処理装置において、 前記薬液供給路が前記循環路に連通接続されている箇所
は、前記純水供給路が前記循環路に連通接続されている
箇所の下流であることを特徴とする基板処理装置。
5. The substrate processing apparatus according to claim 1, wherein the chemical liquid supply path is connected to the circulation path so that the pure water supply path is connected to the circulation path. A substrate processing apparatus, which is located downstream of a place where communication is established.
【請求項6】 請求項1ないし請求項5のいずれかに記
載の基板処理装置において、 前記薬液注入量調節手段は、薬液圧力調節器を備え、薬
液の圧力を調節して注入量を調節するように構成されて
いることを特徴とする基板処理装置。
6. The substrate processing apparatus according to claim 1, wherein said chemical solution injection amount adjusting means includes a chemical solution pressure regulator, and adjusts the injection amount by adjusting the pressure of the chemical solution. A substrate processing apparatus characterized by being configured as described above.
【請求項7】 請求項1ないし請求項5のいずれかに記
載の基板処理装置において、 前記薬液注入量調節手段は、薬液流量調節弁を備え、薬
液の流量を調節して注入量を調節するように構成されて
いることを特徴とする基板処理装置。
7. The substrate processing apparatus according to claim 1, wherein the chemical solution injection amount adjusting unit includes a chemical solution flow rate control valve, and adjusts a flow rate of the chemical solution to adjust the injection amount. A substrate processing apparatus characterized by being configured as described above.
【請求項8】 請求項1ないし請求項7のいずれかに記
載の基板処理装置において、 前記循環路内の処理液の圧力をほぼ一定に調節する処理
液圧力一定化手段を備えていることを特徴とする基板処
理装置。
8. The substrate processing apparatus according to claim 1, further comprising a processing liquid pressure stabilizing unit that adjusts a pressure of the processing liquid in the circulation path to be substantially constant. Characteristic substrate processing equipment.
【請求項9】 請求項8に記載の基板処理装置におい
て、 前記処理液圧力一定化手段は、前記循環路を流通する処
理液の圧力をほぼ一定に調整する処理液圧力調節器で構
成されていることを特徴とする基板処理装置。
9. The substrate processing apparatus according to claim 8, wherein the processing liquid pressure stabilizing unit is configured by a processing liquid pressure regulator that adjusts a pressure of the processing liquid flowing through the circulation path to be substantially constant. A substrate processing apparatus.
【請求項10】 請求項8に記載の基板処理装置におい
て、 前記処理液圧力一定化手段は、前記循環路を流通する処
理液の流量をほぼ一定に調整する処理液流量調節弁で構
成されていることを特徴とする基板処理装置。
10. The substrate processing apparatus according to claim 8, wherein the processing liquid pressure stabilizing means is configured by a processing liquid flow rate control valve that adjusts a flow rate of the processing liquid flowing through the circulation path to be substantially constant. A substrate processing apparatus.
【請求項11】 請求項1ないし請求項10のいずれか
に記載の基板処理装置において、 前記循環路内の処理液の圧力と前記薬液供給路内の薬液
の圧力との差圧をほぼ一定に保持する差圧一定化手段を
備えていることを特徴とする基板処理装置。
11. The substrate processing apparatus according to claim 1, wherein a pressure difference between the pressure of the processing liquid in the circulation path and the pressure of the chemical liquid in the chemical liquid supply path is made substantially constant. A substrate processing apparatus comprising a constant pressure difference holding means.
【請求項12】 請求項6に記載の基板処理装置におい
て、 前記薬液圧力調節器は、前記循環路内の処理液の圧力と
前記薬液供給路内の薬液の圧力との差圧をほぼ一定に保
持するように、処理液の圧力の変動に応じて薬液の圧力
を調節することを特徴とする基板処理装置。
12. The substrate processing apparatus according to claim 6, wherein the chemical liquid pressure regulator makes a pressure difference between a pressure of the processing liquid in the circulation path and a pressure of the chemical liquid in the chemical liquid supply path substantially constant. A substrate processing apparatus wherein the pressure of a chemical solution is adjusted in accordance with a change in the pressure of a processing solution so as to be held.
【請求項13】 請求項7に記載の基板処理装置におい
て、 前記薬液流量調節弁は、前記循環路内の処理液の圧力と
前記薬液供給路内の薬液の圧力との差圧をほぼ一定に保
持するように、処理液の圧力の変動に応じて薬液の流量
を調節することを特徴とする基板処理装置。
13. The substrate processing apparatus according to claim 7, wherein the chemical liquid flow rate control valve makes a pressure difference between a processing liquid pressure in the circulation path and a chemical liquid pressure in the chemical liquid supply path substantially constant. A substrate processing apparatus characterized in that a flow rate of a chemical solution is adjusted according to a change in pressure of a processing solution so as to be held.
JP02465998A 1998-02-05 1998-02-05 Substrate processing equipment Expired - Fee Related JP3630543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02465998A JP3630543B2 (en) 1998-02-05 1998-02-05 Substrate processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02465998A JP3630543B2 (en) 1998-02-05 1998-02-05 Substrate processing equipment

