JPH11222617A - Rotary hearth furnace for producing reduced iron - Google Patents

Rotary hearth furnace for producing reduced iron

Info

Publication number
JPH11222617A
JPH11222617A JP32508698A JP32508698A JPH11222617A JP H11222617 A JPH11222617 A JP H11222617A JP 32508698 A JP32508698 A JP 32508698A JP 32508698 A JP32508698 A JP 32508698A JP H11222617 A JPH11222617 A JP H11222617A
Authority
JP
Japan
Prior art keywords
furnace
exhaust gas
heat exchanger
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32508698A
Other languages
Japanese (ja)
Other versions
JP3796058B2 (en
Inventor
Yasuyuki Shintaku
▲やす▼征 新宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP32508698A priority Critical patent/JP3796058B2/en
Publication of JPH11222617A publication Critical patent/JPH11222617A/en
Application granted granted Critical
Publication of JP3796058B2 publication Critical patent/JP3796058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • C21B13/105Rotary hearth-type furnaces

Abstract

PROBLEM TO BE SOLVED: To suppress the flow rate of exhaust gas exhausted into the atmo sphere, to improve the thermal efficiency by efficiently recovering this sensible heat and to reduce the cost of an equipment and the cost of operation, mainte nance and checking, in a rotary hearth furnace for producing reduced iron. SOLUTION: In the rotary hearth type furnace for producing the reduced iron by reducing iron oxide-containing raw material, several pairs of regenerative heat exchangers which communicate with several pairs of supplying and exhausting gas meansare arranged in the oxidizing atmospheric zone and/or the reducing atmospheric zone in the furnace. The operation for exhausting the high temp. exhaust gas in the furnace through one side of the regenerative heat exchanger in non-heat reserving state and on the other hand, the operation for supplying the air for burning combustion component in the furnace through the other side of the regenerative heat exchanger in heat reserving state, are alternately changed over in each prescribed time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は還元鉄製造用ロー
タリーハース型炉、具体的には、微粉鉄鉱石や製鉄工程
で使用されている高炉、転炉或いは電気炉等から回収さ
れる酸化鉄含有ダストなどの酸化鉄含有原料から還元鉄
を製造するロータリーハース型炉に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary hearth furnace for the production of reduced iron, and more particularly, to a fine iron ore or an iron furnace containing iron oxide recovered from a blast furnace, a converter or an electric furnace used in an iron making process. The present invention relates to a rotary hearth furnace for producing reduced iron from iron oxide-containing raw materials such as dust.

【0002】[0002]

【従来の技術】従来、製鉄工程から回収される酸化鉄含
有ダストを還元する方法としては、ロータリーキルンで
直接還元する方法や、シャフト炉で溶融還元する方法が
採用されている。しかしながら、ロータリーキルンの場
合、ペレット状で装入した材料が処理中に粉化したり、
キルン内部に還元途中の製品がリング状に堆積すること
によって操業不能に陥ることがしばしば発生する。ま
た、シャフト炉の場合、ダストと石炭の粉末を混練して
ペレットを作り、炉内で溶融還元する、いわゆる高炉に
近いプロセスでダスト中の酸化鉄分を還元する方法であ
るが、一度炉を立ち上げると、高炉と同様に炉を簡単に
停止できない問題や炉内に発生する溶融スラグの処理、
投入材料の前処理工程の複雑さがあり、その結果処理コ
ストが高くなるという問題がある。このため、酸化鉄含
有ダストから低コストで還元して還元鉄を製造する方法
の開発が要望されている。
2. Description of the Related Art Conventionally, as a method for reducing iron oxide-containing dust recovered from an iron making process, a method of directly reducing the dust with a rotary kiln and a method of melting and reducing with a shaft furnace have been adopted. However, in the case of a rotary kiln, the material charged in the form of pellets may be powdered during processing,
It is often the case that the operation during the reduction is accumulated in a ring shape inside the kiln and the operation becomes inoperable. In the case of a shaft furnace, a method of kneading dust and coal powder to form pellets and melt-reduce in the furnace, a method similar to what is called a blast furnace, is a method of reducing iron oxide in dust, but once the furnace is started up If it raises, the problem that the furnace cannot be stopped easily like the blast furnace, the treatment of the molten slag generated in the furnace,
There is a problem that the pretreatment process of the input material is complicated, and as a result, the processing cost is increased. For this reason, there is a demand for the development of a method for producing reduced iron by reducing the iron oxide-containing dust at low cost.

【0003】他方、電炉製鋼の伸張とともに鉄源需要が
増大し、その需要を満たすため微粉鉄鉱石を原料とする
還元鉄の製造法が種々開発されている。その中でも、石
炭を使用した還元鉄製造プロセスが還元鉄を安価に製造
することができる方法として注目されている。この石炭
を使用した還元鉄製造プロセスは、微粉鉄鉱石と石炭の
混合粉末をペレット化し、これをロータリーハース型炉
で1200〜1450℃で加熱することによって酸化鉄
を還元する方法である。
[0003] On the other hand, the demand for iron sources has increased with the extension of electric steelmaking, and various methods for producing reduced iron from fine iron ore have been developed to meet the demand. Among them, a reduced iron production process using coal has attracted attention as a method capable of producing reduced iron at low cost. The reduced iron production process using this coal is a method of reducing the iron oxide by pelletizing a mixed powder of fine iron ore and coal and heating it at 1200 to 1450 ° C. in a rotary hearth furnace.

【0004】前記ロータリーハース型炉は、図4に示す
ように、回転炉床式炉本体1と、これに原料の微粉鉄鉱
石と石炭粉末をペレット化して供給する原料供給系と、
前記炉本体1で生じた排ガスを処理する排ガス処理系と
で構成されている。炉本体1の内部には、酸化性雰囲気
領域(加熱領域)1a、還元性雰囲気領域(還元領域)
1b及び冷却領域1cが、炉床の回転方向(図では矢印
で示すように反時計方向)に順次形成されている。酸化
性雰囲気領域1aにはバーナ2a及び二次燃焼空気供給
口3aが配設され、それに続く還元性雰囲気領域1bに
はバーナ2b及び二次燃焼空気供給口3bが配設されて
いる。各バーナ2a、2bには燃料供給ライン4と燃焼
空気供給ライン5が接続され、燃料と600〜650℃
の燃焼用空気が供給される。また、二次燃焼空気供給口
3a、3bには、600〜650℃の二次燃焼用空気が
供給される。
As shown in FIG. 4, the rotary hearth type furnace includes a rotary hearth type furnace main body 1 and a raw material supply system for supplying fine iron ore and coal powder as raw materials into pellets.
An exhaust gas treatment system for treating exhaust gas generated in the furnace main body 1 is provided. Inside the furnace body 1, an oxidizing atmosphere region (heating region) 1a, a reducing atmosphere region (reducing region)
1b and the cooling region 1c are sequentially formed in the direction of rotation of the hearth (counterclockwise as indicated by the arrow in the figure). A burner 2a and a secondary combustion air supply port 3a are provided in the oxidizing atmosphere area 1a, and a burner 2b and a secondary combustion air supply port 3b are provided in the subsequent reducing atmosphere area 1b. A fuel supply line 4 and a combustion air supply line 5 are connected to each of the burners 2a and 2b.
Is supplied. The secondary combustion air supply ports 3a and 3b are supplied with secondary combustion air at 600 to 650C.

【0005】還元鉄製造に際しては、原料供給系のホッ
パー6a、6b、6cから原料の微粉鉄鉱石、石炭粉末
及びバインダを所定の割合でミキサー7に供給し、そこ
で混合して均一化した後、ペレタイザー8でペレット化
し、得られたペレットをドライヤ9で乾燥した後、炉本
体1内に供給する。炉本体1内に供給されたペレット
は、バーナ2a、2bの燃焼熱とペレット自体から発生
する可燃ガス(主にCOガス)の二次燃焼熱による12
00〜1450℃の雰囲気下で輻射加熱されることで、
ペレット内で還元反応が行われて酸化鉄から金属鉄に還
元され、生成した還元鉄は、1000〜1200℃に冷
却されて炉外へ排出される、又は、この還元鉄を半溶融
させて半溶融銑鉄として取り出される。
In the production of reduced iron, the raw material fine iron ore, coal powder and binder are supplied from a hopper 6a, 6b, 6c of a raw material supply system to a mixer 7 at a predetermined ratio, where they are mixed and homogenized. After pelletizing with a pelletizer 8 and drying the resulting pellets with a drier 9, the pellets are supplied into the furnace body 1. The pellets supplied into the furnace body 1 are generated by the combustion heat of the burners 2a and 2b and the secondary combustion heat of the combustible gas (mainly CO gas) generated from the pellets.
By radiant heating under the atmosphere of 00 to 1450 ° C,
A reduction reaction is performed in the pellets to reduce the iron oxide to metallic iron, and the generated reduced iron is cooled to 1000 to 1200 ° C. and discharged to the outside of the furnace, or the reduced iron is semi-molten to be half-melted. Removed as molten pig iron.

