JPH11221434A - Removal of hydrogen sulfide in gas containing carbon dioxide - Google Patents

Removal of hydrogen sulfide in gas containing carbon dioxide

Info

Publication number
JPH11221434A
JPH11221434A JP10023614A JP2361498A JPH11221434A JP H11221434 A JPH11221434 A JP H11221434A JP 10023614 A JP10023614 A JP 10023614A JP 2361498 A JP2361498 A JP 2361498A JP H11221434 A JPH11221434 A JP H11221434A
Authority
JP
Japan
Prior art keywords
gas
desulfurization
ions
aqueous solution
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10023614A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujii
博 藤井
Yoshihiko Miyoshi
良彦 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP10023614A priority Critical patent/JPH11221434A/en
Publication of JPH11221434A publication Critical patent/JPH11221434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove H2 S in a gas containing CO2 such as blast furnace gas in a high desulfurization ratio for a long time while controlling the decrease in the desulfurization ratio with the passage of time by making a gas containing CO2 and H2 S contact an aqueous solution containing Pb<2+> ions and CH3 COO<-> ions. SOLUTION: In the desulfurization of a gas containing CO2 and a trace quantity of H2 S which is generated in a reduction process of minerals containing sulfur, the gas is contacted with an aqueous solution containing Pb<2+> ions and CH3 COO<-> ions. In this process, H2 S reacts selectively with lead acetate to produce PbS, and a desulfurization reaction lasts so long as Pb<2+> ions exist in the aqueous solution. The produced PbS is almost insoluble in water, and sulfur compounds produced by desulfurization are deposited as solids. Besides, lead acetate is highly soluble in water, and sulfur compounds produced by desulfurization can be separated by a method such as filtration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CO2 含有ガス中の
H2S の除去方法に関し、特に、高脱硫率、かつCO 2 によ
る脱硫率の経時的低下を抑制し、長時間高脱硫率を維持
することが可能なCO2 含有ガス中のH2S の除去方法に関
する。
TECHNICAL FIELD The present invention relates to a COTwoIn the contained gas
HTwoRegarding the removal method of S, especially high desulfurization rate and CO TwoBy
Over time and maintain a high desulfurization rate for a long time
CO that can beTwoH in contained gasTwoS removal method
I do.

【0002】[0002]

【従来の技術】硫黄を含有する鉱石の還元工程では微量
のH2S を含むガス(:溶鉱炉ガス)が発生する。これ
は、コークスなどCを含有する燃料を用いて上記鉱石を
還元する場合、鉱石中の水分、結合水がCとの反応によ
ってH2を生成し、生成したH2が鉱石中のSと反応するこ
とによる。
2. Description of the Related Art In the process of reducing ore containing sulfur, a gas containing a trace amount of H 2 S (blast furnace gas) is generated. This is because, when the ore is reduced using a fuel containing C such as coke, water and bound water in the ore generate H 2 by reaction with C, and the generated H 2 reacts with S in the ore. By doing.

【0003】このため、従来、上記した硫黄含有ガス
は、除塵した後、脱硫処理され燃料として用いられてい
る。上記した脱硫方法としては、Na2CO3、CaCO3 の水溶
液、アンモニア水溶液などアルカリ性の水溶液を用いる
湿式脱硫法が採用されている。この場合、例えばNa2CO3
水溶液を用いた湿式脱硫法においては、下記反応式(1)
によってガス中のH2S が除去される。
[0003] For this reason, conventionally, the above-mentioned sulfur-containing gas has been used as a fuel after desulfurization after dust removal. As the desulfurization method described above, a wet desulfurization method using an alkaline aqueous solution such as an aqueous solution of Na 2 CO 3 or CaCO 3 or an aqueous ammonia solution is employed. In this case, for example, Na 2 CO 3
In the wet desulfurization method using an aqueous solution, the following reaction formula (1)
Removes H 2 S in the gas.

【0004】H2S +Na2CO3→NaHS+NaHCO3………(1) しかし、上記した反応は、水溶液がアルカリ性の条件下
で進行するため、ガス中のCO2 の吸収に伴ってNa2CO3
溶液のpHが低下し、脱硫率が経時的に低下し、Na2CO3
逐次補給する必要があり、薬剤使用量の面および経済性
の面で問題があった。
[0004] H 2 S + Na 2 CO 3 → NaHS + NaHCO 3 ......... (1) However, the reaction described above, since the aqueous solution proceeds under alkaline conditions, Na 2 CO along with the absorption of CO 2 in the gas (3) The pH of the aqueous solution decreased, the desulfurization rate decreased with time, and it was necessary to successively replenish Na 2 CO 3 , which caused problems in terms of the amount of drug used and the economic efficiency.

【0005】さらに、上記した問題点は、アルカリ性の
水溶液を用いるCO2 含有ガスの湿式脱硫法における共通
する問題点であった。
Further, the above-mentioned problem is a common problem in a wet desulfurization method of a CO 2 -containing gas using an alkaline aqueous solution.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前記した従
来技術の問題点を解決し、硫黄を含有する鉱石の還元工
程で発生する溶鉱炉ガスなどCO2 含有ガス中のH2S を、
脱硫率の経時的低下を抑制し、長時間高脱硫率で除去す
ることが可能なCO2 含有ガス中のH2S の除去方法を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and reduces H 2 S in a CO 2 -containing gas such as a blast furnace gas generated in a reduction process of a sulfur-containing ore,
It is an object of the present invention to provide a method for removing H 2 S in a CO 2 -containing gas, which can suppress a temporal decrease in a desulfurization rate and can remove the desulfurization rate at a high desulfurization rate for a long time.

【0007】[0007]

【課題を解決するための手段】本発明は、CO2 およびH2
S を含有するガスを、Pb2+イオンおよびCH3COO- イオン
を含有する水溶液と接触せしめることを特徴とするCO2
含有ガス中のH2S の除去方法である。前記した本発明
は、前記したCO2 含有ガス中のCO2 濃度が1vol %以上
であるCO2 含有ガス中のH2S の除去方法として好適に用
いることができる。
SUMMARY OF THE INVENTION The present invention provides CO 2 and H 2
CO 2 characterized by contacting a gas containing S with an aqueous solution containing Pb 2+ ions and CH 3 COO ions.
This is a method for removing H 2 S in the contained gas. The present invention described above can be suitably used as a method H 2 S removal of CO 2 containing gas CO 2 concentration in the CO 2 containing gas described above is not less than 1 vol%.

【0008】[0008]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明は、例えば鉛の製錬における鉛精鉱の溶練
工程である溶鉱炉から発生するガスなど、イオウを含有
する鉱石の還元工程で発生するCO2 および微量のH2Sを
含むガスの脱硫方法として好ましく適用されるが、CO2
およびH2S を含むガスであればその対象ガスの種類に制
限を受けるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The present invention is, for example, gas generated from a blast furnace is a smelting process of lead concentrate in smelting of lead, a gas containing H 2 S CO 2 and trace generated in the reduction step ore containing sulfur desulfurization Preferably applied as a method, CO 2
Gases containing H 2 S and H 2 S are not limited by the type of the target gas.

【0009】本発明者らは、脱硫に用いる水溶液(以
下、吸収液と記す)のCO2 吸収によるpH低下の影響を受
けずに、低pHの条件下でH2S を吸収除去するための脱硫
剤について種々の試薬を用いて鋭意実験、検討を行った
結果、Pb2+イオンおよびCH3COO - イオンを含有する水溶
液を用いることによって目的を達成することが可能であ
ることを見出し、本発明に至った。
The present inventors have proposed an aqueous solution used for desulfurization (hereinafter referred to as the
Below, described as absorption liquid) COTwoAffected by pH drop due to absorption
H under low pH conditionsTwoDesulfurization to absorb and remove S
Intensive experiments and investigations were carried out using various reagents
As a result, Pb2+Ions and CHThreeCOO -Aqueous solution containing ions
It is possible to achieve the purpose by using liquid
And found the present invention.

【0010】すなわち、従来のアルカリ性水溶液を吸収
液として用いたH2S の脱硫の場合、処理対象のガスがCO
2 を含有すると、吸収液の脱硫能が経時的に低下する
が、Pb 2+イオンおよびCH3COO- イオンを含有する水溶液
を用いることによって、極めて高脱硫率でしかもガス中
のCO2 の影響を受けずに長時間高脱硫率を維持すること
が可能となった。
That is, the conventional alkaline aqueous solution is absorbed.
H used as liquidTwoIn the case of S desulfurization, the gas to be treated is CO
TwoContains, the desulfurization ability of the absorbent decreases over time
But Pb 2+Ions and CHThreeCOO-Aqueous solution containing ions
By using, very high desulfurization rate and gas
COTwoMaintain high desulfurization rate for a long time without being affected by
Became possible.

【0011】本発明における脱硫反応は、下記反応式
(2) で進行するものと推定される。 H2S +Pb2++2CH3COO- →PbS +2CH3COOH ………(2) 本発明によれば、下記〜の優れた効果が得られる。 :H2S が選択的に酢酸鉛と反応しPbS を生成し、基本
的に、処理対象のH2Sに見合ったPb2+イオンが水溶液中
に存在する限り脱硫反応が継続する。
The desulfurization reaction in the present invention is represented by the following reaction formula:
It is estimated that (2) proceeds. H 2 S + Pb 2+ + 2CH 3 COO → PbS + 2CH 3 COOH (2) According to the present invention, the following excellent effects can be obtained. : H 2 S is selectively generates PbS reacted with lead acetate, basic, Pb 2+ ions commensurate with H 2 S to be processed is the desulfurization reaction continues so long as present in the aqueous solution.

【0012】:上記式(2) でも示されるように、吸収
液が酸性であるため、CO2 吸収による影響を受けない。 :生成するPbS は水溶液中で難溶解性であり、脱硫で
生成する硫黄化合物が固体として析出する一方、吸収剤
として添加する酢酸鉛(II)は水溶液中での溶解度が高
く、また、酢酸鉛(II)に代えてPbO および酢酸を用いた
場合も、PbO の酢酸水溶液中での溶解度が高い。
As shown in the above formula (2), since the absorbing solution is acidic, it is not affected by CO 2 absorption. : The PbS formed is hardly soluble in aqueous solution, and the sulfur compound generated by desulfurization precipitates as a solid, while lead (II) acetate added as an absorbent has high solubility in aqueous solution and lead acetate When PbO 2 and acetic acid are used instead of (II), the solubility of PbO 2 in an aqueous acetic acid solution is high.

【0013】このため、脱硫で生成した硫黄化合物を、
濾過法、遠心分離法、沈降分離法など簡易な方法で分離
することができ、工業的に優れている。本発明は、好ま
しくはCO2 濃度が1vol %以上、より好ましくは10vol
%以上、さらに好ましくは20vol %以上であるCO2 含有
ガス中のH2S の選択的除去方法として好適に用いられる
が、脱硫の対象とするガス中のCO2 濃度の下限は特に制
限されるものではない。
[0013] Therefore, the sulfur compound produced by desulfurization is
It can be separated by a simple method such as a filtration method, a centrifugal separation method, a sedimentation separation method, and is industrially excellent. In the present invention, the CO 2 concentration is preferably 1 vol% or more, more preferably 10 vol%.
% Or more, and more preferably 20 vol% or more. It is suitably used as a method for selectively removing H 2 S in a CO 2 -containing gas, but the lower limit of the CO 2 concentration in the gas to be desulfurized is particularly limited. Not something.

【0014】また、CO2 濃度の上限は特に制限されな
い。本発明は、好ましくはH2S 濃度が1〜10000vol-pp
m、より好ましくは1〜500vol-ppm、さらに好ましくは
5〜500vol-ppmであるCO2 含有ガス中のH2S の選択的除
去方法として好適に用いられる。本発明の脱硫反応にお
ける吸収液のpHは、pH<7であることが好ましく、さら
には該吸収液のpHは3以上、5以下であることがより好
ましい。
The upper limit of the CO 2 concentration is not particularly limited. The present invention preferably has an H 2 S concentration of 1 to 10,000 vol-pp
m, more preferably 1~500vol-ppm, more preferably is suitably used as a selective removal process of H 2 S in the CO 2 containing gas is 5~500vol-ppm. The pH of the absorbent in the desulfurization reaction of the present invention is preferably pH <7, and more preferably the pH of the absorbent is 3 or more and 5 or less.

【0015】吸収液中のPb2+イオン、CH3COO- イオンの
濃度は、仕込んだ薬剤中のPb、酢酸、あるいは酢酸鉛な
どが全て上記イオンに解離したと仮定した時の濃度で、
Pb2+イオン濃度が、好ましくは1mg/l以上、さらに好ま
しくは5mg/l以上、200 g/l以下、CH3COO- イオン濃度
が、好ましくは、1mg/l以上、さらに好ましくは5mg/l
以上、120g/l以下であることが好ましい。
The concentration of Pb 2+ ion and CH 3 COO ion in the absorbing solution is the concentration assuming that all of Pb, acetic acid, or lead acetate in the charged drug is dissociated into the above ions.
Pb 2+ ion concentration is preferably 1 mg / l or more, more preferably 5 mg / l or more, 200 g / l or less, and CH 3 COO ion concentration is preferably 1 mg / l or more, more preferably 5 mg / l.
As described above, the weight is preferably 120 g / l or less.

【0016】Pb2+イオンの濃度が、1mg/l未満の場合、
脱硫率が低下し、逆に200 g/l を超えると酢酸鉛が吸収
液中に析出し、吸収装置内、配管系統にスケールの生成
などが生じる可能性がある。また、CH3COO- イオン濃度
が、1mg/l未満の場合、脱硫率が低下し、逆に120g/lを
超えると生成したPbS が再溶解して脱硫率が低下する可
能性がある。
When the concentration of Pb 2+ ion is less than 1 mg / l,
If the desulfurization rate decreases, and if it exceeds 200 g / l, lead acetate may precipitate in the absorbing solution, and scale may be formed in the absorbing device and in the piping system. If the CH 3 COO 2 - ion concentration is less than 1 mg / l, the desulfurization rate may decrease, and if it exceeds 120 g / l, the produced PbS may be redissolved and the desulfurization rate may decrease.

【0017】吸収液の液温は、5〜50℃であることが好
ましい。吸収装置における〔液/ガス〕比は、吸収装置
の方式に対応して決定することができ、例えば気泡塔方
式、気泡攪拌槽方式においては、吸収装置内の液量と供
給する被処理ガス流量との比が、1.0 ×10-3〜10×10-3
〔(l−吸収液)/( Nl−被処理ガス/hr)〕の範囲が好適で
ある。
The temperature of the absorbing solution is preferably 5 to 50 ° C. The [liquid / gas] ratio in the absorption device can be determined according to the type of the absorption device. For example, in the bubble column system and the bubble stirring tank system, the liquid amount in the absorption device and the flow rate of the gas to be treated to be supplied. Is 1.0 × 10 -3 to 10 × 10 -3
The range of [(l-absorbing liquid) / (Nl-gas to be treated / hr)] is preferable.

【0018】本発明におけるPb2+イオンおよびCH3COO-
イオンを含有する水溶液は、例えば、下記方法、の
いずれかの方法、またはそれらを併用して調製すること
ができる。 :Pb(CH3CO2)2 の無水塩、または三水塩、十水塩など
結合水を有するPb(CH3CO2)2 を水に添加する。
In the present invention, Pb 2+ ion and CH 3 COO
The aqueous solution containing ions can be prepared, for example, by any of the following methods, or a combination thereof. : An anhydrous salt of Pb (CH 3 CO 2 ) 2 or Pb (CH 3 CO 2 ) 2 having bound water such as trihydrate, decahydrate is added to water.

【0019】:酸化鉛(II)(;PbO )と酢酸を水に添
加する。なお、本発明においては、吸収液中にPb2+イオ
ンおよびCH3COO- イオンが含有されていればよく、吸収
液の調製法は上記した方法に制限されるものではない。
本発明のH2S 除去方法における吸収装置としては、スプ
レー塔、充填塔、ぬれ壁塔、段塔、気泡塔、気泡攪拌槽
などの各種方式の吸収装置を用いることができ、その方
式に制限されるものではない。
Lead (II) oxide (; PbO 2) and acetic acid are added to water. In the present invention, it is only necessary that the absorbing solution contains Pb 2+ ions and CH 3 COO ions, and the method for preparing the absorbing solution is not limited to the above-described method.
As the absorption device in the H 2 S removal method of the present invention, various types of absorption devices such as a spray tower, a packed tower, a wetting wall tower, a step tower, a bubble tower, and a bubble stirring tank can be used. It is not something to be done.