Publications (2)

Publication Number Publication Date
JPH11224873A true JPH11224873A (en) 1999-08-17
JP3630543B2 JP3630543B2 (en) 2005-03-16

Family

ID=12144285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02465998A Expired - Fee Related JP3630543B2 (en) 1998-02-05 1998-02-05 Substrate processing equipment

Country Status (1)

Country Link
JP (1) JP3630543B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030023456A (en) * 2001-06-25 2003-03-19 가부시키가이샤 히라마리카겐큐죠 Apparatus and method for controlling water-based resist stripping liquid
KR20160094275A (en) * 2015-01-30 2016-08-09 도쿄엘렉트론가부시키가이샤 Substrate liquid processing apparatus, substrate liquid processing method, and computer-readable storage medium having substrate liquid processing program stored therein
KR20190029471A (en) * 2017-09-11 2019-03-20 도쿄엘렉트론가부시키가이샤 Substrate liquid processing apparatus and recording medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030023456A (en) * 2001-06-25 2003-03-19 가부시키가이샤 히라마리카겐큐죠 Apparatus and method for controlling water-based resist stripping liquid
KR20160094275A (en) * 2015-01-30 2016-08-09 도쿄엘렉트론가부시키가이샤 Substrate liquid processing apparatus, substrate liquid processing method, and computer-readable storage medium having substrate liquid processing program stored therein
KR20180084020A (en) * 2015-01-30 2018-07-24 도쿄엘렉트론가부시키가이샤 Substrate liquid processing apparatus, substrate liquid processing method, and computer-readable storage medium having substrate liquid processing program stored therein
KR20190059881A (en) * 2015-01-30 2019-05-31 도쿄엘렉트론가부시키가이샤 Substrate liquid processing apparatus, substrate liquid processing method, and computer-readable storage medium having substrate liquid processing program stored therein
KR20190029471A (en) * 2017-09-11 2019-03-20 도쿄엘렉트론가부시키가이샤 Substrate liquid processing apparatus and recording medium
JP2019050360A (en) * 2017-09-11 2019-03-28 東京エレクトロン株式会社 Substrate liquid processing device and storage medium

Also Published As

Publication number Publication date
JP3630543B2 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
JP5448521B2 (en) Treatment liquid supply apparatus and treatment liquid supply method
US20190079544A1 (en) Substrate liquid processing apparatus and substrate liquid processing method
US9804609B2 (en) Mass flow controllers and methods for auto-zeroing flow sensor without shutting off a mass flow controller
KR20100048894A (en) Material gas concentration control system
KR102450184B1 (en) Substrate liquid processing apparatus
US11365480B2 (en) Concentration control apparatus, zero point adjustment method, and program recording medium recorded with concentration control apparatus program
KR20190070867A (en) Concentration controller, gas control system, deposition apparatus, concentration control method, and program recording medium for concentration controller
US6921193B2 (en) Chemical concentration control device for semiconductor processing apparatus
KR102642990B1 (en) Substrate processing apparatus and substrate processing method
JPH11224873A (en) Substrate processor
JP5281363B2 (en) Material gas concentration control system
JP3615954B2 (en) In-tank liquid level detector for substrate processing equipment
JPH11238717A (en) Substrate treatment apparatus
US11802848B2 (en) pH measuring device and pH measuring method
JP3719918B2 (en) Substrate processing equipment
JPH11224874A (en) Substrate processor
JPH1167707A (en) Substrate processing device
JP3636268B2 (en) Substrate processing equipment
JP2018142740A (en) Substrate liquid-processing device and substrate liquid-processing method
JP3234112B2 (en) Processing solution concentration control method and processing solution concentration control device using the same
JP7393143B2 (en) Calibration method for liquid processing equipment and flow rate detection unit
JPH09260332A (en) Chemical liquid supplier of substrate processor
JPH11142320A (en) Concentration measuring method and substrate treatment apparatus using the same
JPH1167706A (en) Substrate processing apparatus
JPS61202212A (en) Level controller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees