JPH11222601A - Surface treating method for hydrogen storage alloy powder - Google Patents

Surface treating method for hydrogen storage alloy powder

Info

Publication number
JPH11222601A
JPH11222601A JP10025522A JP2552298A JPH11222601A JP H11222601 A JPH11222601 A JP H11222601A JP 10025522 A JP10025522 A JP 10025522A JP 2552298 A JP2552298 A JP 2552298A JP H11222601 A JPH11222601 A JP H11222601A
Authority
JP
Japan
Prior art keywords
alloy powder
hydrogen storage
nickel
storage alloy
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10025522A
Other languages
Japanese (ja)
Inventor
Kyoichi Kinoshita
恭一 木下
Mitsuharu Muta
光治 牟田
Shinichi Towata
真一 砥綿
Yutaka Oya
豊 大矢
Shunsuke Yamakawa
俊輔 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP10025522A priority Critical patent/JPH11222601A/en
Publication of JPH11222601A publication Critical patent/JPH11222601A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a surface treating method for a hydrogen storage alloy capable obtaining an optimum amt. of nickel-enriched layer in spite of the variation of process conditions in a nickel-enriched layer forming treatment. SOLUTION: This surface treating method for hydrogen storage alloy powder is the one executing nickel-enriched layer forming treatment in such a manner that hydrogen storage alloy powder contg. nickel is treated to form a nickel- enriched layer on the surface of the hydrogen storage powder, in which the magnetic properties of the hydrogen storage alloy powder varying in accordance with the change of the surface properties of the hydrogen storage alloy powder in the process of the nickel-enriched layer forming treatment are detected, and the treatment is finished at the point of time when the magnetic properties reach the prescribed value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金粉末
の表面処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for surface treating a hydrogen storage alloy powder.

【0002】[0002]

【従来の技術】常温・常圧付近で水素の吸蔵・放出が可
能な水素吸蔵合金としてLaNi5 系、TiーFe系、
Zr合金ラーベス相系などがあり、特に、LaNi5
MmNi5 (Mm:ミッシュメタルーランタン、セリウ
ムなど希土類元素の混合物)を代表とするAB5 型、Z
rV0.4 Ni1.6などTiZrVNi系ラーベス相合金
を代表とするAB2 型の水素吸蔵合金は室温での平衡圧
が1気圧前後であり、可逆的に水素の吸蔵・放出が可能
であるとともに、アルカリ性水溶液に対しても比較的長
い耐触性を有することから二次電池の負極活物質として
使用される他、ケミカルヒートポンプや水素タンクとし
て用いられる。
2. Description of the Related Art LaNi 5 -based, Ti-Fe-based, and hydrogen-absorbing alloys capable of absorbing and releasing hydrogen at around normal temperature and pressure.
Include Zr alloy Laves phase system, in particular, LaNi 5 or MmNi 5 (Mm: misch metal over lanthanum, mixtures of rare earth elements such as cerium) representative to AB 5 type, Z
rV 0.4 Ni 1.6 TiZrVNi based Laves phase alloy representatives to AB 2 type hydrogen storage alloy, etc. is equilibrium pressure 1 atm around the room temperature, as well as a possible reversibly absorbing and desorbing hydrogen, an alkaline aqueous solution Because of its relatively long contact resistance, it is used as a negative electrode active material for secondary batteries, and is also used as a chemical heat pump or hydrogen tank.

【0003】しかし、このような水素吸蔵合金表面は空
気に触れると容易に酸化物層を形成し、この酸化物層
が、水素の吸蔵・放出を阻害するという問題があった。
また、水素吸蔵合金粉末で構成した負極を用いるニッケ
ル水素化物電池では、水素吸蔵合金粉末表面に水素解離
触媒としてのNi層が生じていない使用初期における電
池特性、すなわち初期活性特性が悪かった。
However, there has been a problem that such a hydrogen storage alloy surface easily forms an oxide layer when exposed to air, and this oxide layer hinders the storage and release of hydrogen.
In addition, in the nickel hydride battery using the negative electrode composed of the hydrogen storage alloy powder, the battery characteristics in the early stage of use in which no Ni layer as a hydrogen dissociation catalyst was formed on the surface of the hydrogen storage alloy powder, that is, the initial activation characteristics were poor.

【0004】この問題を改善するために、特開平5ー1
3077、特開平4ー137361では、合金粉末を高
温のアルカリ水溶液に浸漬して水素吸蔵合金粉末表面か
ら酸化物層やミッシュメタル、Co,Al,Mnを除去
し、Niのみを残してNi触媒層を形成することを提案
している。その他、水素吸蔵合金粉末を、酸性水溶液に
浸漬したり、水素ガスや水蒸気で処理して同様の効果を
追求するという提案がなされている。
In order to solve this problem, Japanese Patent Laid-Open No. 5-1 has been proposed.
3077 and JP-A-4-137361, an alloy powder is immersed in a high-temperature alkaline aqueous solution to remove an oxide layer, a misch metal, Co, Al, and Mn from the surface of a hydrogen storage alloy powder and leave a Ni catalyst layer while leaving only Ni. It is proposed to form In addition, proposals have been made to immerse the hydrogen storage alloy powder in an acidic aqueous solution or to treat it with hydrogen gas or water vapor to pursue a similar effect.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た種々の処理(以下、ニッケルリッチ層形成処理ともい
う)を行う場合、処理のコントロールが容易ではなかっ
た。すなわち、処理前の原材料である水素吸蔵合金粉末
の酸化程度や組成などは当然、それまでの履歴によるば
らつきをもち、また温度や溶液濃度及びそれらの時間変
化などのニッケルリッチ層形成処理プロセスの条件も種
々ばらつくためである。たとえば、溶液濃度の低下や反
応に有害な成分の濃度の増大はこのニッケルリッチ層形
成処理を遅延させる傾向をもち、温度の上昇は逆にそれ
を促進させる傾向をもつが、実際にはそれらを完全に一
定にコントロールすることは非常に困難である。
However, when performing the above-described various processes (hereinafter, also referred to as a nickel-rich layer forming process), it is not easy to control the processes. That is, the degree of oxidation and the composition of the hydrogen storage alloy powder, which is the raw material before the treatment, naturally have variations due to the history up to that point, and the conditions of the nickel-rich layer forming process such as the temperature, the solution concentration, and their temporal changes. This is also due to various variations. For example, a decrease in the solution concentration or an increase in the concentration of a component harmful to the reaction tends to delay the nickel-rich layer forming process, and an increase in the temperature tends to accelerate it. It is very difficult to control completely constant.

【0006】これらの製造履歴のばらつきは、水素吸蔵
合金粉末表面からの酸化物の除去やニッケルリッチ層の
形成の程度を変動させて、水素吸蔵合金粉末の水素吸
蔵、放出特性の変動や水素吸蔵合金負極の電極抵抗の変
動を招く。更に説明すれば、これらのニッケルリッチ層
形成処理は長時間行ってニッケルリッチ層の割合を無制
限に増大すればよいというものではなく、これらの処理
を過度に行うと、水素吸蔵合金粉末中の水素吸蔵、放出
に有効な部分の割合が低下してしまい、更にあまりにも
厚く形成されたニッケルリッチ層は外部と上記有効部分
との間の水素吸蔵合金粉末の水素移動を逆に妨げてしま
う。
[0006] These variations in the manufacturing history vary the degree of removal of oxides from the surface of the hydrogen-absorbing alloy powder and the degree of formation of the nickel-rich layer. This causes a change in the electrode resistance of the alloy negative electrode. More specifically, these nickel-rich layer forming treatments do not have to be performed for a long time to increase the ratio of the nickel-rich layer without limit, but if these treatments are performed excessively, the hydrogen in the hydrogen-absorbing alloy powder may be reduced. The proportion of the portion effective for occlusion and release is reduced, and the nickel-rich layer formed too thick conversely hinders hydrogen transfer of the hydrogen storage alloy powder between the outside and the effective portion.

【0007】本発明は上記問題に鑑みなされたものであ
り、ニッケルリッチ層形成処理におけるプロセス条件の
変動にもかかわらず最適な量のニッケルリッチ層を得る
ことができる水素吸蔵合金粉末の表面処理方法を提供す
ることをその解決すべき課題としている。また、従来、
ニッケルリッチ層形成処理により水素吸蔵合金負極の初
期活性特性が改善されることは知られていたが、上述し
たようにニッケルリッチ層の形成が、各種製造条件によ
りばらつくために、その最適な範囲の決定が困難であっ
た。
The present invention has been made in view of the above-mentioned problems, and a method of surface treating a hydrogen-absorbing alloy powder capable of obtaining an optimal amount of a nickel-rich layer despite fluctuations in process conditions in the nickel-rich layer forming treatment. Is the issue to be solved. Conventionally,
It has been known that the nickel-rich layer forming treatment improves the initial activation characteristics of the hydrogen storage alloy negative electrode. However, as described above, the formation of the nickel-rich layer varies depending on various manufacturing conditions. The decision was difficult.

【0008】本発明は上記問題に鑑みなされたものであ
り、種々の製造条件の変化にもかかわらず、良好な特性
が得られる水素吸蔵合金粉末の表面処理方法を提供する
ことを、他の解決すべき課題としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is another object of the present invention to provide a method for surface treating a hydrogen storage alloy powder capable of obtaining good properties despite various production conditions. It should be an issue to be done.

【0009】[0009]

【課題を解決するための手段】請求項1記載の水素吸蔵
合金粉末の表面処理方法によれば、ニッケルを含む水素
吸蔵合金粉末を水蒸気、水素ガス、酸、アルカリなどで
処理して前記水素吸蔵合金粉末の表面にニッケルリッチ
層を形成するニッケルリッチ層形成処理を行う。
According to the method for treating the surface of a hydrogen storage alloy powder according to the present invention, the hydrogen storage alloy powder containing nickel is treated with water vapor, hydrogen gas, acid, alkali or the like to store the hydrogen. A nickel-rich layer forming process for forming a nickel-rich layer on the surface of the alloy powder is performed.

【0010】このようなニッケルリッチ層形成処理によ
り形成されるニッケル単体は強磁性を有するので、水素
吸蔵合金粉末の磁気特性は次第に強磁性体の磁気特性に
近付く傾向を有する。そこで、本構成では、水素吸蔵合
金粉末の磁気特性をモニタしつつ、それが所定レベルと
なった時点で、ニッケルリッチ層形成処理を終了する。
このようにすれば、処理条件の変動に無関係に最適な量
のニッケルリッチ層を有し、その結果、水素吸蔵量をい
たずらに減少させることなく、良好な水素との優れた反
応活性をもつ水素吸蔵合金粉末を得ることができる。
Since nickel alone formed by such a nickel-rich layer forming process has ferromagnetism, the magnetic characteristics of the hydrogen storage alloy powder tend to gradually approach the magnetic characteristics of the ferromagnetic material. Therefore, in this configuration, while monitoring the magnetic characteristics of the hydrogen storage alloy powder, the nickel-rich layer forming process ends when the magnetic characteristics reach a predetermined level.
In this way, the hydrogen having an optimal amount of the nickel-rich layer regardless of the variation in the processing conditions, and as a result, having an excellent reaction activity with good hydrogen without unnecessarily reducing the hydrogen storage capacity. An occlusion alloy powder can be obtained.

【0011】請求項2記載の構成によれば請求項1記載
の水素吸蔵合金粉末の表面処理方法において更に、モニ
タすべき磁気特性として水素吸蔵合金粉末の磁化率を採
用する。このようにすれば、検出精度の向上に有効であ
る。請求項3記載の水素吸蔵合金粉末の表面処理方法に
よれば、ニッケルを含む水素吸蔵合金粉末を水蒸気、水
素ガス、酸、アルカリなどを用いて処理するニッケルリ
ッチ層形成処理を、水素吸蔵合金粉末の乾燥重量(g)
当たりの磁化率(emu)が0.3〜0.8となるまで
行う。
According to a second aspect of the present invention, in the method for treating a surface of a hydrogen storage alloy powder according to the first aspect, the magnetic susceptibility of the hydrogen storage alloy powder is further employed as a magnetic property to be monitored. This is effective in improving the detection accuracy. According to the surface treatment method for a hydrogen storage alloy powder according to the third aspect, the nickel-rich layer forming treatment for treating the hydrogen storage alloy powder containing nickel using steam, hydrogen gas, acid, alkali, or the like is performed by the hydrogen storage alloy powder. Dry weight of (g)
This is performed until the magnetic susceptibility (emu) per hit becomes 0.3 to 0.8.

【0012】このようにすれば、ニッケルリッチ層の過
度の形成による水素吸蔵合金粉末の水素吸蔵、放出能力
の減少を抑止しつつ、その水素反応活性を格段に向上す
ることができる。
In this way, it is possible to remarkably improve the hydrogen reaction activity of the hydrogen storage alloy powder while suppressing the decrease in the hydrogen storage and release capabilities of the hydrogen storage alloy powder due to the excessive formation of the nickel-rich layer.

【0013】[0013]

【発明の実施の形態】水素吸蔵合金粉末としてはニッケ
ルを含むものが用いられる。ニッケルリッチ層形成処理
は、表面に水素解離触媒としてのニッケルリッチ層を形
成する処理であればよい。強磁性体量の増加は、各種の
磁気特性ひいてはそれと関連する電気特性の変化を生じ
るので、水素吸蔵合金粉末の表面状態変化(ニッケルリ
ッチ層形成)に関連する磁気特性であれば、各種のもの
を採用することができる。更に説明すれば、水素吸蔵合
金粉末中の強磁性体量の変化は、それが一部を構成する
磁気回路の電圧、電流、周波数の変化として非接触に検
出することができ、あるいはこの磁気回路中の磁束密度
の変化として磁気センサにより検出することができる。
BEST MODE FOR CARRYING OUT THE INVENTION As a hydrogen storage alloy powder, a powder containing nickel is used. The nickel-rich layer forming process may be any process that forms a nickel-rich layer as a hydrogen dissociation catalyst on the surface. An increase in the amount of ferromagnetic material causes a change in various magnetic properties and, consequently, a change in electrical properties. Can be adopted. More specifically, the change in the amount of ferromagnetic material in the hydrogen storage alloy powder can be detected in a non-contact manner as a change in the voltage, current, and frequency of a magnetic circuit that forms a part of the magnetic circuit. The change in the magnetic flux density can be detected by a magnetic sensor.

【0014】検出すべき磁気特性の一例として、水素吸
蔵合金粉末の磁気特性は、処理中の水素吸蔵合金粉末を
囲むか、又は、上記水素吸蔵合金粉末中へ挿入される
か、又は、上記水素吸蔵合金粉末近傍に配設されるかし
たコイルへ所定の直流または交流電流を流したり、永久
磁石などで磁界Hを加え、この時の水素吸蔵合金粉末近
傍の磁束密度Bを磁気センサで検出し、このBとHとの
関係に基づいて磁気特性を検出することができる。たと
えば、強磁性体であるニッケルリッチ層が増加すれば磁
気抵抗が減少して磁気密度は増大するので、それを検出
すればニッケルリッチ層の形成量がわかる。
As an example of the magnetic properties to be detected, the magnetic properties of the hydrogen-absorbing alloy powder may be such that they surround the hydrogen-absorbing alloy powder being processed, are inserted into the hydrogen-absorbing alloy powder, or A predetermined DC or AC current is applied to the coil disposed near the storage alloy powder, or a magnetic field H is applied by a permanent magnet or the like, and the magnetic flux density B near the hydrogen storage alloy powder at this time is detected by a magnetic sensor. The magnetic characteristics can be detected based on the relationship between B and H. For example, as the ferromagnetic nickel-rich layer increases, the magnetic resistance decreases and the magnetic density increases. By detecting this, the amount of the nickel-rich layer formed can be determined.

【0015】また、上記コイルを用いて発振器を形成す
れば、ニッケルリッチ層の増加とともにこのコイルのイ
ンダクタンスが増大して発振器の発振周波数が低下する
ので、この発振周波数の値からニッケルリッチ層の形成
量を検出することができる。なお、この水素吸蔵合金粉
末を用いて水素吸蔵合金負極を作成する場合、増粘材と
しては、メーチルセルロース、カルボキシルメチルセル
ロースなどを採用することができ、結着材としては、ポ
リテトラフルオロエチレン(PTFE)、スチレンブタ
ジエン共重合体などを採用することができ、水素吸蔵合
金電極を用いた電池の電解液としては、KOH水溶液、
KOH、LiOH混合水溶液などを採用することがで
き、水素吸蔵合金負極の内部の集電体としては、発泡ニ
ッケル、パンチングメタルなどを採用することができ
る。
Further, if an oscillator is formed using the above coil, the inductance of the coil increases with the increase of the nickel-rich layer and the oscillation frequency of the oscillator decreases. The amount can be detected. When a hydrogen storage alloy negative electrode is prepared using this hydrogen storage alloy powder, methyl cellulose, carboxymethyl cellulose, or the like can be used as a thickener, and polytetrafluoroethylene ( PTFE), a styrene-butadiene copolymer, or the like can be employed. As an electrolyte for a battery using a hydrogen storage alloy electrode, a KOH aqueous solution,
A mixed aqueous solution of KOH and LiOH can be used, and as the current collector inside the hydrogen storage alloy negative electrode, foamed nickel, punching metal, or the like can be used.

【0016】[0016]

【実施例1】本実施例では酸性水溶液による表面処理方
法(ニッケルリッチ層形成処理)を飽和磁化率を検出し
つつ行った。処理前の水素吸蔵合金粉末としては、機械
粉砕して100メッシュ以下としたMmNi3.6 Co
0.7 Mn0.3 Al0.3 (La/Mm=0.6)粉末を用
いた。
Embodiment 1 In this embodiment, a surface treatment method (nickel-rich layer forming treatment) using an acidic aqueous solution was performed while detecting the saturation magnetic susceptibility. As the hydrogen storage alloy powder before the treatment, MmNi 3.6 Co was mechanically pulverized to 100 mesh or less.
0.7 Mn 0.3 Al 0.3 (La / Mm = 0.6) powder was used.

【0017】この水素吸蔵合金粉末を非磁性材料である
ガラス管に入れ、、PHが3.5〜4.5の酢酸水溶液
に浸漬し、このガラス管の外表面に振動試料型磁力計を
密着させて、溶液(正確には水素吸蔵合金粉末)の磁化
率を測定し、磁化率が0.5emu/gとなった時点で
処理を終了した。その後、ガラス管から粉末を取り出
し、蒸留水で洗浄し、真空乾燥して表面処理済み(活性
化処理済み)水素吸蔵合金粉末とした。
The hydrogen storage alloy powder is placed in a glass tube which is a non-magnetic material, immersed in an acetic acid aqueous solution having a pH of 3.5 to 4.5, and a vibrating sample magnetometer is adhered to the outer surface of the glass tube. Then, the magnetic susceptibility of the solution (more precisely, the hydrogen storage alloy powder) was measured. When the magnetic susceptibility became 0.5 emu / g, the process was terminated. Thereafter, the powder was taken out from the glass tube, washed with distilled water, and dried under vacuum to obtain a surface-treated (activated) hydrogen storage alloy powder.

【0018】参考までに、この振動試料型磁力計で計測
した磁化率が上記処理の時間経過で変化する様子を図1
に示し、更に処理時間を種々変更した場合の水素吸蔵合
金粉末を用いた水素吸蔵合金負極のMH合金利用率(放
電容量/理論放電容量)を図2に示す。ただし、水素吸
蔵合金負極の製造条件及びその充放電条件を以下に記載
する。
For reference, FIG. 1 shows how the magnetic susceptibility measured by the vibrating sample magnetometer changes with the lapse of time in the above processing.
FIG. 2 shows the MH alloy utilization rate (discharge capacity / theoretical discharge capacity) of the hydrogen storage alloy negative electrode using the hydrogen storage alloy powder when the treatment time was variously changed. However, the manufacturing conditions of the hydrogen storage alloy negative electrode and the charge / discharge conditions thereof are described below.