【0006】他方、炉内の排ガスは、排ガス処理系の吸
引ファン10の作用により酸化性雰囲気領域1aあるい
は還元性雰囲気領域1bに配置された煙道11を介して
炉外へ排気されるが、この排ガスは抽出側から煙道11
へ流れる排ガスと装入側から煙道11へ流れる排ガスと
の混合排ガスであることから、排ガス中の未燃焼ガスを
空気で燃焼させた後、煙道11から排出される。この排
ガスは、水噴霧により900〜1000℃に降温した
後、熱交換器12に入り、空気を600〜650℃に予
熱し、排ガス自体は400℃前後に降温した後、排ガス
処理設備13に送られ、脱硫、脱塵して煙突14から大
気中に放出される。
On the other hand, the exhaust gas in the furnace is exhausted out of the furnace through a flue 11 arranged in the oxidizing atmosphere region 1a or the reducing atmosphere region 1b by the action of the suction fan 10 of the exhaust gas treatment system. This exhaust gas is passed from the extraction side to the flue 11
Since the exhaust gas is a mixed exhaust gas of the exhaust gas flowing to the exhaust gas and the exhaust gas flowing from the charging side to the flue 11, the unburned gas in the exhaust gas is burned by air and then discharged from the flue 11. This exhaust gas is cooled to 900 to 1000 ° C. by water spray and then enters the heat exchanger 12 to preheat air to 600 to 650 ° C. The exhaust gas itself is cooled to around 400 ° C. and then sent to the exhaust gas treatment equipment 13. The gas is then desulfurized, dusted and released from the chimney 14 into the atmosphere.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
ロータリーハース型炉では、排ガスが1400℃以上と
極めて高温で熱交換器12の耐熱性の問題からそのまま
熱交換器12に直接供給することができないため、別に
設けた水噴霧装置で水を煙道11内に噴霧して排ガスを
熱交換器の耐熱温度、例えば、900〜1000℃に降
温させる必要がある他、熱交換器12を出た排ガスも排
ガス処理設備13での脱硫や除塵に適した200℃前後
にまで水を噴霧して冷却しなければならないという問題
がある。
However, in the conventional rotary hearth furnace, the exhaust gas is extremely high at 1400 ° C. or more, and cannot be directly supplied to the heat exchanger 12 as it is due to the problem of heat resistance of the heat exchanger 12. Therefore, it is necessary to spray water into the flue 11 with a separately provided water spray device to lower the temperature of the exhaust gas to the heat-resistant temperature of the heat exchanger, for example, 900 to 1000 ° C. Also, there is a problem that water must be sprayed and cooled to about 200 ° C. which is suitable for desulfurization and dust removal in the exhaust gas treatment equipment 13.

【0008】このため、従来のロータリーハース型炉で
は、排ガスの熱損失が大きく、炉全体の総発熱量の約5
0%程度しか熱を回収できず、熱効率が著しく低いとい
う問題がある。また、排ガス温度が高いため、水噴霧設
備などの排ガス冷却設備が大型化し、更には、排ガス量
が増加するため、必然的に熱交換器や排ガス処理設備な
どの付帯設備が大型化することになり、設備費、運転
費、保守点検費など諸費用が著しく増大する。
For this reason, in the conventional rotary hearth furnace, the heat loss of the exhaust gas is large, and the total heating value of the entire furnace is about 5%.
There is a problem that only about 0% of the heat can be recovered, and the thermal efficiency is extremely low. In addition, the high temperature of the exhaust gas increases the size of exhaust gas cooling equipment such as water spray equipment, and further increases the amount of exhaust gas, which inevitably increases the size of auxiliary equipment such as heat exchangers and exhaust gas treatment equipment. As a result, various costs such as equipment costs, operation costs, and maintenance and inspection costs increase significantly.

【0009】従って、本発明は、ロータリーハース型炉
を用いて酸化鉄含有ダストや微粉鉄鉱石などの酸化鉄含
有原料から還元鉄を製造するに際して、大気中に放出さ
れる排ガスの顕熱を効率良く回収して熱効率を高め、設
備費及び運転、保守点検費を低減することを目的とする
ものである。
Accordingly, the present invention efficiently reduces the sensible heat of the exhaust gas discharged into the atmosphere when producing reduced iron from iron oxide-containing raw materials such as iron oxide-containing dust and fine iron ore using a rotary hearth furnace. The purpose is to improve the thermal efficiency by recovering well, and to reduce equipment costs, operation, maintenance and inspection costs.

【0010】[0010]

【課題を解決するための手段】本発明は、前記課題を解
決するための手段として、酸化鉄含有原料を還元して還
元鉄を製造するロータリーハース型炉において、前記炉
の酸化性雰囲気領域及び/又は還元性雰囲気領域に複数
対の給排気手段と当該給排気手段に連通する複数対の蓄
熱式熱交換器を設け、各対の非蓄熱状態の蓄熱式熱交換
器を通して炉内高温排ガスを排気する一方、当該対の蓄
熱状態の蓄熱式熱交換器を通して前記炉内に炉内可燃性
成分を燃焼させる空気を供給する操作を所定時間毎に交
互に切り換えるようにしたものである。
According to the present invention, there is provided a rotary hearth type furnace for producing reduced iron by reducing an iron oxide-containing raw material, as an means for solving the above-mentioned problems. And / or a plurality of pairs of supply / exhaust means and a plurality of pairs of regenerative heat exchangers communicating with the supply / exhaust means are provided in the reducing atmosphere region, and high-temperature exhaust gas in the furnace is passed through each pair of non-thermal storage heat exchangers. The operation of supplying air for burning the combustible components in the furnace into the furnace through the pair of heat storage heat exchangers in the heat storage state is alternately switched at predetermined time intervals.

【0011】前記給排気手段は、羽口又は前記酸化性雰
囲気領域及び/又は還元性雰囲気領域に設ける蓄熱式バ
ーナで構成される。蓄熱式バーナを給排気手段として使
用する場合、対の蓄熱式バーナのうち二次燃焼用空気供
給手段として機能する蓄熱式バーナには、燃料の燃焼に
必要な量の空気と酸化性雰囲気領域及び/又は還元性雰
囲気領域で発生する可燃性ガスを燃焼させるのに必要な
量の空気とを合わせた量の空気が供給され、他方の排気
手段として機能する蓄熱式バーナは、酸化性雰囲気領域
及び/又は還元性雰囲気領域から高温排ガスを吸引して
非蓄熱状態の蓄熱式熱交換器に供給する。前記還元性雰
囲気領域に複数対の蓄熱式熱交換器を設ける場合、還元
性雰囲気領域からの炉内高温排ガスは可燃性成分を含有
するため、炉内高温排ガス中に含まれる可燃性成分を空
気で燃焼させて酸化性排ガスにして蓄熱式熱交換器に供
給するのが望ましい。
The air supply / exhaust means is constituted by a regenerative burner provided in the tuyere or the oxidizing atmosphere area and / or the reducing atmosphere area. When the regenerative burner is used as the air supply / exhaust means, the regenerative burner functioning as the secondary combustion air supply means of the pair of regenerative burners has a necessary amount of air and oxidizing atmosphere region for fuel combustion and The regenerative burner, which is supplied with an amount of air that is combined with the amount of air necessary to combust the combustible gas generated in the reducing atmosphere region, and functions as the other exhaust means, comprises an oxidizing atmosphere region and High temperature exhaust gas is sucked from the reducing atmosphere region and supplied to the non-thermal storage type heat storage heat exchanger. In the case where a plurality of pairs of regenerative heat exchangers are provided in the reducing atmosphere region, the in-furnace high-temperature exhaust gas from the reducing atmosphere region contains a flammable component. It is preferable to burn the oxidized exhaust gas and supply it to the regenerative heat exchanger.

【0012】また、前記炉の熱効率を向上させるため、
前記炉の酸化性雰囲気領域あるいは還元性雰囲気領域か
ら炉内排ガスを排気すると共に、この排気ガスを空気で
希釈降温させた後、ドライヤへ供給するのが好適であ
る。
In order to improve the thermal efficiency of the furnace,
It is preferable that exhaust gas in the furnace is exhausted from the oxidizing atmosphere region or the reducing atmosphere region of the furnace, and the exhaust gas is diluted with air, cooled and then supplied to a dryer.

【0013】更に、前記炉からの排ガス総量を増加させ
ないため、前記炉の酸化性雰囲気領域あるいは還元性雰
囲気領域から排出される炉内排ガスを蓄熱式熱交換器を
通過した低温排ガスで希釈降温させて燃焼空気予熱用熱
交換器に供給するのが望ましい。
Further, in order not to increase the total amount of exhaust gas from the furnace, the temperature of the furnace exhaust gas discharged from the oxidizing atmosphere region or the reducing atmosphere region of the furnace is diluted with low-temperature exhaust gas having passed through a regenerative heat exchanger and cooled. It is desirable to supply the heat to the heat exchanger for preheating combustion air.

【0014】[0014]

【発明の実施の形態】以下、本発明に係る還元鉄製造用
ロータリーハース型炉を示す添付の図面を参照して本発
明を詳細に説明する。図中、同一若しくは同等の部材は
同じ参照符号を付してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the accompanying drawings showing a rotary hearth furnace for producing reduced iron according to the present invention. In the drawings, the same or equivalent members are denoted by the same reference numerals.

【0015】図1は本発明に係る還元鉄製造用ロータリ
ーハース型炉を示し、この炉は、回転炉床式炉本体1
と、これに酸化鉄含有原料を供給する原料供給系と、前
記炉の排ガスを処理する排ガス処理系とで構成されてい
る。炉本体1内には、酸化性雰囲気領域(加熱領域)1
a、還元性雰囲気領域(還元領域)1b及び冷却領域1
cが形成され、前記加熱領域1a及び還元領域1bには
円周方向に相互に所定間隔をおいて複数のバーナ2a、
2bがそれぞれ配設されている。前記加熱領域1aの各
バーナ2aには燃料供給ライン4aと常温空気の燃焼空
気供給ライン5が接続され、還元領域1bの各バーナ2
bには燃料供給ライン4bと予熱空気の燃焼空気供給ラ
イン35が接続されている。なお、還元領域1bにもバ
ーナを配設したのは、この還元領域1bは加熱処理時に
発生する可燃性ガスの不完全燃焼によって還元雰囲気に
維持されるが、発生ガスの二次燃焼だけでは還元反応を
維持するのに十分な熱量が得られないことから、これを
補うためである。
FIG. 1 shows a rotary hearth furnace for producing reduced iron according to the present invention.
And a raw material supply system for supplying an iron oxide-containing raw material thereto, and an exhaust gas treatment system for treating exhaust gas from the furnace. An oxidizing atmosphere region (heating region) 1 is provided in the furnace body 1.
a, reducing atmosphere region (reducing region) 1b and cooling region 1
c are formed, and a plurality of burners 2a are provided in the heating region 1a and the reduction region 1b at predetermined intervals in the circumferential direction.
2b are provided respectively. A fuel supply line 4a and a combustion air supply line 5 for room temperature air are connected to each burner 2a in the heating area 1a, and each burner 2a in the reduction area 1b.
A fuel supply line 4b and a combustion air supply line 35 for preheating air are connected to b. The reason why a burner is also provided in the reduction region 1b is that the reduction region 1b is maintained in a reducing atmosphere by incomplete combustion of the combustible gas generated during the heat treatment, but is reduced only by the secondary combustion of the generated gas. This is because a sufficient amount of heat for maintaining the reaction cannot be obtained, which is compensated for.

【0016】前記加熱領域1aには、炉本体1の円周方
向に所定間隔を置いて複数対の蓄熱式熱交換器(20a
1、20b1)、(20a2、20b2)、・・・・・・(2
0an、20bn)が羽口と連通して配設され、各蓄熱式熱
交換器に収納されたセラミックスその他の耐熱性材料か
らなる蓄熱媒体を介して対の給排気ダクト(21a1、2
1b1)、(21a2、21b2)、・・・・・・(21an、
21bn)に連通している。各対の給排気ダクト(21a
n、21bn)は、それぞれ開閉弁V1、V2を介して排
ガス排出ライン17に、開閉弁V3、V4を介して空気
供給ライン18にそれぞれ接続されている。前記空気供
給ライン18にはブロア19が配設されている。
In the heating area 1a, a plurality of pairs of regenerative heat exchangers (20a) are arranged at predetermined intervals in the circumferential direction of the furnace body 1.
1, 20b1), (20a2, 20b2),... (2
0an, 20bn) are provided in communication with the tuyeres, and a pair of supply / exhaust ducts (21a1, 2a1) are connected to each other via a heat storage medium made of ceramics or other heat-resistant material stored in each heat storage type heat exchanger.
1b1), (21a2, 21b2),... (21an,
21bn). Each pair of supply and exhaust ducts (21a
n, 21bn) are connected to an exhaust gas discharge line 17 via on-off valves V1, V2, respectively, and to an air supply line 18 via on-off valves V3, V4, respectively. The air supply line 18 is provided with a blower 19.

【0017】前記排ガス排出ライン17は、吸引ファン
22を介して排気系主排気ライン23と排ガス希釈系排
気ライン24とに分岐され、排気系主排気ライン23は
排ガス流量制御弁V5を介して排ガス処理設備13に接
続されている。排ガス希釈系排気ライン24は排ガス温
度制御弁V6を介して空気予熱用排ガスライン25に接
続されている。この排ガス希釈系排気ライン24の低温
排ガスは、空気予熱用排ガスライン25の高温排ガスを
希釈降温して熱交換器26に供給され、そこで空気を予
熱した後、炉内圧力調節弁29を経て排気系主排気ライ
ン23の低温排ガスと混合され、所定温度に希釈昇温し
て排ガス処理設備13に供給される。
The exhaust gas discharge line 17 is branched into an exhaust system main exhaust line 23 and an exhaust gas dilution system exhaust line 24 via a suction fan 22. The exhaust system main exhaust line 23 is connected to an exhaust system through an exhaust gas flow control valve V5. It is connected to processing equipment 13. The exhaust gas dilution system exhaust line 24 is connected to an air preheating exhaust gas line 25 via an exhaust gas temperature control valve V6. The low-temperature exhaust gas in the exhaust gas dilution system exhaust line 24 is diluted and cooled in the high-temperature exhaust gas in the air preheating exhaust gas line 25 and supplied to the heat exchanger 26, where the air is preheated and then exhausted through the furnace pressure control valve 29. It is mixed with the low-temperature exhaust gas from the system main exhaust line 23, diluted to a predetermined temperature and heated, and supplied to the exhaust gas treatment equipment 13.

【0018】乾燥用空気供給ライン31は、流量制御弁
V8、V15、混合器32及び吸引ファン33を含み、
混合器32には排気ライン30が接続され、煙道11か
ら1200〜1450℃の高温排ガスが温度制御弁V1
0を介して供給される。煙道11の高温排ガスは。吸引
ファン33の作用により混合器32に供給され、そこで
流量制御弁V8を介して流入する空気で350〜400
℃に希釈降温され、乾燥用空気としてドライヤ9に供給
される。なお、この排気ライン30を分岐させて高温排
ガスの一部を空気予熱用排ガスライン25を介して熱交
換器26に供給しているが、両排気ライン25、30は
それぞれ独立したラインとしても良い。
The drying air supply line 31 includes flow control valves V8 and V15, a mixer 32 and a suction fan 33,
An exhaust line 30 is connected to the mixer 32, and a high-temperature exhaust gas of 1200 to 1450 ° C. flows from the flue 11 to the temperature control valve V 1.
0. What is the high temperature exhaust gas from the flue 11? The air is supplied to the mixer 32 by the action of the suction fan 33, and the air that flows in through the flow control valve V <b> 8
The temperature is diluted to ℃, and supplied to the dryer 9 as drying air. Although the exhaust line 30 is branched to supply a part of the high-temperature exhaust gas to the heat exchanger 26 via the air preheating exhaust gas line 25, the exhaust lines 25 and 30 may be independent lines. .

【0019】前記空気予熱用熱交換器26ではブロア2
7からの空気が排ガスとの熱交換により600〜700
℃の所定温度にまで予熱され、この予熱空気は、燃焼空
気供給ライン35から流量制御弁V9を経て還元領域1
bの各バーナ2b及び二次燃焼用空気供給口3bに供給
される。原料供給系及び排ガス処理系など他の構成は図
4のものと同じであるので図1では省略してある。
In the air preheating heat exchanger 26, the blower 2
7 from 600 to 700 by heat exchange with exhaust gas
° C, and the preheated air is supplied from the combustion air supply line 35 via the flow control valve V9 to the reduction zone 1
b is supplied to each burner 2b and the secondary combustion air supply port 3b. Other configurations such as a raw material supply system and an exhaust gas treatment system are the same as those in FIG. 4 and therefore are omitted in FIG.

【0020】微粉鉄鉱石と石灰とからの還元鉄製造に際
しては、従来と同様にホッパー6a、6b、6cから微
粉鉄鉱石、石炭粉末及びバインダを所定割合でそれぞれ
ミキサー7に供給し、そこで混合して均一化した後、ペ
レタイザー8に供給してペレット化し、このペレットを
ドライヤ9で乾燥して炉本体1内に供給する。炉本体1
内に供給されたペレットは、炉床の回転により反時計方
向に搬送され、バーナ2a、2bの燃焼熱とペレット自
体から発生する可燃性ガスの二次燃焼熱により1200
〜1450℃の雰囲気温度下で輻射加熱されることで、
ペレット内で還元反応が行われて酸化鉄が金属鉄に還元
され、生成した還元鉄は冷却領域2cで1000〜12
00℃の所定温度にまで冷却され、回転炉床がほぼ1回
転したところで炉外へ排出される。
In the production of reduced iron from fine iron ore and lime, fine iron ore, coal powder and binder are supplied from a hopper 6a, 6b, 6c to a mixer 7 at a predetermined ratio, and mixed there. Then, the pellets are supplied to a pelletizer 8 to be pelletized, and the pellets are dried by a dryer 9 and supplied into the furnace body 1. Furnace body 1
The pellets supplied into the inside are conveyed counterclockwise by the rotation of the hearth, and 1200 heat is generated by the combustion heat of the burners 2a and 2b and the secondary combustion heat of the combustible gas generated from the pellets themselves.
By being radiantly heated at an ambient temperature of ~ 1450 ° C,
A reduction reaction is performed in the pellets to reduce iron oxide to metal iron, and the generated reduced iron is cooled to 1000 to 12 in the cooling region 2c.
It is cooled down to a predetermined temperature of 00 ° C., and is discharged out of the furnace when the rotary hearth has rotated substantially once.

【0021】前記ロータリーハース型炉においては、複
数対の蓄熱式熱交換器(20a1、20b1)、(20a2、
20b2)、・・・・・・(20an、20bn)が各対の給
排気ダクト(21a1、21b1)、(21a2、21b2)、
・・・・・・(21an、21bn)及び開閉弁V1、V
2、V3、V4によって所定時間毎に切り替え使用され
るが、その時の動作を一対の蓄熱式熱交換器(20a1、
20b1)を例に挙げて説明する。
In the rotary hearth furnace, a plurality of pairs of regenerative heat exchangers (20a1, 20b1), (20a2,
20b2),... (20an, 20bn) are supply / exhaust ducts (21a1, 21b1), (21a2, 21b2) of each pair,
..... (21an, 21bn) and on-off valves V1, V
2, V3, and V4 are used by switching every predetermined time, and the operation at that time is performed by a pair of regenerative heat exchangers (20a1, 20a1).
20b1) will be described as an example.

【0022】今、開閉弁V1及びV4が開、V2及びV
3が閉の状態にあるとすると、加熱領域1a内の高温酸
化性排ガスは、吸引ファン22の作用により対の一方の
蓄熱式熱交換器20a1及び排気ダクト21a1を経て炉外
へ排出される。この高温酸化性排ガスは、蓄熱式熱交換
器20a1を通過する過程でその内部の蓄熱媒体に熱を吸
収され、所定の温度(例えば、160〜180℃)にま
で降温した後、低温排ガスとなって開閉弁V1を介して
排ガス排出ライン17に排気され、吸引ファン10の作
用により排ガス処理設備13の方へ直接送られる。ま
た、この低温排ガスの一部は、排ガス希釈系排気ライン
24及び流量制御弁V6を経て空気予熱用排ガスライン
25の1200〜1450℃の高温排ガスと混合され、
これを900〜1000℃の中温排ガスに希釈降温させ
た後、熱交換器26に供給される。この熱交換器26で
はブロア27からの空気を600〜650℃に昇温さ
せ、排ガス自体は400〜500℃に降温し、排気系主
排気ライン23の低温排ガスと混合され、排ガス処理設
備13に供給される。
Now, the on-off valves V1 and V4 are opened, V2 and V
Assuming that 3 is in the closed state, the high-temperature oxidizing exhaust gas in the heating area 1a is discharged to the outside of the furnace through the pair of regenerative heat exchangers 20a1 and the exhaust duct 21a1 by the action of the suction fan 22. The high-temperature oxidizing exhaust gas is absorbed by the heat storage medium in the heat storage heat exchanger 20a1 while passing through the heat storage heat exchanger 20a1, and is cooled to a predetermined temperature (for example, 160 to 180 ° C.). The exhaust gas is exhausted to the exhaust gas discharge line 17 via the on-off valve V 1, and is sent directly to the exhaust gas treatment equipment 13 by the action of the suction fan 10. A part of the low-temperature exhaust gas is mixed with a high-temperature exhaust gas of 1200 to 1450 ° C. in an air preheating exhaust gas line 25 via an exhaust gas dilution system exhaust line 24 and a flow control valve V6,
This is diluted to 900-1000 ° C. medium-temperature exhaust gas, cooled and then supplied to the heat exchanger 26. In the heat exchanger 26, the temperature of the air from the blower 27 is raised to 600 to 650 ° C., and the temperature of the exhaust gas itself is reduced to 400 to 500 ° C., mixed with the low-temperature exhaust gas in the main exhaust line 23 of the exhaust system. Supplied.

【0023】このとき、対の他方の蓄熱式熱交換器20
b1は、その内部の蓄熱媒体が蓄熱状態にあって、開閉弁
V4が開で開閉弁V2が閉であるため、ブロア19から
送給された空気は、蓄熱式熱交換器20b1を通過する過
程で蓄熱媒体から吸熱し、炉内温度に近い温度1100
〜1250℃に昇温して加熱領域1aに直接供給され
る。このため、初期の立ち上がりの段階では、天然ガス
や重油等の燃料をバーナ2aで燃焼させて加熱領域1a
を加熱する必要があるが、設備全体が所定の温度パター
ンを確立して定常状態に入った後は、ペレットから発生
する可燃性ガス成分の二次燃焼だけで加熱領域1aの温
度を維持することができることもあるため、その場合、
加熱領域1aでバーナ2aを燃焼し続ける必要はない。
従って、定常操業中、燃料供給ライン4aの流量制御弁
V12と燃焼空気供給ライン5の流量制御弁V7を閉じ
てバーナ2aの燃焼を停止させれば良いので、燃料消費
量を著しく低減できる。
At this time, the other regenerative heat exchanger 20 of the pair
b1 is a process in which the air supplied from the blower 19 passes through the regenerative heat exchanger 20b1 because the internal heat storage medium is in a heat storage state, and the on-off valve V4 is open and the on-off valve V2 is closed. Heat from the heat storage medium at a temperature of 1100
The temperature is raised to 121250 ° C. and supplied directly to the heating area 1a. For this reason, in the initial rising stage, the fuel such as natural gas or heavy oil is burned by the burner 2a and heated in the heating region 1a.
It is necessary to maintain the temperature of the heating area 1a only by the secondary combustion of the combustible gas component generated from the pellets after the entire facility has established a predetermined temperature pattern and entered the steady state. May be possible, so in that case,
It is not necessary to keep burning the burner 2a in the heating area 1a.
Accordingly, during the steady operation, the flow control valve V12 of the fuel supply line 4a and the flow control valve V7 of the combustion air supply line 5 may be closed to stop the combustion of the burner 2a, so that the fuel consumption can be significantly reduced.

【0024】また、前記蓄熱式熱交換器20a1内部の蓄
熱媒体は、非蓄熱状態にあって高温排ガスから熱を吸収
し、時間の経過と共に昇温し、他方の蓄熱式熱交換器2
0b1内部の蓄熱媒体は、蓄熱状態にあって空気によって
熱を奪われるため時間の経過と共に降温する。蓄熱式熱
交換器20a1の吸熱開始(蓄熱式熱交換器20b1では放
熱開始)から所定時間(例えば、30〜60秒)経過
後、図示しない制御手段により開閉弁V1及びV4が開
から閉へ、V2及びV3が閉から開へ切り替えられる。
この結果、一方の蓄熱式熱交換器20a1は非蓄熱状態か
ら蓄熱状態に、他方の蓄熱式熱交換器20b1は蓄熱状態
から非蓄熱状態に切り替えられ、前述の場合の逆の動作
を繰り返す。また、前記動作は他の対の蓄熱式熱交換器
でも並行して或いは一定の時差をもって行われる。
The heat storage medium inside the heat storage type heat exchanger 20a1 is in a non-heat storage state, absorbs heat from the high-temperature exhaust gas, rises in temperature over time, and has the other heat storage type heat exchanger 2a.
The heat storage medium inside Ob1 is in a heat storage state and is deprived of heat by air, so that the temperature falls with the passage of time. After a lapse of a predetermined time (for example, 30 to 60 seconds) from the start of heat absorption of the regenerative heat exchanger 20a1 (the start of heat release in the regenerative heat exchanger 20b1), the on-off valves V1 and V4 are closed from open to closed by control means (not shown). V2 and V3 are switched from closed to open.
As a result, one regenerative heat exchanger 20a1 is switched from the non-thermal storage state to the thermal storage state, and the other regenerative heat exchanger 20b1 is switched from the thermal storage state to the non-thermal storage state, and the operation opposite to the above case is repeated. Further, the above operation is performed in parallel with another pair of regenerative heat exchangers or with a certain time difference.

【0025】従って、炉本体1内の加熱領域1aからの
高温酸化性排ガスの顕熱は、蓄熱式熱交換器の蓄熱媒体
で一旦吸収された後、該蓄熱媒体に吸収された熱が新鮮
な空気によって回収され炉内に戻される結果、熱損失は
排ガスの蓄熱式熱交換器の出口側温度を低くすれば低く
するほど少なくすることができる。この蓄熱式熱交換器
出口側の排ガス温度は、蓄熱媒体の熱容量及び非蓄熱状
態から蓄熱状態への切替又はその逆の切替の設定時間に
よって任意に設定できるが、排ガス中のSO3含有量に
対応する酸露点以上を確保することが好ましい。
Therefore, the sensible heat of the high-temperature oxidizing exhaust gas from the heating area 1a in the furnace body 1 is temporarily absorbed by the heat storage medium of the heat storage type heat exchanger, and the heat absorbed by the heat storage medium is fresh. As a result of being recovered by the air and being returned to the furnace, the heat loss can be reduced by lowering the outlet temperature of the regenerative heat exchanger of the exhaust gas. The temperature of the exhaust gas at the outlet of the heat storage type heat exchanger can be arbitrarily set depending on the heat capacity of the heat storage medium and the set time of switching from the non-heat storage state to the heat storage state or vice versa, but corresponds to the SO3 content in the exhaust gas. It is preferable to secure the acid dew point or higher.

【0026】他方、炉本体1内の排ガスは、煙道11部
で合流し、排ガス中の未燃焼ガスを加熱領域1aの余剰
酸素で燃焼させつつ排ガス処理系の吸引ファン10の作
用により煙道11を経て炉外へ排気される。
On the other hand, the exhaust gas in the furnace body 1 joins in the flue 11 part, and the unburned gas in the exhaust gas is burned by the excess oxygen in the heating area 1a, while the flue gas is operated by the suction fan 10 of the exhaust gas treatment system. The gas is exhausted out of the furnace through 11.

【0027】前記煙道11を出た1200〜1450℃
の高温排ガスは、前述の如く、その一部が排ガス希釈系
排気ライン24の低温排ガスと混合されて750〜85
0℃の中温排ガスに降温した後、熱交換器26に送ら
れ、そこでブロア27からの空気が600〜650℃に
予熱され、排ガス自体は400℃前後に降温した後、排
気系主排気ライン23の低温排ガスと混合され、排ガス
処理設備13の要求する温度にまで降温した後、排ガス
処理設備13に送られる。
1200 to 1450 ° C. after leaving the flue 11
Is mixed with the low temperature exhaust gas of the exhaust gas dilution system exhaust line 24 as described above,
After the temperature of the exhaust gas is reduced to 0 ° C., the exhaust gas is sent to the heat exchanger 26 where the air from the blower 27 is preheated to 600 to 650 ° C., and the exhaust gas itself cools to around 400 ° C. After being cooled to a temperature required by the exhaust gas treatment facility 13, the mixture is sent to the exhaust gas treatment facility 13.

【0028】従って、本発明に係る炉では、高温排ガス
の顕熱は、その大部分が回収され、一次燃焼用空気及び
二次燃焼用空気及びペレット乾燥用空気の加熱用熱とし
て有効利用される。因みに、本発明に係る前記構成の還
元鉄製造用ロータリーハース型炉と、約600〜650
℃の予熱空気を一次空気及び二次空気として供給する従
来の還元鉄製造用ロータリーハース型炉とを用いてそれ
ぞれペレットを加熱した際の温度変化を測定した結果は
図2に示す通りである。図中、曲線Aは本発明に係る炉
内の加熱領域におけるガス温度の変化を、曲線Bは該加
熱領域でのペレットの温度変化を、曲線Cは従来炉内の
加熱領域でのペレットの温度変化をそれぞれ示す。
Therefore, in the furnace according to the present invention, most of the sensible heat of the high-temperature exhaust gas is recovered, and is effectively used as heat for heating the primary combustion air, the secondary combustion air, and the pellet drying air. . Incidentally, a rotary hearth furnace for producing reduced iron having the above-described configuration according to the present invention, and about 600 to 650
FIG. 2 shows the results of measuring the temperature change when the pellets were heated using a conventional rotary hearth furnace for producing reduced iron, in which preheated air of ° C. was supplied as primary air and secondary air. In the figure, a curve A represents a change in gas temperature in a heating area in the furnace according to the present invention, a curve B represents a change in the temperature of the pellet in the heating area, and a curve C represents the temperature of the pellet in the heating area in the conventional furnace. The changes are shown respectively.

【0029】図から明らかなように、本発明では加熱領
域に蓄熱式熱交換器で約1200℃に加熱して二次燃焼
用空気を供給しているため、常温のペレットが1200
℃に昇温するまでの加熱時間は約1.15分と、従来の
1.5分に比べて約15%短縮している。従って、従来
の炉では加熱開始から還元が完全に完了するまでに8〜
10分を要していたが、加熱時間が短縮されるため、そ
の分だけ所要時間を3.5〜4.4%短縮できる。
As is apparent from the figure, in the present invention, since the secondary combustion air is supplied to the heating area by heating to about 1200 ° C. by the regenerative heat exchanger, the pellets at normal temperature are 1200
The heating time until the temperature rises to about 1.15 minutes is about 15% shorter than the conventional 1.5 minutes. Therefore, in the conventional furnace, from the start of heating until the complete reduction is completed, 8 to
Although 10 minutes were required, the heating time is shortened, so that the required time can be shortened by 3.5 to 4.4%.

【0030】前記実施態様では、加熱領域に複数の蓄熱
式熱交換器を設けた例について説明したが、還元領域に
複数対の蓄熱式熱交換器を設けても良い。この場合、各
蓄熱式熱交換器と炉本体との間に後燃焼室を設け、そこ
に空気を供給してアフターバーンさせた後、蓄熱式熱交
換器に高温排ガスを供給するのが望ましい。このように
すると、還元領域からの排ガスに鉄分粉塵が含まれてい
ても、後燃焼室で排ガス中の未燃焼成分が燃焼すると同
時に、鉄分粉塵が酸化し蓄熱媒体に溶融付着するのを防
止でき、蓄熱媒体が閉塞する恐れはない。また、煙道1
1からの高温排ガスの一部は、吸引ファン33の作用に
より混合器32に吸引され、そこで乾燥用空気が直接添
加され、ペレットを乾燥するのに適した温度、例えば、
380℃にまで希釈降温された後、ドライヤ8に供給し
てペレットを乾燥させる。ドライヤ8の出口ガスは冷却
用空気として冷却領域に供給するのが好ましい。
In the above embodiment, an example in which a plurality of regenerative heat exchangers are provided in the heating area has been described. However, a plurality of pairs of regenerative heat exchangers may be provided in the reducing area. In this case, it is desirable to provide a post-combustion chamber between each regenerative heat exchanger and the furnace main body, supply air to the post-combustion chamber, perform afterburning, and then supply high-temperature exhaust gas to the regenerative heat exchanger. In this way, even if the exhaust gas from the reduction region contains iron dust, it is possible to prevent the unburned components in the exhaust gas from burning in the post-combustion chamber, and at the same time, prevent the iron dust from being oxidized and fused to the heat storage medium. In addition, there is no possibility that the heat storage medium is blocked. In addition, flue 1
A portion of the hot exhaust gas from 1 is drawn into the mixer 32 by the action of the suction fan 33, where drying air is added directly and at a temperature suitable for drying the pellets, for example,
After the temperature is reduced to 380 ° C., the pellets are supplied to the dryer 8 to dry the pellets. The outlet gas of the dryer 8 is preferably supplied to the cooling area as cooling air.

【0031】図3は本発明に係る還元鉄製造用ロータリ
ーハース型炉の他の実施態様を示し、給排気手段として
羽口を設ける代わりに、蓄熱式熱交換器を一体的に設け
る蓄熱式バーナとしたものである。
FIG. 3 shows another embodiment of the rotary hearth type furnace for producing reduced iron according to the present invention, in which a regenerative burner integrally provided with a regenerative heat exchanger instead of a tuyere as a supply / exhaust means. It is what it was.

【0032】前記加熱領域1A及び還元領域1bには、
炉本体1の内外両側壁にそれぞれその円周方向に所定間
隔を置いて複数対の蓄熱式バーナ(40A1、40B1)、
(40A2、40B2)、・・・・・・(40An、40Bn
が配設されている。各蓄熱式バーナ(40An、40Bn
はそれぞれ一体的に構築された蓄熱式熱交換器(41
A1、41B1)、(41A2、41B2)・・・・・・(41
An、41Bn)を介して対の給排気ダクト(42A1、42
B1)、(42A2、42B2)、・・・・・・(42An、4
2Bn)に連通している。各対の給排気ダクトは、それぞ
れ開閉弁(VA1・・・・・・VAn、VC1・・・・・・V
Cn)を介して排ガス排出ライン17に、開閉弁(VB1
・・・・・VBn、VD1、VD2・・・・・・VDn)を介し
て空気供給ライン18にそれぞれ接続されている。ま
た、各蓄熱式バーナ(40A1・・・・・・40An、40
B1・・・・・・40Bn)は開閉弁(VEA1・・・・・・
VEAn、VEB1・・・・・・VEBn)を介して燃料供給ラ
イン4に接続されている。他の構成は図1のものと同じ
であるので、説明を省略してある。
In the heating area 1A and the reduction area 1b,
A plurality of pairs of regenerative burners (40A 1 , 40B 1 ) on the inner and outer side walls of the furnace body 1 at predetermined intervals in the circumferential direction thereof,
(40A 2 , 40B 2 ), ... (40A n , 40B n )
Are arranged. Each regenerative burner (40A n , 40B n )
Are regenerative heat exchangers (41
A 1 , 41B 1 ), (41A 2 , 41B 2 ) (41)
A n , 41B n ) and a pair of supply and exhaust ducts (42A 1 , 42A
B 1 ), (42A 2 , 42B 2 ),... (42A n , 4
2B n ). Each pair of supply / exhaust ducts has an on-off valve (VA 1 ... VA n , VC 1.
C n ) and an on-off valve (VB 1.
· · · · · VB n, are connected to VD 1, VD 2 ······ VD n ) air supply line 18 via the. Moreover, each regenerative burner (40A 1 ... 40A n , 40
B 1 ······ 40Bn) is off valve (VEA 1 · · · · · ·
VEB n , VEB 1 ... VEB n ). The other configuration is the same as that of FIG. 1, and the description is omitted.

【0033】使用に際しては、各対の一方の蓄熱式バー
ナが蓄熱式熱交換器で熱交換した高温空気で燃焼してい
る間、他方の蓄熱式バーナは炉内の高温排ガスを排出す
る排気口の役割をし、その高温排ガスの顕熱は当該蓄熱
式バーナの蓄熱式熱交換器内部の蓄熱媒体に蓄積され
る。即ち、A系列のバーナ40A1、40A2、・・・・・
・40Anが燃焼中で、B系列のバーナ40B1、40B2
・・・・・40Bnが排気中であると仮定し、一対の蓄熱
式バーナ40A1、40B1を例にして説明すると、燃料供
給ライン4の開閉弁はVEA1が開、VEB1が閉で、空気供
給ライン17の開閉弁はVB1が開、VD1が閉で、排ガス
排出ライン17の開閉弁はVA1が閉、VC1が開の状態に
ある。従って、蓄熱式バーナ40A1には開閉弁VEA1
介して燃料ガスが供給されると共に、開閉弁VB1及び蓄
熱式熱交換器41A1を介して空気が供給される。蓄熱
式熱交換器41A1に供給された空気は、その内部の蓄
熱状態にある蓄熱媒体と熱交換して炉温に近い温度にま
で加熱されて供給され、そこで燃料ガスを燃焼させて炉
内を加熱する。この時、蓄熱式バーナ40A1に供給され
る空気量は、燃焼に必要な理論量と炉内で発生する可燃
性ガス成分を燃焼させるのに必要な空気量の総和であ
る。
In use, while one regenerative burner of each pair is burning with the high-temperature air heat-exchanged in the regenerative heat exchanger, the other regenerative burner is an exhaust port for discharging high-temperature exhaust gas in the furnace. The sensible heat of the high-temperature exhaust gas is stored in the heat storage medium inside the heat storage heat exchanger of the heat storage burner. That is, the burners 40A 1 , 40A 2 ,...
· 40A n is in the combustion, the burner 40B 1 of the B series, 40B 2 ·
· · · · · 40B n is assumed to be in the exhaust, will be described with a pair of regenerative burners 40A 1, 40B 1 as an example, on-off valve in the fuel supply line 4 VEA 1 is opened, VEB 1 is closed in-off valve of the air supply line 17 VB 1 is opened, VD 1 is in the closed-off valve of the exhaust gas discharge line 17 VA 1 is closed, VC 1 is in the open state. Accordingly, the fuel gas is supplied via an on-off valve VEA 1 in regenerative burners 40A 1, air is supplied via an on-off valve VB 1 and regenerative heat exchangers 41A 1. The air supplied to the regenerative heat exchanger 41A 1, the inside of the heat storage state is the heat storage medium and exchanging heat supplied is heated to a temperature close to the furnace temperature, where the fuel gas is burned in the furnace Heat. At this time, the amount of air supplied to the regenerative burner 40A 1 is the sum of the amount of air necessary for burning a combustible gas component generated in the stoichiometric amount and the furnace required for combustion.

【0034】この時、前記蓄熱式バーナ40A1と対の他
方の蓄熱式バーナ40B1は、吸引ファン22の作用によ
り炉内から高温排ガスを吸引し、この高温排ガスは蓄熱
式熱交換器41B1を通過する過程で非蓄熱状態にある蓄
熱媒体に熱を奪われ、200℃以下の低温排ガスとなっ
て開閉弁VC1を介して排ガス排出ライン17に排気され
る。
[0034] At this time, the other regenerative burner 40B 1 of the regenerative burner 40A 1 and pair hot exhaust gas sucked from the furnace by the action of the suction fan 22, the high-temperature exhaust gas regenerative heat exchanger 41B 1 deprived of heat in the heat storage medium in a non-heat storage state in the process of passing through the, is exhausted to the exhaust gas discharge line 17 via an on-off valve VC 1 becomes 200 ° C. or less of the low temperature exhaust gas.

【0035】設定時間が経過すると、燃料供給ライン4
の開閉弁、空気供給ライン18の開閉弁及び排ガス排出
ライン17の開閉弁が切り替えられ、燃焼と排気が切り
替えられ、前記動作が行われる。従って、本実施例の場
合も、図1の実施態様の場合と同様に、炉本体1内の加
熱領域1aからの高温酸化性排ガスの顕熱は、蓄熱式熱
交換器の蓄熱媒体で一旦吸収された後、該蓄熱媒体に吸
収された熱が新鮮な空気によって回収され炉内に戻され
る結果、熱損失を著しく低減することができる。
When the set time has elapsed, the fuel supply line 4
The on / off valve of the air supply line 18 and the on / off valve of the exhaust gas discharge line 17 are switched to switch between combustion and exhaust, and the above operation is performed. Therefore, in the present embodiment, as in the embodiment of FIG. 1, the sensible heat of the high-temperature oxidizing exhaust gas from the heating area 1a in the furnace main body 1 is temporarily absorbed by the heat storage medium of the heat storage type heat exchanger. After that, the heat absorbed by the heat storage medium is recovered by fresh air and returned to the furnace, so that heat loss can be significantly reduced.

【0036】[0036]

【発明の効果】以上説明したように、本発明は、微粉鉄
鉱石や製鉄ダストなどの酸化鉄含有原料から還元鉄を製
造するロータリーハース型炉において、前記炉の酸化性
雰囲気領域あるいは還元性雰囲気領域に複数対の給排気
手段を介して複数対の蓄熱式熱交換器を設け、各対の非
蓄熱状態の蓄熱式熱交換器を通して前記炉内の高温排ガ
スを排気する一方、該対の蓄熱状態の蓄熱式熱交換器を
通して可燃性雰囲気を燃焼させる空気を炉内に供給する
ことを所定時間毎に交互に切り換える構成としたので、
次のような優れた効果が得られる。
As described above, the present invention relates to a rotary hearth type furnace for producing reduced iron from iron oxide-containing raw materials such as fine iron ore and ironmaking dust. A plurality of pairs of regenerative heat exchangers are provided in the region through a plurality of pairs of supply / exhaust means, and high-temperature exhaust gas in the furnace is exhausted through each pair of regenerative heat exchangers in a non-thermal storage state, while the heat storage of the pair is performed. Since the air for burning the flammable atmosphere through the regenerative heat exchanger in the state is supplied to the furnace alternately at predetermined time intervals,
The following excellent effects can be obtained.

【0037】(1)酸化性雰囲気領域あるいは還元性雰囲
気領域の高温排ガスの顕熱は蓄熱式熱交換器を通過する
際に大部分を蓄熱媒体に吸収され、その熱は蓄熱媒体に
供給される空気によって吸収され、1100〜1250
℃の高温空気となって炉内に供給されるため、酸化性雰
囲気領域あるいは還元性雰囲気領域の高温排ガスが持つ
顕熱の90%以上を回収でき、また、排出ライン中の排
ガスの残存顕熱も排ガス処理設備で有効利用できるの
で、熱損失を著しく低減することができる。
(1) The sensible heat of the high-temperature exhaust gas in the oxidizing atmosphere region or the reducing atmosphere region is mostly absorbed by the heat storage medium when passing through the heat storage type heat exchanger, and the heat is supplied to the heat storage medium. Absorbed by air, 1100-1250
℃ high-temperature air is supplied into the furnace, so that more than 90% of the sensible heat of the high-temperature exhaust gas in the oxidizing atmosphere region or the reducing atmosphere region can be recovered, and the residual sensible heat of the exhaust gas in the discharge line Can also be effectively used in the exhaust gas treatment equipment, so that heat loss can be significantly reduced.

【0038】(2)加熱領域に供給される空気は炉内温度
とほぼ同じであるので、炉内温度を設定温度に維持する
ために必要な熱量は加熱時に発生する可燃性ガス成分の
燃焼熱だけで補えるため、補助燃料費を著しく削減する
ことができる。
(2) Since the air supplied to the heating area is almost the same as the furnace temperature, the amount of heat required to maintain the furnace temperature at the set temperature is the combustion heat of the combustible gas component generated during heating. The cost of supplementary fuel can be significantly reduced.

【0039】(3)蓄熱式熱交換器で約1200℃に加熱
して二次燃焼用空気を供給するため、加熱時間の短縮が
できる。
(3) Since the secondary combustion air is supplied by heating to about 1200 ° C. in the regenerative heat exchanger, the heating time can be shortened.

【0040】(4)加熱領域と同様に、還元領域に蓄熱式
熱交換器を設け、これを所定時間毎に切替えて使用する
ことにより加熱領域からの熱損失をも低減できる。
(4) As in the case of the heating zone, by providing a regenerative heat exchanger in the reduction zone and using it by switching every predetermined time, the heat loss from the heating zone can be reduced.

【0041】(5)加熱領域あるいは還元領域から排出さ
れる排ガスの一部を前記排気ダクトからの低温排ガスで
希釈降温させて燃焼空気予熱用熱交換器の熱源と使用す
る一方、残余の排ガスに空気を直接混合してペレットド
ライヤの乾燥用空気として使用しているため、煙道から
の排ガスの顕熱をほぼ100%利用にすることができ
る。
(5) A part of the exhaust gas discharged from the heating area or the reduction area is diluted and cooled with low-temperature exhaust gas from the exhaust duct to be used as a heat source for a heat exchanger for preheating combustion air, while the remaining exhaust gas is reduced. Since the air is directly mixed and used as drying air for the pellet dryer, almost 100% of the sensible heat of the exhaust gas from the flue can be used.

【0042】(6)煙道からの排ガスの冷却のため従来必
要であった水噴霧装置が不要となり、しかも、高温にさ
らされる機器は乾燥空気供給ラインのブロア(400℃
前後)だけであるので、設備の損傷によりリスクを著し
く低減することができる。
(6) For cooling the exhaust gas from the flue, a water spraying device, which was conventionally required, becomes unnecessary, and the equipment exposed to a high temperature requires a dry air supply line blower (400 ° C.).
(Before and after), the risk due to equipment damage can be significantly reduced.

【0043】(7)動力を要する機器はブロアや吸引ファ
ンだけであり、設備のランニングコストを著しく低減で
きる。
(7) The only equipment requiring power is a blower or suction fan, and the running cost of the equipment can be significantly reduced.

【0044】(8)空気予熱用熱交換器は、蓄熱式熱交換
器からの低温排ガスとの混合比を調整することにより煙
道からの排ガス温度を適切に設定できるため、高度の耐
熱性を要求されず、しかも、排ガス冷却用の水噴霧装置
を必要としないので、排ガス総量を増加させることがな
く、設備全体を単純化でき、設備費及び保守点検費を削
減することができる。
(8) The heat exchanger for preheating air can appropriately set the temperature of the exhaust gas from the stack by adjusting the mixing ratio with the low-temperature exhaust gas from the regenerative heat exchanger. Since it is not required and does not require a water spray device for cooling the exhaust gas, it is possible to simplify the entire equipment without reducing the total amount of the exhaust gas, and to reduce the equipment cost and the maintenance and inspection cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態を示す還元鉄製造用ロー
タリーハース型炉の説明図
FIG. 1 is an explanatory view of a rotary hearth furnace for producing reduced iron showing one embodiment of the present invention.

【図2】 本発明及び従来例での炉内加熱領域における
ペレットの温度変化を示す図
FIG. 2 is a diagram showing a temperature change of a pellet in a furnace heating area according to the present invention and a conventional example.

【図3】 本発明の他の実施形態を示す還元鉄製造用ロ
ータリーハース型炉の説明図
FIG. 3 is an explanatory view of a rotary hearth furnace for producing reduced iron according to another embodiment of the present invention.

【図4】 従来の還元鉄製造用ロータリーハース型炉の
説明図
FIG. 4 is an explanatory view of a conventional rotary hearth furnace for producing reduced iron.