【0020】また、本発明の方法で生成したPbS は、前
記したように、濾過法、遠心分離法、沈降分離法など簡
易な方法で容易に分離することができる。分離後のPbS
は例えば、下記反応式(3) 、(4) に示すように、焙焼に
より酸化鉛とし、これを炭素質還元剤で還元することに
よって鉛製錬の原料とすることができる。
Further, as described above, PbS produced by the method of the present invention can be easily separated by a simple method such as a filtration method, a centrifugation method, and a sedimentation method. PbS after separation
For example, as shown in the following reaction formulas (3) and (4), lead oxide can be obtained by roasting and reduced with a carbonaceous reducing agent to be used as a raw material for lead smelting.

【0021】また、生成したSO2 は通常の石灰−石膏脱
硫法、アンモニア水溶液による吸収法などによって石膏
または硫安として回収し、有効利用することができる。 PbS +(3/2)O2 =PbO +SO2 ………(3) PbO +CO=Pb+CO2 …………………(4) なお、硫黄を含有する鉱石の還元工程で発生するガスな
ど通常のガス中のH2Sは微量であるため、処理すべきPbS
の量は少なく、上記した焙焼、還元のための装置、お
よびSO2 の脱硫装置は小型の装置でよい。
Further, the produced SO 2 can be recovered as gypsum or ammonium sulfate by a usual lime-gypsum desulfurization method, an absorption method with an aqueous ammonia solution or the like, and can be effectively used. PbS + (3/2) O 2 = PbO + SO 2 … (3) PbO + CO = Pb + CO 2 ……………………………………………………………………………………………………………………………………………………………………………… (4) Since the amount of H 2 S in the gas is very small, PbS to be treated
The apparatus for roasting and reduction, and the apparatus for desulfurizing SO 2 described above may be small apparatuses.

【0022】[0022]

【実施例】以下、本発明を実施例に基づきより具体的に
説明する。 (実施例1)ボンベ充填ガス〔H2S-N2ガスボンベ、
CO2 ガス(液化二酸化炭素)ボンベ〕および空気を用い
て所定のガス組成に調整した合成ガスを、吸収装置に供
給し、脱硫実験を行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below more specifically based on embodiments. (Example 1) Gas filling gas [H 2 SN 2 gas cylinder,
A synthesis gas adjusted to a predetermined gas composition using a CO 2 gas (liquefied carbon dioxide) cylinder and air was supplied to an absorption device, and a desulfurization experiment was performed.

【0023】合成ガスの組成は、下記組成とした。 〔合成ガスの組成:〕H2S :27〜35vol-ppm 、CO2 :30
vol %、O2:15vol %、残:N2 吸収装置としては、三角フラスコにガス導入用のガラス
フィルタ付のガス吹き込み管およびガス取り出し管を取
付け、三角フラスコを液温調整可能なウオータバスに浸
漬した吸収装置を用い、H2S 濃度の測定は検知管を用い
て行った。
The composition of the synthesis gas was as follows. [Composition of the synthesis gas:] H 2 S: 27~35vol-ppm, CO 2: 30
vol%, O 2 : 15 vol%, remaining: N 2 As an N 2 absorption device, a gas injection tube with a glass filter for gas introduction and a gas outlet tube were attached to the Erlenmeyer flask, and the Erlenmeyer flask was immersed in a water bath with adjustable liquid temperature. The H 2 S concentration was measured using a detector tube using the absorption device thus prepared.

【0024】上記した三角フラスコ中の水:1.5 L に、
酸化鉛(II)(;PbO ):50gおよび酢酸(90wt %):35
mlを加えて吸収液を調製した(本発明例1)。次に、三
角フラスコに取付けたガラスフィルタ付のガス吹き込み
管から、前記した合成ガスを、7Nl/minの流量で、液温
が23℃の吸収液中にバブリングさせて吹き込み、所定時
間経過後の吸収装置入口、出口のH2S 濃度を測定した。
Water in the Erlenmeyer flask: 1.5 L
Lead (II) oxide (; PbO): 50 g and acetic acid (90 wt%): 35
The solution was added to prepare an absorbing solution (Example 1 of the present invention). Next, the above-described synthesis gas was bubbled and blown into the absorbing solution having a liquid temperature of 23 ° C. at a flow rate of 7 Nl / min from a gas blowing tube with a glass filter attached to the Erlenmeyer flask, and after a predetermined time, The H 2 S concentration at the inlet and outlet of the absorber was measured.

【0025】得られた実験結果を、実験条件と併せて表
1に示す(本発明例1)。次に、三角フラスコ中の水に
加える酢酸(90wt %)の仕込み量を変えた以外は上記し
た本発明例1と同様の方法で脱硫実験を行った(本発明
例2、本発明例3)。本発明例2、本発明例3における
吸収液の液温は、それぞれ19℃、16℃とし、通ガス中の
平均pHはそれぞれ4.1 、3.9 であった。
Table 1 shows the obtained experimental results together with the experimental conditions (Example 1 of the present invention). Next, desulfurization experiments were performed in the same manner as in Example 1 of the present invention described above except that the amount of acetic acid (90 wt%) added to water in the Erlenmeyer flask was changed (Examples of the present invention 2 and Examples of the present invention 3). . The liquid temperatures of the absorbing solutions in Inventive Example 2 and Inventive Example 3 were 19 ° C. and 16 ° C., respectively, and the average pH in flowing gas was 4.1 and 3.9, respectively.

【0026】得られた実験結果を、実験条件と併せて表
1に示す。
The experimental results obtained are shown in Table 1 together with the experimental conditions.

【0027】[0027]

【表1】 [Table 1]

【0028】(比較例)実施例1と同様の吸収装置、実
験方法で、従来法であるNa2CO3水溶液を用いた脱硫実験
を行った。本実験においては、三角フラスコ中の水:1.
5 L にNa2CO3:50gを加えて吸収液を調製した。
(Comparative Example) A desulfurization experiment using a conventional Na 2 CO 3 aqueous solution was conducted using the same absorption apparatus and experimental method as in Example 1. In this experiment, water in an Erlenmeyer flask: 1.
Na 2 CO 3 : 50 g was added to 5 L to prepare an absorbing solution.

【0029】次に、三角フラスコに取付けたガラスフィ
ルタ付のガス吹き込み管から、前記した下記組成の合成
ガスを、7Nl/minの流量で、液温が21℃、通ガス中の平
均pHが9.2 の吸収液中にバブリングさせて吹き込み、所
定時間経過後の吸収装置入口、出口のH2S 濃度を測定し
た。 〔合成ガスの組成:〕H2S :14vol-ppm 、15vol-ppm 、
CO2 :30vol %、O2:15vol %、残:N2 得られた実験結果を下記に示す。
Next, the above-mentioned synthesis gas having the following composition was supplied at a flow rate of 7 Nl / min at a liquid temperature of 21 ° C. and an average pH in the flowing gas of 9.2 from a gas injection tube equipped with a glass filter attached to an Erlenmeyer flask. Was bubbled into the absorbent, and the H 2 S concentration at the inlet and outlet of the absorber after a predetermined time had elapsed was measured. [Composition of synthesis gas:] H 2 S: 14 vol-ppm, 15 vol-ppm,
CO 2 : 30 vol%, O 2 : 15 vol%, balance: N 2 The experimental results obtained are shown below.

【0030】(1) 52分経過後の吸収装置入口ガス中のH2
S 濃度:14vol-ppm 52分経過後の吸収装置出口ガス中のH2S 濃度:0.65vol-
ppm 52分経過後の脱硫率:95.4% (2) 270 分経過後の吸収装置入口ガス中のH2S 濃度:15
vol-ppm 270 分経過後の吸収装置出口ガス中のH2S 濃度:15vol-
ppm 270 分経過後の脱硫率:0% 上記結果に示されるように、従来の方法の場合、CO2
吸収によって吸収液の脱硫能が短時間でなくなり、Na2C
O3を逐次補給する必要があることが分かる。
(1) H 2 in the absorber inlet gas after 52 minutes
S concentration: H 2 S concentration in the absorber exit gas of 14 vol-ppm 52 minutes after: 0.65Vol-
ppm 52 minutes later the desulfurization rate: 95.4% (2) of the absorber inlet in the gas after 270 minutes the concentration of H 2 S: 15
vol-ppm H 2 S concentration in the outlet gas of the absorber after 270 minutes: 15 vol-
ppm Desulfurization rate after elapse of 270 minutes: 0% As shown in the above results, in the case of the conventional method, the desulfurization ability of the absorbing solution is reduced in a short time due to absorption of CO 2 , and Na 2 C
It turns out that it is necessary to supply O 3 sequentially.

【0031】(実施例2)実施例1と同様の吸収装置、
実験方法で、酢酸鉛(II)を用いて吸収液を調製し、脱
硫実験を行った。本実験においては、三角フラスコ中の
水:1.5 L にPb(CH3CO2)2 (無水塩):75gを加えて吸
収液を調製した。
(Embodiment 2) The same absorption device as in Embodiment 1,
According to the experimental method, an absorbent was prepared using lead (II) acetate, and a desulfurization experiment was performed. In this experiment, an absorbent was prepared by adding 75 g of Pb (CH 3 CO 2 ) 2 (anhydrous salt) to 1.5 L of water in an Erlenmeyer flask.

【0032】次に、三角フラスコに取付けたガラスフィ
ルタ付のガス吹き込み管から、前記した下記組成の合成
ガスを、7Nl/minの流量で、液温が18℃、平均pHが4.4
の吸収液中にバブリングさせて吹き込み、所定時間経過
後の吸収装置入口、出口のH2S 濃度を測定した。 〔合成ガスの組成:〕H2S :30vol-ppm 、CO2 :30vol
%、O2:15vol %、残:N2 得られた実験結果を下記に示す。
Next, the above-described synthesis gas having the following composition was supplied at a flow rate of 7 Nl / min at a liquid temperature of 18 ° C. and an average pH of 4.4 from a gas injection tube with a glass filter attached to an Erlenmeyer flask.
Was bubbled into the absorbent, and the H 2 S concentration at the inlet and outlet of the absorber after a predetermined time had elapsed was measured. [Composition of synthesis gas:] H 2 S: 30 vol-ppm, CO 2 : 30 vol
%, O 2 : 15 vol%, balance: N 2 The experimental results obtained are shown below.

【0033】540 分経過後の吸収装置入口ガス中のH2S
濃度:30vol-ppm 540 分経過後の吸収装置出口ガス中のH2S 濃度:0.18vo
l-ppm 540 分経過後の脱硫率:99.4% 前記した実施例1の表1および実施例2に示されるよう
に、本発明の脱硫方法によれば、極めて高脱硫率でH2S
を除去することが可能となり、さらには、高CO 2 濃度の
条件下においても長時間高脱硫率を維持することが可能
であることが分かった。
H in the inlet gas of the absorber after 540 minutesTwoS
Concentration: 30vol-ppm H in outlet gas after 540 minutesTwoS concentration: 0.18vo
l-ppm Desulfurization rate after 540 minutes: 99.4% As shown in Table 1 and Example 2 of Example 1 described above.
According to the desulfurization method of the present invention,TwoS
Can be removed, and furthermore, high CO TwoConcentration
High desulfurization rate can be maintained for a long time even under conditions
It turned out to be.

【0034】なお、前記した実施例においては、吸収装
置として気泡塔方式の吸収装置を用いたが、前記したよ
うに、本発明のH2S 除去方法における吸収装置として
は、スプレー塔、充填塔、ぬれ壁塔、段塔、気泡塔、気
泡攪拌槽などの各種方式の吸収装置を用いることができ
る。
In the above-described embodiment, a bubble tower type absorber is used as the absorber. As described above, the absorber in the H 2 S removal method of the present invention includes a spray tower and a packed tower. Various types of absorbing devices such as a wet wall tower, a step tower, a bubble tower, and a bubble stirring tank can be used.

【0035】[0035]

【発明の効果】本発明によって、CO2 含有ガス中のH2S
を、CO2 の吸収による脱硫率の経時的低下を抑制し、長
時間高脱硫率で除去することが可能となり、その工業的
意義は大きい。さらに、本発明によれば、吸収によって
生成する硫黄化合物を、容易に鉛製錬の原料および石膏
などとして有効に利用することができる。
According to the present invention, H 2 S in CO 2 -containing gas
Can be removed at a high desulfurization rate for a long time by suppressing the time-dependent decrease in the desulfurization rate due to CO 2 absorption, and its industrial significance is great. Furthermore, according to the present invention, a sulfur compound generated by absorption can be easily and effectively used as a raw material for lead smelting and gypsum.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 CO2 およびH2S を含有するガスを、Pb2+
イオンおよびCH3COO - イオンを含有する水溶液と接触せ
しめることを特徴とするCO2 含有ガス中のH2S の除去方
法。
[Claim 1] COTwoAnd HTwoThe gas containing S is converted to Pb2+
Ions and CHThreeCOO -Contact with an aqueous solution containing ions
CO characterized by closingTwoH in contained gasTwoHow to remove S
Law.
【請求項2】 前記したCO2 含有ガス中のCO2 濃度が1
vol %以上であることを特徴とする請求項1記載のCO2
含有ガス中のH2S の除去方法。
2. The CO 2 concentration in the CO 2 containing gas is 1
2. The CO 2 according to claim 1, wherein the CO 2 is at least vol%.
A method for removing H 2 S from the contained gas.
JP10023614A 1998-02-04 1998-02-04 Removal of hydrogen sulfide in gas containing carbon dioxide Pending JPH11221434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10023614A JPH11221434A (en) 1998-02-04 1998-02-04 Removal of hydrogen sulfide in gas containing carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10023614A JPH11221434A (en) 1998-02-04 1998-02-04 Removal of hydrogen sulfide in gas containing carbon dioxide

Publications (1)

Publication Number Publication Date
JPH11221434A true JPH11221434A (en) 1999-08-17

Family

ID=12115494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10023614A Pending JPH11221434A (en) 1998-02-04 1998-02-04 Removal of hydrogen sulfide in gas containing carbon dioxide

Country Status (1)

Country Link
JP (1) JPH11221434A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014042866A (en) * 2012-08-24 2014-03-13 Japan Atomic Energy Agency Volatile organic compound removing device
CN111377940A (en) * 2018-12-29 2020-07-07 大丰海嘉诺药业有限公司 Method for desulfurizing vitamin H intermediate
JPWO2020256151A1 (en) * 2019-06-21 2020-12-24

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014042866A (en) * 2012-08-24 2014-03-13 Japan Atomic Energy Agency Volatile organic compound removing device
CN111377940A (en) * 2018-12-29 2020-07-07 大丰海嘉诺药业有限公司 Method for desulfurizing vitamin H intermediate
JPWO2020256151A1 (en) * 2019-06-21 2020-12-24
WO2020256151A1 (en) * 2019-06-21 2020-12-24 積水化学工業株式会社 Method for producing purified gas and apparatus for producing purified gas

Similar Documents

Publication Publication Date Title
US4298584A (en) Removing carbon oxysulfide from gas streams
CA2267565C (en) A method for removing mercury and sulphur dioxide from gases
US4696804A (en) Method for treating SO2, SO3 and dust simultaneously
CN100488601C (en) Flue gas desulfurization method by using magnesium compound and ammonia for circulated regeneration
PT2033702E (en) Method for removing mercury from exhaust combustion gases
EA008803B1 (en) Low energy soscrubbing process
JP3573950B2 (en) Exhaust gas desulfurization method
CN1008071B (en) Porcess for removal of hydrogen sulfide from gaseous streams
US3959440A (en) Method for removing SO2 and NOx simultaneously from the exhaust of a combustion furnace
KR0174794B1 (en) Exhaust gas desulfurization process
JP4747382B1 (en) Flue gas purification treatment method
CN108722134A (en) A kind of denitration method for flue gas and flue gas desulfurization and denitration method
US3822339A (en) Method for removing sulfur dioxide from the exhaust of a combustion furnace
JPH11221434A (en) Removal of hydrogen sulfide in gas containing carbon dioxide
JP3385137B2 (en) Treatment of flue gas desulfurization wastewater
CN106731559A (en) A kind of mercury fume wet method mercury removal agent and demercuration method
SU1586509A3 (en) Method of producing elementary sulfur from gases
JP2001522928A (en) Hydrogen sulfide removal method
WO2013172807A1 (en) Absorption of toxic so2 and co2 compounds in emitted gasses in boron and calcium based process waste solutions and convertion of the same into commercial products
US4256713A (en) Flue gas treatment with intermittent addition of alkaline reagent to scrubbing liquor
CN111137964A (en) Coal-fired boiler ammonia desulfurization slurry dechlorination treatment process
KR100376489B1 (en) How to remove hydrogen sulfide gas from coke oven gas
JPH0147402B2 (en)
SU673615A1 (en) Method of purifying waste water of industrial gas desulfurization process
JPH07116457A (en) Method and apparatus for controlling flue gas wet desulfurization treatment