【0019】上記組成の水素吸蔵合金粉末を上記活性化
処理した後、2wt%のメチルセルロース水溶液を上記
水素吸蔵合金粉末に対してその30wt%混合してペー
ストを作製した。これを30×40mmの発泡ニッケル
集電体に塗り込み、乾燥させた後、プレスして厚さ約
0.6mmのペースト負極を得た。ニッケル正極として
45×60mmのペースト式ニッケル極を用いて次によ
うに負極規制のニッケルー金属水素化物二次電池を作製
した。負極1枚に対して正極2枚をセパレ−タを介して
重ね合わせて電池スタックを作製した。これに電解液で
ある6.8NのKOH+0.8NのLiOHの混合水溶
液を注入して電池を作製した。
After the hydrogen storage alloy powder having the above composition was activated, the paste was prepared by mixing a 2 wt% aqueous solution of methylcellulose with the hydrogen storage alloy powder at 30 wt%. This was applied to a 30 × 40 mm foamed nickel current collector, dried, and pressed to obtain a paste negative electrode having a thickness of about 0.6 mm. Using a paste nickel electrode of 45 × 60 mm as a nickel positive electrode, a nickel-metal hydride secondary battery regulated by a negative electrode was produced as follows. A battery stack was prepared by superimposing two positive electrodes on one negative electrode via a separator. A mixed aqueous solution of 6.8N KOH + 0.8N LiOH, which is an electrolytic solution, was injected into this to make a battery.

【0020】充放電は、0.2Cの充電を理論容量の1
20%まで行い、終止電圧0.8Vまでの放電を0.2
Cで行った。図1から、水素吸蔵合金粉末の乾燥重量
(g)当たりの磁化率(emu)が0.3〜0.8とな
る範囲で、優れた初期活性特性が選られることがわか
る。すなわち、0.3未満では、初期活性特性が悪く、
0.8を超えると、水素吸蔵合金粉末中のニッケルリッ
チ層の割合が増大するため、容量の絶対値が低下してし
まう。
For charging and discharging, a charge of 0.2 C is reduced to 1 of the theoretical capacity.
Discharge to a final voltage of 0.8 V
C. From FIG. 1, it can be seen that excellent initial activation characteristics are selected when the magnetic susceptibility (emu) per dry weight (g) of the hydrogen storage alloy powder is in the range of 0.3 to 0.8. That is, if it is less than 0.3, the initial activity characteristics are poor,
If it exceeds 0.8, the ratio of the nickel-rich layer in the hydrogen storage alloy powder increases, so that the absolute value of the capacity decreases.

【0021】結局、本実施例によれば、水素吸蔵合金粉
末の組成、製造条件、更にはニッケルリッチ層形成処理
条件の変動にもかかわらず、最適な量のニッケルリッチ
層を形成することができ、かつ、それを装置または処理
構成を複雑化することなく実現することができる。
After all, according to the present embodiment, it is possible to form an optimal amount of the nickel-rich layer irrespective of the variation of the composition of the hydrogen-absorbing alloy powder, the manufacturing conditions, and the processing conditions for forming the nickel-rich layer. And it can be realized without complicating the apparatus or the processing configuration.

【0022】[0022]

【実施例2】他のニッケルリッチ層形成量検出方式を図
3を参照して説明する。この実施例の検出方式は、実施
例1の磁化率検出方式よりも更に大量生産に適したもの
であって、1は磁気ヘッド、2は発振回路、3は電源回
路、4はマイコンを含む信号処理回路、5は処理槽であ
る。処理槽5には、実施例1と同様に水素吸蔵合金粉末
と酢酸水溶液が投入されている。
Embodiment 2 Another nickel rich layer formation amount detection method will be described with reference to FIG. The detection system of this embodiment is more suitable for mass production than the susceptibility detection system of the first embodiment. 1 is a magnetic head, 2 is an oscillation circuit, 3 is a power supply circuit, and 4 is a signal including a microcomputer. The processing circuit 5 is a processing tank. The processing tank 5 is charged with the hydrogen storage alloy powder and the acetic acid aqueous solution as in the first embodiment.

【0023】磁気ヘッド1はコイルが巻かれた軟磁性フ
ェライト棒からなり、耐酸性樹脂で被覆されて、処理槽
5に投入されている。なお、空芯コイルで磁気ヘッドを
構成してもよいがその場合には、空芯コイルの内部の貫
通孔にも液が回るようにすることが感度向上の点で好ま
しい。発振回路2は電源回路3から給電されて発振する
発振回路であって、その発振周波数は、主に、磁気ヘッ
ド1のインダクタンスLと内部のコンデンサの静電容量
Cとにより決定される。したがって、処理時間の経過と
ともに、磁気ヘッド1のインダクタンスLが増加し、発
振周波数が低下する。
The magnetic head 1 is made of a soft magnetic ferrite rod wound with a coil, covered with an acid-resistant resin, and put into a processing tank 5. The magnetic head may be constituted by an air-core coil, but in such a case, it is preferable from the viewpoint of improving the sensitivity that the liquid also flows through the through-hole inside the air-core coil. The oscillating circuit 2 is an oscillating circuit that is oscillated by being supplied with power from the power supply circuit 3, and its oscillating frequency is determined mainly by the inductance L of the magnetic head 1 and the capacitance C of an internal capacitor. Therefore, as the processing time elapses, the inductance L of the magnetic head 1 increases, and the oscillation frequency decreases.

【0024】発振回路2の発振電圧は信号処理回路4で
コンパレータにより二値信号に波形成形され、そのパル
ス周期がカウントされて、デジタル周波数信号に変換さ
れ、このデジタル周波数信号が外部のモニタ(図示せ
ず)に出力される。これにより、オペレータは、発振周
波数が所定値まで低下したら、水素吸蔵合金粉末を処理
槽から取り出して、洗浄し、処理反応を終了させればよ
い。
The oscillating voltage of the oscillating circuit 2 is shaped into a binary signal by a comparator in the signal processing circuit 4, and its pulse period is counted and converted into a digital frequency signal. (Not shown). Thus, when the oscillation frequency decreases to a predetermined value, the operator may take out the hydrogen storage alloy powder from the processing tank, clean it, and terminate the processing reaction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の酢酸処理による水素吸蔵合金粉末の
磁化率の磁化変化を示す図である
FIG. 1 is a diagram showing a change in magnetic susceptibility of a hydrogen storage alloy powder by acetic acid treatment in Example 1.

【図2】実施例1の酢酸処理を種々の処理時間だけ処理
した水素吸蔵合金粉末を負極とするニッケルー金属水素
化物電池のサイクル初期の放電容量の変化を示す図であ
る。
FIG. 2 is a diagram showing a change in discharge capacity at the beginning of a cycle of a nickel-metal hydride battery using a hydrogen storage alloy powder obtained by treating the acetic acid treatment of Example 1 for various treatment times as a negative electrode.

【図3】実施例2の周波数変化により水素吸蔵合金粉末
の表面処理状況を推定する回路を示すブロック回路図で
ある。
FIG. 3 is a block circuit diagram showing a circuit for estimating a surface treatment state of a hydrogen storage alloy powder based on a frequency change in Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大矢 豊 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 山川 俊輔 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yutaka Oya 41-Cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Institute, Inc. 41 at Yokomichi, Toyota Central Research Laboratory, Inc.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ニッケルを含む水素吸蔵合金粉末を処理し
て前記水素吸蔵合金粉末の表面にニッケルリッチ層を形
成するニッケルリッチ層形成処理を行う水素吸蔵合金粉
末の表面処理方法において、 前記ニッケルリッチ層形成処理中の前記水素吸蔵合金粉
末の表面状態の変化に応じて変化する前記水素吸蔵合金
粉末の磁気特性を検出し、 前記磁気特性が所定値となった時点で前記処理を終了す
ることを特徴とする水素吸蔵合金粉末の表面処理方法。
1. A method for treating a surface of a hydrogen-absorbing alloy powder, comprising: treating a hydrogen-absorbing alloy powder containing nickel to form a nickel-rich layer on a surface of the hydrogen-absorbing alloy powder. Detecting a magnetic property of the hydrogen storage alloy powder that changes according to a change in the surface state of the hydrogen storage alloy powder during the layer formation processing, and ending the processing when the magnetic property becomes a predetermined value. Characteristic surface treatment method for hydrogen storage alloy powder.
【請求項2】請求項1記載の水素吸蔵合金粉末の表面処
理方法において、 前記磁気特性として前記水素吸蔵合金粉末の磁化率を採
用することを特徴とする水素吸蔵合金粉末の表面処理方
法。
2. The surface treatment method for a hydrogen storage alloy powder according to claim 1, wherein a magnetic susceptibility of the hydrogen storage alloy powder is adopted as the magnetic characteristic.
【請求項3】ニッケルを含む水素吸蔵合金粉末を処理し
て前記水素吸蔵合金粉末の表面にニッケルリッチ層を形
成するニッケルリッチ層形成処理を行う水素吸蔵合金粉
末の表面処理方法において、 前記水素吸蔵合金粉末の乾燥重量(g)当たりの磁化率
(emu)が0.3〜0.8となるまで前記ニッケルリ
ッチ層形成処理を行うことを特徴とする水素吸蔵合金粉
末の表面処理方法。
3. A method for treating a surface of a hydrogen-absorbing alloy powder, comprising: treating a hydrogen-absorbing alloy powder containing nickel to form a nickel-rich layer on a surface of the hydrogen-absorbing alloy powder. A surface treatment method for hydrogen-absorbing alloy powder, wherein the nickel-rich layer forming treatment is performed until the magnetic susceptibility (emu) per dry weight (g) of the alloy powder becomes 0.3 to 0.8.
JP10025522A 1998-02-06 1998-02-06 Surface treating method for hydrogen storage alloy powder Pending JPH11222601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10025522A JPH11222601A (en) 1998-02-06 1998-02-06 Surface treating method for hydrogen storage alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10025522A JPH11222601A (en) 1998-02-06 1998-02-06 Surface treating method for hydrogen storage alloy powder