【符号の説明】[Explanation of symbols]

1: 炉本体 1a: 酸化性雰囲気領域(加熱領域) 1b: 還元性雰囲気領域(還元領域) 1c: 冷却領域 11: 煙道 9: ドライヤ 20a1、20a2、20an: 蓄熱式熱交換器 20b1、20b2、20bn: 蓄熱式熱交換器 21a1、21b1: 排気ダクト 23: 排気系主排気ライン 24: 排ガス希釈系排気ライン 25: 空気予熱用排ガスライン 26: 熱交換器 V1、V2、V3、V4:開閉弁 30: 排気ダクト 31: 乾燥用空気供給ライン 32: 混合器 40A1、・・・・・・40An: 蓄熱式バーナ 40B1、・・・・・・40Bn: 蓄熱式バーナ 41A1、・・・・・・41An: 蓄熱式熱交換器 41B1、・・・・・・41Bn: 蓄熱式熱交換器1: Furnace body 1a: Oxidizing atmosphere area (heating area) 1b: Reducing atmosphere area (reducing area) 1c: Cooling area 11: Flue 9: Dryer 20a1, 20a2, 20an: Regenerative heat exchanger 20b1, 20b2, 20bn: regenerative heat exchanger 21a1, 21b1: exhaust duct 23: exhaust system main exhaust line 24: exhaust gas dilution system exhaust line 25: exhaust gas line for preheating air 26: heat exchanger V1, V2, V3, V4: open / close valve 30 : Exhaust duct 31: Drying air supply line 32: Mixer 40A 1 ,... 40A n : Regenerative burner 40B 1 ,... 40B n : Regenerative burner 41A 1 ,. ... 41A n : regenerative heat exchanger 41B 1 , ... 41B n : regenerative heat exchanger

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸化鉄含有原料を還元して還元鉄を製造
するロータリーハース型炉において、前記炉の酸化性雰
囲気領域及び/又は還元性雰囲気領域に複数対の給排気
手段と当該給排気手段に連通する複数対の蓄熱式熱交換
器を設け、各対の非蓄熱状態の蓄熱式熱交換器を通して
炉内高温排ガスを排気する一方、当該対の蓄熱状態の蓄
熱式熱交換器を通して前記炉内に炉内可燃性成分を燃焼
させる空気を供給する操作を所定時間毎に交互に切り換
えることを特徴とする還元鉄製造用ロータリーハース型
炉。
1. A rotary hearth furnace for producing reduced iron by reducing an iron oxide-containing raw material, wherein a plurality of pairs of supply / exhaust means and said supply / exhaust means are provided in an oxidizing atmosphere region and / or a reducing atmosphere region of the furnace. A plurality of pairs of regenerative heat exchangers communicating with each other, and exhausting the high-temperature exhaust gas in the furnace through each pair of regenerative heat exchangers in a non-thermal storage state, while the furnace passes through the pair of regenerative heat exchangers in a thermal storage state. A rotary hearth furnace for producing reduced iron, wherein an operation of supplying air for burning combustible components in the furnace is alternately switched at predetermined intervals.
【請求項2】 前記給排気手段から排出された炉内高温
排ガス中に含まれる可燃性成分を空気で燃焼させて酸化
性排ガスにした後、蓄熱式熱交換器に供給することを特
徴とする請求項1記載の還元鉄製造用ロータリーハース
型炉。
2. The method according to claim 1, wherein a combustible component contained in the in-furnace high-temperature exhaust gas discharged from the supply / exhaust means is burned with air to form an oxidizing exhaust gas and then supplied to a regenerative heat exchanger. The rotary hearth furnace according to claim 1 for producing reduced iron.
【請求項3】 前記炉の酸化性雰囲気領域あるいは還元
性雰囲気領域から炉内排ガスを排気すると共に、この排
ガスを空気で希釈降温させた後、ドライヤへ供給するこ
とを特徴とする請求項1又は2記載の還元鉄製造用ロー
タリーハース型炉。
3. The furnace according to claim 1, wherein exhaust gas in the furnace is exhausted from an oxidizing atmosphere region or a reducing atmosphere region of the furnace, and the exhaust gas is diluted with air and cooled, and then supplied to a dryer. 2. The rotary hearth furnace for producing reduced iron according to 2.
【請求項4】 前記炉の酸化性雰囲気領域あるいは還元
性雰囲気領域から排出される炉内排ガスを蓄熱式熱交換
器を通過した低温排ガスで希釈降温して燃焼空気予熱用
熱交換器に供給することを特徴とする請求項3記載の還
元鉄製造用ロータリーハース型炉。
4. The furnace exhaust gas discharged from the oxidizing atmosphere region or the reducing atmosphere region of the furnace is diluted and cooled by low-temperature exhaust gas passing through a regenerative heat exchanger, and is supplied to a heat exchanger for preheating combustion air. The rotary hearth furnace for producing reduced iron according to claim 3, characterized in that:
JP32508698A 1997-11-17 1998-11-16 Method for producing reduced iron using a rotary hearth furnace Expired - Fee Related JP3796058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32508698A JP3796058B2 (en) 1997-11-17 1998-11-16 Method for producing reduced iron using a rotary hearth furnace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-314977 1997-11-17
JP31497797 1997-11-17
JP32508698A JP3796058B2 (en) 1997-11-17 1998-11-16 Method for producing reduced iron using a rotary hearth furnace

Publications (2)

Publication Number Publication Date
JPH11222617A true JPH11222617A (en) 1999-08-17
JP3796058B2 JP3796058B2 (en) 2006-07-12

Family

ID=26568136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32508698A Expired - Fee Related JP3796058B2 (en) 1997-11-17 1998-11-16 Method for producing reduced iron using a rotary hearth furnace

Country Status (1)

Country Link
JP (1) JP3796058B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096215A3 (en) * 1999-10-15 2001-05-09 Kabushiki Kaisha Kobe Seiko Sho Apparatus and method for producing metal through reduction
CN101893387A (en) * 2010-07-20 2010-11-24 中冶赛迪工程技术股份有限公司 Process for processing smoke
CN109387076A (en) * 2017-08-09 2019-02-26 中外炉工业株式会社 Rotary hearth furnace and its remodeling method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096215A3 (en) * 1999-10-15 2001-05-09 Kabushiki Kaisha Kobe Seiko Sho Apparatus and method for producing metal through reduction
US6368379B1 (en) 1999-10-15 2002-04-09 Kobe Steel, Ltd. Apparatus and method for producing reduced metal
CN101893387A (en) * 2010-07-20 2010-11-24 中冶赛迪工程技术股份有限公司 Process for processing smoke
CN109387076A (en) * 2017-08-09 2019-02-26 中外炉工业株式会社 Rotary hearth furnace and its remodeling method
CN109387076B (en) * 2017-08-09 2021-10-22 中外炉工业株式会社 Rotary hearth furnace and modification method thereof

Also Published As

Publication number Publication date
JP3796058B2 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
CN101253367B (en) Method of pre-heating fuel and comburent for oxy-burners, using combustion air pre-heating installations
CN105352314B (en) A kind of tunnel cave for being used to smelt
JP3404516B2 (en) Firing control device and firing control method
KR100392807B1 (en) Manufacturing apparatus for reduced iron
CN110451831B (en) Building gypsum powder calcining process and device
JP3796058B2 (en) Method for producing reduced iron using a rotary hearth furnace
CN108267009B (en) Hot air system of chain grate machine
CN205228127U (en) A tunnel cave for smelt
JP2001272180A (en) Heat exchanger
BR0004218A (en) Process for drying compacts and apparatus for producing reduced iron
CA1080211A (en) Method for operating a hot blast stove
JPS64140B2 (en)
JPH11239862A (en) Method for drying and heating ladle and device therefor
JP3044286B2 (en) Continuous annealing furnace
JP3877443B2 (en) Melting equipment
CN215637175U (en) Dual-purpose burner
CN213335593U (en) Steam treatment system for shaft furnace burden gallery
JPS59123707A (en) Utilizing method of gas formed by reaction in melt reducing furnace
CN116465219A (en) Device and method for producing pellets by adopting low-calorific-value gas
JPH0593218A (en) Method for controlling combustion of hot stove
CN117167970A (en) High-temperature preheating device for coal gas
JPS62240706A (en) Recovery method for waste gas heat in duplex converter
JP2002003939A (en) Method for operating direct-firing heating furnace and direct-firing heating furnace
PL43224B1 (en)
CN117870370A (en) Method for preparing novel furnace burden by adopting ultra-thick material layer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20060124

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060323

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Effective date: 20060414

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090421

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees