JPH11222666A - Metal evaporated fluororesin film and its production - Google Patents

Metal evaporated fluororesin film and its production

Info

Publication number
JPH11222666A
JPH11222666A JP3955998A JP3955998A JPH11222666A JP H11222666 A JPH11222666 A JP H11222666A JP 3955998 A JP3955998 A JP 3955998A JP 3955998 A JP3955998 A JP 3955998A JP H11222666 A JPH11222666 A JP H11222666A
Authority
JP
Japan
Prior art keywords
metal
deposited
fluororesin film
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3955998A
Other languages
Japanese (ja)
Inventor
Mayumi Yoshida
まゆみ 吉田
Hiroshi Togo
寛 東郷
Masayuki Mochizuki
正行 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Metallizing Co Ltd
Original Assignee
Toyo Metallizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Metallizing Co Ltd filed Critical Toyo Metallizing Co Ltd
Priority to JP3955998A priority Critical patent/JPH11222666A/en
Publication of JPH11222666A publication Critical patent/JPH11222666A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a metal evaporated fluororesin film excellent in adhesion for a metal evaporating layer and to provide a method for producing it. SOLUTION: This metal evaporated fluororesin film is the one in which, on the surface of a fluororesin film, a metal evaporating layer with a nucleus by plasma discharge is formed, and a metal evaporating layer is formed thereon, respectively, and the producing method is the one in which, on the surfaces of a metal evaporated fluororesin film and a fluororesin film, a metal evaporating layer with a nucleus by plasma discharge and, thereon, a metal evaporating layer are respectively formed in the same vacuum system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は金属蒸着フッ素樹脂
フィルムおよびその製造方法に関し、特に金属蒸着層の
密着力を向上させた金属蒸着フッ素樹脂フィルムおよび
その製造方法に関する。
The present invention relates to a metal-deposited fluororesin film and a method for producing the same, and more particularly to a metal-deposited fluororesin film having improved adhesion of a metal-deposited layer and a method for producing the same.

【0002】[0002]

【従来の技術】フッ素樹脂フィルムは、一般的に密着性
に劣るとという欠点を有しており、通常の真空蒸着法に
より金属を蒸着させると金属蒸着層とフッ素樹脂フィル
ムとの密着性は低く、到底実用に供せるものではない。
フッ素樹脂フィルムの接着性を向上させるための方法と
しては、フッ素樹脂フィルム表面へのコロナ放電処理や
アンカーコーティング処理が知られている。しかしこの
ような処理を施したフッ素樹脂フィルムに金属蒸着を行
って得られる金属蒸着フッ素樹脂フィルムは、後工程で
粘着剤や接着剤をコートする時、粘着剤や接着剤に含ま
れる溶剤が樹脂アンカーコート層を溶解して白化した
り、せっかく行ったコロナ放電処理の効果を失うという
欠点があった。
2. Description of the Related Art Fluororesin films generally have a drawback of poor adhesion, and when a metal is deposited by a normal vacuum deposition method, the adhesion between the metal deposition layer and the fluororesin film is low. It is not something that can be put to practical use at all.
As a method for improving the adhesiveness of the fluororesin film, a corona discharge treatment or an anchor coating treatment on the surface of the fluororesin film is known. However, when a metal-deposited fluororesin film obtained by performing metal vapor deposition on a fluororesin film subjected to such a treatment is coated with an adhesive or an adhesive in a later step, the solvent contained in the adhesive or the adhesive is a resin. There were drawbacks that the anchor coat layer was dissolved and whitened, or that the effect of the corona discharge treatment that had been performed was lost.

【0003】[0003]

【発明が解決しようとする課題】したがって、本発明の
課題は、金属蒸着層の密着性に優れた金属蒸着フッ素樹
脂フィルムおよびその製造方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a metal-deposited fluororesin film having excellent adhesion of a metal-deposited layer and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明者らの鋭意検討の
結果、本発明の目的は、下記の本発明によって工業的に
有利に達成された。
As a result of intensive studies by the present inventors, the object of the present invention has been industrially advantageously achieved by the present invention described below.

【0005】[1]フッ素樹脂フィルム表面に、プラズ
マ放電下による核付金属蒸着層、およびその上に金属蒸
着層をそれぞれ形成せしめてなる金属蒸着フッ素樹脂フ
ィルム。
[1] A metal-deposited fluororesin film in which a nucleated metal-deposited layer is formed on a fluororesin film surface by plasma discharge, and a metal-deposited layer is formed thereon.

【0006】[2]プラズマ放電の処理強度が1〜12
kw/m2であることを特徴とする上記[1]記載の金
属蒸着フッ素樹脂フィルム。
[2] A plasma discharge treatment intensity of 1 to 12
kw / m 2 , wherein the metal-deposited fluororesin film according to the above [1].

【0007】[3]プラズマ放電の放電ガスが酸素であ
ることを特徴とする上記[1]または[2]に記載の金
属蒸着フッ素樹脂フィルム。
[3] The metal-deposited fluororesin film according to [1] or [2], wherein the discharge gas of the plasma discharge is oxygen.

【0008】[4]プラズマ放電下による核付金属蒸着
層の金属が銅であることを特徴とする上記[1]〜
[3]のいずれかに記載の金属蒸着フッ素樹脂フィル
ム。
[4] The above [1] to [1], wherein the metal of the nucleated metal deposition layer under plasma discharge is copper.
The metal-deposited fluororesin film according to any one of [3].

【0009】[5]金属蒸着層が金属アルミニウムであ
ることを特徴とする上記[1]〜[4]のいずれかに記
載の金属蒸着フッ素樹脂フィルム。
[5] The metal-deposited fluororesin film according to any one of [1] to [4], wherein the metal-deposited layer is metal aluminum.

【0010】[6]核付金属蒸着層の平均膜厚が0.0
1〜2.0nmであることを特徴とする上記[1]〜
[5]のいずれかに記載の金属蒸着フッ素樹脂フィル
ム。
[6] The average thickness of the cored metal deposition layer is 0.0
[1] to 1 to 2.0 nm,
The metal-deposited fluororesin film according to any one of [5].

【0011】[7]金属蒸着層の平均膜厚が10〜10
0nmであることを特徴とする上記[1]〜[6]のい
ずれかに記載の金属蒸着フッ素樹脂フィルム。
[7] The average thickness of the metal deposition layer is 10 to 10
The metal-deposited fluororesin film according to any one of the above [1] to [6], wherein the thickness is 0 nm.

【0012】[8]フッ素樹脂フィルムがポリ四フッ化
エチレンフィルム、ポリ三フッ化エチレンフィルム、六
フッ化プロピレン−四フッ化エチレン共重合体フィル
ム、ポリフッ化ビニルフィルム、またはポリフッ化ビニ
リデンフィルムであり、かつその厚みが12〜100μ
mであることを特徴とする上記[1]〜[7]のいずれ
かに記載の金属蒸着フッ素樹脂フィルム。
[8] The fluororesin film is a polytetrafluoroethylene film, a polytrifluoroethylene film, a propylene hexafluoride-tetrafluoroethylene copolymer film, a polyvinyl fluoride film, or a polyvinylidene fluoride film , And the thickness is 12-100μ
m, wherein the metal-deposited fluororesin film according to any one of the above [1] to [7].

【0013】[9]フッ素樹脂フィルム表面に、同一真
空系内で、プラズマ放電下による核付金属蒸着層および
その上に金属蒸着層をそれぞれ形成することを特徴とす
る金属蒸着フッ素樹脂フィルムの製造方法。
[9] Production of a metal-deposited fluororesin film characterized by forming a metal-deposited layer with a nucleus and a metal-deposited layer thereon by plasma discharge in the same vacuum system on the surface of the fluororesin film, respectively. Method.

【0014】本発明の最大の特徴は、フッ素樹脂フィル
ム表面に、プラズマ放電下に核付金属蒸着層、好ましく
は銅からなる核付金属蒸着層を形成させ、その上に金属
蒸着層、好ましくは金属アルミニウムからなる金属蒸着
層を形成させることにより、金属蒸着層とフッ素樹脂フ
ィルムとの密着力を著しく向上させた点にある。核付金
属蒸着層を形成させない場合に比較して、例えば20倍
以上の密着力が得られる。
The most important feature of the present invention is that a nucleated metal deposition layer, preferably a nucleation metal deposition layer made of copper, is formed on a fluororesin film surface by plasma discharge, and a metal deposition layer, preferably The point is that by forming a metal vapor deposition layer made of metal aluminum, the adhesion between the metal vapor deposition layer and the fluororesin film is remarkably improved. Compared to the case where the metal deposition layer with a nucleus is not formed, for example, an adhesion of 20 times or more can be obtained.

【0015】[0015]

【発明の実施の形態】次に本発明を詳しく説明する。Next, the present invention will be described in detail.

【0016】本発明において、フッ素樹脂フィルムは、
特に制限を受けないが、ポリ四フッ化エチレンフィル
ム、ポリ三フッ化エチレンフィルム、六フッ化プロピレ
ン−四フッ化エチレン共重合体フィルム、ポリフッ化ビ
ニルフィルム、またはポリフッ化ビニリデンフィルムで
あることが好ましい。本発明において使用されるフッ素
樹脂フィルムの厚みは、通常10〜190μmである。
In the present invention, the fluororesin film is
Although not particularly limited, a polytetrafluoroethylene film, a polytrifluoroethylene film, a hexafluoropropylene-tetrafluoroethylene copolymer film, a polyvinyl fluoride film, or a polyvinylidene fluoride film is preferable. . The thickness of the fluororesin film used in the present invention is usually 10 to 190 μm.

【0017】本発明におけるプラズマ放電下に核付金属
蒸着層の形成は、次のように行なわれる。好ましくは
0.1〜100Paの酸素ガス雰囲気下で高周波電源よ
り供給された電流をマグネトロン電極のカソード及びア
ノード間で放電させる。その際カソードに核付金属蒸着
層を構成する金属、好ましくは銅を用いる。カソードに
ガス陽イオンが引き寄せられカソード金属をスパッタす
る。このスパッタされた金属がフッ素樹脂フィルムに付
着し核付金属蒸着層を形成する。
The formation of the nucleated metal deposition layer under the plasma discharge in the present invention is performed as follows. Preferably, a current supplied from a high frequency power supply is discharged between the cathode and the anode of the magnetron electrode under an oxygen gas atmosphere of 0.1 to 100 Pa. In this case, a metal constituting the metal deposition layer with a nucleus, preferably copper, is used for the cathode. Gas cations are attracted to the cathode and sputter the cathode metal. The sputtered metal adheres to the fluororesin film to form a nucleated metal deposition layer.

【0018】本発明において、ブラズマ放電の処理強度
は、1〜12kw/m2であることが好ましい。ブラズ
マ放電の処理強度が1kw/m2未満であるとフィルム
に付着するスパッタ金属の厚みがあまりにも薄くなり、
ブラズマ放電処理の効果が少なくなってしまう恐れがあ
る。またブラズマ放電の処理強度が12kw/m2を超
えると、フィルムに付着するスパッタ金属の厚みがあま
りにも厚くなり、その金属色が確認できるようになり外
観上好ましくない。
In the present invention, the treatment intensity of the plasma discharge is preferably 1 to 12 kw / m 2 . If the processing intensity of the plasma discharge is less than 1 kw / m 2 , the thickness of the sputtered metal attached to the film becomes too thin,
There is a possibility that the effect of the plasma discharge treatment is reduced. On the other hand, if the treatment intensity of the plasma discharge exceeds 12 kw / m 2 , the thickness of the sputtered metal adhered to the film becomes too large, and the metal color can be confirmed, which is not preferable in appearance.

【0019】核付金属蒸着層の平均膜厚は、0.01〜
2.0nmであることが、密着強度の向上を得ること及
び外観を損なわないこと等、から好ましい。
The average film thickness of the cored metal deposition layer is 0.01 to
The thickness of 2.0 nm is preferable from the viewpoint of improving the adhesion strength and not impairing the appearance.

【0020】また、核付金属蒸着層上に蒸着する金属と
しては、特に制限は受けないが、アルミニウム、スズ、
およびクロム等が挙げられ、なかでも色調および蒸着適
性からアルミニウムが最も好ましい。その蒸着方法は、
特に制限されないが、真空蒸着法、イオンプレーティン
グ法、スパッタリング法、およびイオンプレーティング
法等が用いられる。本発明における金属蒸着層の厚み
は、通常10〜100nmの範囲内である。
The metal deposited on the cored metal deposition layer is not particularly limited, but may be aluminum, tin,
And chromium. Among them, aluminum is most preferable from the viewpoint of color tone and vapor deposition suitability. The deposition method is
Although not particularly limited, a vacuum evaporation method, an ion plating method, a sputtering method, an ion plating method, or the like is used. The thickness of the metal deposition layer in the present invention is usually in the range of 10 to 100 nm.

【0021】本発明において、核付金属蒸着層と金属蒸
着層との形成は、同一真空系内で行うのが、密着性向上
のために好ましい。核付金属蒸着層の形成後大気に暴露
すると、密着性に悪影響を与えるからである。
In the present invention, the formation of the metal deposition layer with nucleus and the metal deposition layer is preferably performed in the same vacuum system in order to improve the adhesion. This is because exposure to the atmosphere after the formation of the metal deposition layer with a nucleus adversely affects adhesion.

【0022】[0022]

【実施例】以下、実施例により、本発明を具体的に説明
するが、本発明は、これらに限定されるものではない。
EXAMPLES The present invention will now be described specifically with reference to examples, but the present invention is not limited to these examples.

【0023】なお、実施例および比較例中の物性(ラミ
ネート強度)は次のように測定した。
The physical properties (laminate strength) in Examples and Comparative Examples were measured as follows.

【0024】ラミネート強度の測定方法:蒸着面にウレ
タン系2液型接着剤をドライで2μm相当コートし25
μmの厚みのポリエステルフィルムとラミネートし72
時間40℃雰囲気でエージングする。その後15mm幅
×200mm長に切り取り、オリエンテック社製テンシ
ロン万能試験機を用いて引張速度200mm/minで
90゜剥離時の密着強度を測定した。これをドライラミ
ネート強度とした。90゜剥離時に剥離界面に蒸留水2
〜3滴滴下して、同様に90゜剥離時の密着強度を測定
した。これをウェットラミネート強度とした。
Measurement method of lamination strength: A 2-part urethane-based adhesive was dry-coated on the vapor-deposited surface to a thickness of 2 μm, and the
Laminated with a polyester film having a thickness of μm.
Aging is carried out for 40 hours in an atmosphere. Thereafter, it was cut into 15 mm width × 200 mm length, and the adhesion strength at 90 ° peeling was measured at a tensile speed of 200 mm / min using a Tensilon universal testing machine manufactured by Orientec. This was defined as dry lamination strength. Distilled water 2 at peeling interface at 90 ° peeling
Approximately 3 drops were dropped, and the adhesion strength at 90 ° peeling was measured in the same manner. This was defined as wet lamination strength.

【0025】[実施例1]〜[実施例4」、[比較例
1]〜[比較例4」 厚さ25μmのポリ四フッ化エチレンフィルムを用い、
通常のロール・ツー・ロール型の真空蒸着機を用いて蒸
着を行った。核付金属の蒸着は1×10-4mmHgの真
空下、マグネトロン電極のカソードに純度99.9%の
銅材を用い、放電ガスとして0.5リットル/minの
酸素ガスを用いた。さらにマグネトロン電極に電圧をか
け放電雰囲気としフッ素樹脂フィルムそれぞれつぎに示
す平均厚みの核付金属蒸着層を形成した。引き続き同じ
真空蒸着機内で1×10-4mmHgの真空下でアルミニ
ウム蒸着層を形成させた。
[Example 1] to [Example 4], [Comparative Example 1] to [Comparative Example 4] Using a polytetrafluoroethylene film having a thickness of 25 μm,
Evaporation was performed using a normal roll-to-roll type vacuum evaporator. For the deposition of the cored metal, a copper material having a purity of 99.9% was used for the cathode of the magnetron electrode under a vacuum of 1 × 10 −4 mmHg, and an oxygen gas of 0.5 liter / min was used as a discharge gas. Further, a voltage was applied to the magnetron electrode to form a discharge atmosphere, and a nucleated metal deposition layer having the following average thickness was formed on each of the fluororesin films. Subsequently, an aluminum deposition layer was formed in the same vacuum deposition machine under a vacuum of 1 × 10 −4 mmHg.

【0026】実施例1:0.01nm 実施例2:0.1nm 実施例3:1.0nm 実施例4:2.0nm 一方、比較例1は、核付金属蒸着層を形成することなく
50nmのアルミニウム蒸着層を実施例と同様に形成さ
せた。比較例2ではコロナ放電処理面に比較例1と同様
のアルミニウム蒸着層を形成させた。比較例3ではアン
カー処理面に比較例1と同様のアルミニウム蒸着層を形
成させた。比較例4では、抵抗加熱方式で銅を1.0m
mの厚みで核付金属蒸着層を形成させ、引き続いて比較
例1と同様のアルミニウム蒸着層を形成させた。
Example 1: 0.01 nm Example 2: 0.1 nm Example 3: 1.0 nm Example 4: 2.0 nm On the other hand, Comparative Example 1 has a thickness of 50 nm without forming a nucleated metal deposition layer. An aluminum deposition layer was formed in the same manner as in the example. In Comparative Example 2, an aluminum deposited layer similar to that of Comparative Example 1 was formed on the corona discharge treated surface. In Comparative Example 3, the same aluminum deposited layer as in Comparative Example 1 was formed on the anchored surface. In Comparative Example 4, the resistance heating method
A metal deposition layer with a nucleus was formed with a thickness of m, and subsequently, an aluminum deposition layer similar to that of Comparative Example 1 was formed.

【0027】表1に実施例1〜4と比較例1〜4の特性
の測定結果をまとめた。
Table 1 summarizes the measurement results of the characteristics of Examples 1 to 4 and Comparative Examples 1 to 4.

【0028】[0028]

【表1】 表1から明らかなように、実施例1〜4により得られた
金属蒸着フッ素樹脂フィルムはラミネート強度(ドライ
およびウェットともに)が比較例1〜4で得られる金属
蒸着フッ素樹脂フィルムに比較してレベルアップした結
果が得られた。
[Table 1] As is clear from Table 1, the metal-deposited fluororesin films obtained in Examples 1 to 4 have a laminating strength (both dry and wet) which is lower than that of the metal-deposited fluororesin films obtained in Comparative Examples 1 to 4. The result was up.

【0029】[0029]

【発明の効果】本発明によれば、フッ素樹脂フィルム上
に特定の核付金属蒸着層および金属蒸着層を順次形成す
ることにより、核付金属蒸着層のないものに比べて金属
蒸着層の脱落の極めてしにくい金属蒸着フッ素樹脂フィ
ルムが得られる。したがって、本発明は、ラミネート強
度の必要な金属蒸着フィルム(例えば、装飾用フィル
ム、ラベル、マーキングフィルム、耐熱服・防火服用フ
ィルム等)に特に有効である。
According to the present invention, a metal-deposited layer having a specific nucleus and a metal-deposited layer are sequentially formed on a fluororesin film so that the metal-deposited layer is less likely to fall off as compared with the case without the core-deposited metal-deposited layer. A metal-deposited fluororesin film that is extremely difficult to obtain is obtained. Therefore, the present invention is particularly effective for metal-deposited films requiring a laminate strength (for example, decorative films, labels, marking films, films for heat-resistant clothes and fire-resistant clothes, etc.).

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】フッ素樹脂フィルム表面に、プラズマ放電
下による核付金属蒸着層、およびその上に金属蒸着層を
それぞれ形成せしめてなる金属蒸着フッ素樹脂フィル
ム。
1. A metal-deposited fluororesin film comprising a nucleated metal-deposited layer formed by plasma discharge on a fluororesin film surface and a metal-deposited layer formed thereon.
【請求項2】プラズマ放電の処理強度が1〜12kw/
2であることを特徴とする請求項1記載の金属蒸着フ
ッ素樹脂フィルム。
2. A plasma discharge treatment intensity of 1 to 12 kW /
metallized fluororesin film according to claim 1, characterized in that the m 2.
【請求項3】プラズマ放電の放電ガスが酸素であること
を特徴とする請求項1または2記載の金属蒸着フッ素樹
脂フィルム。
3. The metal-deposited fluororesin film according to claim 1, wherein the discharge gas of the plasma discharge is oxygen.
【請求項4】プラズマ放電下による核付金属蒸着層の金
属が銅であることを特徴とする請求項1〜3のいずれか
に記載の金属蒸着フッ素樹脂フィルム。
4. The metal-deposited fluororesin film according to claim 1, wherein the metal of the metal-deposited nucleation layer under plasma discharge is copper.
【請求項5】金属蒸着層が金属アルミニウムであること
を特徴とする請求項1〜4のいずれかに記載の金属蒸着
フッ素樹脂フィルム。
5. The metal-deposited fluororesin film according to claim 1, wherein the metal-deposited layer is made of metal aluminum.
【請求項6】核付金属蒸着層の平均膜厚が0.01〜
2.0nmであることを特徴とする請求項1〜5のいず
れかに記載の金属蒸着フッ素樹脂フィルム。
6. An average film thickness of the cored metal deposition layer is from 0.01 to 0.01.
The metal-deposited fluororesin film according to any one of claims 1 to 5, wherein the thickness is 2.0 nm.
【請求項7】金属蒸着層の平均膜厚が10〜100nm
であることを特徴とする請求項1〜6のいずれかに記載
の金属蒸着フッ素樹脂フィルム。
7. The metal deposited layer has an average thickness of 10 to 100 nm.
The metal-deposited fluororesin film according to any one of claims 1 to 6, wherein
【請求項8】フッ素樹脂フィルムがポリ四フッ化エチレ
ンフィルム、ポリ三フッ化エチレンフィルム、六フッ化
プロピレン−四フッ化エチレン共重合体フィルム、ポリ
フッ化ビニルフィルム、またはポリフッ化ビニリデンフ
ィルムであり、かつその厚みが12〜100μmである
ことを特徴とする請求項1〜7のいずれかに記載の金属
蒸着フッ素樹脂フィルム。
8. The fluororesin film is a polytetrafluoroethylene film, a polytrifluoroethylene film, a propylene hexafluoride-ethylene tetrafluoride copolymer film, a polyvinyl fluoride film, or a polyvinylidene fluoride film, The metal-deposited fluororesin film according to any one of claims 1 to 7, wherein the thickness is 12 to 100 µm.
【請求項9】フッ素樹脂フィルム表面に、同一真空系内
で、プラズマ放電下による核付金属蒸着層およびその上
に金属蒸着層をそれぞれ形成することを特徴とする金属
蒸着フッ素樹脂フィルムの製造方法。
9. A method of manufacturing a metal-deposited fluororesin film, comprising forming a metal-deposited layer with a nucleus and a metal-deposited layer thereon by plasma discharge in the same vacuum system on the surface of the fluororesin film. .
JP3955998A 1998-02-05 1998-02-05 Metal evaporated fluororesin film and its production Pending JPH11222666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3955998A JPH11222666A (en) 1998-02-05 1998-02-05 Metal evaporated fluororesin film and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3955998A JPH11222666A (en) 1998-02-05 1998-02-05 Metal evaporated fluororesin film and its production

Publications (1)

Publication Number Publication Date
JPH11222666A true JPH11222666A (en) 1999-08-17

Family

ID=12556439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3955998A Pending JPH11222666A (en) 1998-02-05 1998-02-05 Metal evaporated fluororesin film and its production

Country Status (1)

Country Link
JP (1) JPH11222666A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5019243B1 (en) * 2012-01-20 2012-09-05 尾池工業株式会社 Antireflection film
JPWO2020066457A1 (en) * 2018-09-25 2021-08-30 東レ株式会社 Laminated body and manufacturing method of laminated body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5019243B1 (en) * 2012-01-20 2012-09-05 尾池工業株式会社 Antireflection film
JPWO2020066457A1 (en) * 2018-09-25 2021-08-30 東レ株式会社 Laminated body and manufacturing method of laminated body

Similar Documents

Publication Publication Date Title
CN1727179B (en) Film with multilayered metal and process for producing the same
US4865711A (en) Surface treatment of polymers
US4802967A (en) Surface treatment of polymers
JP3452557B2 (en) Method of forming resistive material on copper layer used in printed circuit board and sheet material
US4913762A (en) Surface treatment of polymers for bonding by applying a carbon layer with sputtering
CN111235532A (en) Coating device combining ion coating and electron beam evaporation coating and coating method thereof
JPS59126779A (en) Method of roughening copper surface
JPH0983134A (en) Flexible printed circuit board
JPH05259596A (en) Board for flexible printed wiring
JPH11222666A (en) Metal evaporated fluororesin film and its production
JP2007297712A (en) Metallization through thin seed layer deposited using plasma
JPH08267642A (en) Vapor deposited plastic film and its preparation
JP2000177052A (en) Metal vapor-deposited polyurethane film
JPH05299820A (en) Flexible printed wiring board
JP3451389B2 (en) Manufacturing method of metallized nylon film
JP2000212726A (en) Metal vapor deposited aluminum foil
JP2014053368A (en) Hydrolysis resistance conductive film and back sheet using the same
US4089990A (en) Battery plate and method of making
JP4279606B2 (en) Film plating material manufacturing method and manufacturing apparatus
WO2023190657A1 (en) Electrode, and electrochemical measuring system
JP2001019714A (en) Metallized polypropylene film for label and its production
JPH08269689A (en) Vapor deposited plastic film and its production
JP2003094589A (en) Method and apparatus for manufacturing laminate material
JPS62109966A (en) Corrosion-resisting plated steel sheet
JP3796694B2 (en) Metal-deposited plastic substrate and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A977 Report on retrieval

Effective date: 20070712

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070724

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20071120

Free format text: JAPANESE INTERMEDIATE CODE: A02