Publications (1)

Publication Number Publication Date
JPH11222601A true JPH11222601A (en) 1999-08-17

Family

ID=12168401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10025522A Pending JPH11222601A (en) 1998-02-06 1998-02-06 Surface treating method for hydrogen storage alloy powder

Country Status (1)

Country Link
JP (1) JPH11222601A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135311A (en) * 1999-11-04 2001-05-18 Matsushita Electric Ind Co Ltd Alkaline storage battery
KR20040050745A (en) * 2002-12-09 2004-06-17 엘지전자 주식회사 magnet for heating and cooling device for hydrogen storage alloys and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135311A (en) * 1999-11-04 2001-05-18 Matsushita Electric Ind Co Ltd Alkaline storage battery
US6605387B1 (en) * 1999-11-04 2003-08-12 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery
KR20040050745A (en) * 2002-12-09 2004-06-17 엘지전자 주식회사 magnet for heating and cooling device for hydrogen storage alloys and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
JP4678130B2 (en) Sealed nickel metal hydride storage battery and its manufacturing method
JP2007012572A (en) Nickel hydrogen battery
JP2988479B1 (en) Alkaline storage battery, hydrogen storage alloy electrode and method for producing the same
JP2001102084A (en) Alkali storage battery and method for manufacturing it
JP5250167B2 (en) Metal hydride material and method for activating electrodes
JPH07326353A (en) Manufacture of hydrogen storage alloy electrode
EP1219368A2 (en) Electrode alloy powder and method of producing the same
JPH11222601A (en) Surface treating method for hydrogen storage alloy powder
JP5142428B2 (en) Method for producing hydrogen storage alloy electrode for nickel metal hydride storage battery
JPH097588A (en) Hydrogen absorbing electrode
JP3553750B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP2004220994A (en) Alkaline storage battery
CN111293282B (en) Negative electrode active material, negative electrode, alkaline storage battery, and method for manufacturing negative electrode active material
JP2009299172A (en) Hydrogen storage alloy and alkali storage battery
JP2003533854A (en) Method for improving the properties of alloy powder for NiMH batteries
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
WO2003105256A1 (en) Method for manufacturing core material for electrode plate and method for manufacturing alkali storage battery
JP3851022B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JPH09180715A (en) Surface treatment method of hydrogen storage alloy by steam and alloy obtained thereby
JP2005105356A (en) Hydrogen storage alloy, hydrogen storage alloy electrode, and hermetically sealed-type nickel hydrogen storage battery
JP3520573B2 (en) Method for producing nickel-metal hydride battery
JP3778685B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JP2003173772A (en) Hydrogen storage alloy powder for electrode and its manufacturing method