JPH11219212A - Piping system supervisory and controlling system for hydraulic power plant - Google Patents

Piping system supervisory and controlling system for hydraulic power plant

Info

Publication number
JPH11219212A
JPH11219212A JP3353998A JP3353998A JPH11219212A JP H11219212 A JPH11219212 A JP H11219212A JP 3353998 A JP3353998 A JP 3353998A JP 3353998 A JP3353998 A JP 3353998A JP H11219212 A JPH11219212 A JP H11219212A
Authority
JP
Japan
Prior art keywords
piping
piping system
control
monitoring
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3353998A
Other languages
Japanese (ja)
Inventor
Yoshiyasu Nishitani
由育 西谷
Sukenao Okudera
祐直 奥寺
Masahiro Ichinosawa
昌弘 市野澤
Takashi Uchida
隆志 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3353998A priority Critical patent/JPH11219212A/en
Publication of JPH11219212A publication Critical patent/JPH11219212A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Testing And Monitoring For Control Systems (AREA)
  • Control Of Water Turbines (AREA)
  • Control By Computers (AREA)

Abstract

PROBLEM TO BE SOLVED: To model the equipment of a piping system, to easily supervise and control the piping system and to improve the operation efficiency of supervisory and control. SOLUTION: The controlled system element of the piping system is replaced with the controlled system element of a power system, the data base of the piping system is converted to the data base of the power system and processings such as a supervisory and control processing, an operation procedure processing, a data maintenance processing and a simulation processing, etc., executed by the man-machine processing of the power system are made to be in common to the execution of the man-machine processing of the piping system. In this case, at the time of replacing the controlled system element of the piping system with the controlled system element of the power system, in the case that the controlled system element of the power system corresponding to the controlled system element of the piping system is not present, it is stipulated by the combination of the plural equipments of the power system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水力発電所の各種
設備を監視および制御する監視制御システムに係り、特
に、その配管系統設備を監視制御する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a monitoring and control system for monitoring and controlling various facilities of a hydroelectric power plant, and more particularly to a technique for monitoring and controlling piping system facilities.

【0002】[0002]

【従来技術】水力発電所の監視制御システムの概略シス
テム構成を図5に示す。水力発電所の監視制御対象はダ
ム設備、発電設備、電力系統設備、配管系統設備に大き
く分けられる。ダム設備、発電設備、電力系統設備およ
び配管系統設備の監視制御項目には以下のものがある。 ・ダム設備 :ダム水位等の監視、ゲート開度の制御 等 ・発電機設備 :発電機運転/制御、発電機非常停止 等 ・電力系統設備 :遮断器/断路器開閉制御 等 ・配管系統設備 :バルブ開度、ポンプ運転/停止 等 これらの設備の監視制御システムは、計算機システムに
より構成され、テレコン親局、子局等を通して状態を収
集し、その監視結果に基づいて効率的に発電することを
目的とした制御を行っている。この中で、電力系統設備
に関しては、監視制御システムの中心的存在であり、系
統監視機能、自動操作機能、設備データメンテナンス機
能、シミュレーション機能、統計処理機能、予測機能等
が既に技術的に確立し、内容的にも高度となっている。
一方、これに対し、配管系統設備に関しては、従来、監
視制御システムには扱われていなかった。ところで、配
管設備は、発電所の軸受けの冷却や潤滑油制御を担うも
のであり、大別すると、以下の4つに分けることができ
る。 ・油圧発生に用いる空気配管 ・ガイドベーンの開閉等に用いる油圧配管 ・各種軸受けの潤滑油送油に用いる潤滑油配管 ・発電機や各種軸受け等の冷却に用いる冷却水配管 その配管系統の概要を図6に示す。ただし、実際の配管
系統は、各系統が相互に関連し、かなり複雑な構成をと
り、かつ、その配管数も膨大なものとなる。また、配管
系統は、発電の基本的な制御に直接関連し、配管系統の
誤動作が発電停止となるので、その監視制御は非常に重
要である、と云える。しかしながら、従来、この配管系
統の監視制御は他の設備のそれに比べて、監視制御の面
で確立した技術が無かった。これは、配管系統が複雑で
あるため、監視制御システムで操作手順あるいはシミュ
レーションを比較的簡単、安価に実現する手段が確立で
きなかった為である。配管系統の操作手順表およびシミ
ュレーション機能を計算機システムにより実現するため
には、配管系統の構成をモデル化し、データベースとし
て計算機に登録する必要がある。配管系統の構成をモデ
ル化する公知例としては、特開昭48−29185号公
報、特開昭63ー271573号公報に記載の技術があ
るが、下記の問題がある。 (1)配管系設備には、配圧弁,三方弁等がある。これ
らの装置は油,空気等の流れの方向を変えるための設備
である。これらの設備を電気回路に置換する方式は規定
されていない。 (2)公知例は、どちらも配管内の圧力の変動を求める
ものであり、公知例の電気回路を採用すると、操作手順
表及びシミュレーションのソフト開発量が膨大なものと
なり、経済的ではない。
2. Description of the Related Art FIG. 5 shows a schematic system configuration of a monitoring and control system of a hydroelectric power plant. The targets of monitoring and control of hydropower plants are broadly classified into dam facilities, power generation facilities, power system facilities, and piping system facilities. The monitoring and control items for dam equipment, power generation equipment, power system equipment, and piping system equipment include the following.・ Dam equipment: Monitoring of dam water level, control of gate opening, etc. ・ Generator equipment: Generator operation / control, generator emergency stop, etc. ・ Power system equipment: Circuit breaker / disconnector opening / closing control, etc. ・ Piping system equipment: Valve opening, pump operation / stop, etc. The monitoring and control system of these facilities is composed of a computer system, which collects the status through the telecon master station, slave station, etc., and efficiently generates power based on the monitoring results. The intended control is being performed. Among them, the power system equipment is the centerpiece of the monitoring and control system, and the system monitoring function, automatic operation function, equipment data maintenance function, simulation function, statistical processing function, prediction function, etc. have already been technically established. , The content is advanced.
On the other hand, the piping system equipment has not been conventionally handled by the monitoring and control system. By the way, the piping equipment is responsible for cooling the bearings of the power plant and controlling the lubricating oil, and can be broadly classified into the following four types.・ Air piping used to generate hydraulic pressure ・ Hydraulic piping used to open and close the guide vanes ・ Lubricating oil piping used to supply lubricating oil to various bearings ・ Cooling water piping used to cool generators and various bearings As shown in FIG. However, in an actual piping system, the respective systems are interconnected, have a considerably complicated configuration, and the number of piping is enormous. In addition, since the piping system is directly related to the basic control of power generation, and a malfunction of the piping system stops power generation, it can be said that monitoring and control thereof is very important. However, conventionally, there has been no established technique for monitoring and control of this piping system as compared with that of other facilities in terms of monitoring and control. This is because, due to the complexity of the piping system, a means for relatively simple and inexpensive operation procedures or simulations in the monitoring control system could not be established. In order to realize the operation procedure table and the simulation function of the piping system by the computer system, it is necessary to model the configuration of the piping system and register it as a database in the computer. Known examples for modeling the configuration of a piping system include the techniques described in JP-A-48-29185 and JP-A-63-271573, but have the following problems. (1) Piping system equipment includes a pressure distribution valve, a three-way valve, and the like. These devices are equipment for changing the direction of flow of oil, air and the like. The method of replacing these facilities with electric circuits is not specified. (2) Both of the known examples are for calculating the fluctuation of the pressure in the pipe. If the electric circuit of the known example is adopted, the operation procedure table and the amount of software development for simulation are enormous, which is not economical.

【0003】[0003]

【発明が解決しようとする問題点】従来、発電機や補機
の保守作業時には配管系統の作業が必要となるが、前述
のように、配管系統の監視制御技術の確立が遅れている
ため、以下のような机上中心の手順により作業を実施し
ていた。 ・運転員が操作手順表を机上で作成する。 ・操作手順表による機器操作後の配管系統の加圧状態を
机上でシミュレーションする。 ・机上におけるシミュレーション結果にもとに実操作を
実施する。 しかし、この場合、次のような問題点がある。すなわ
ち、手順表作成や机上シミュレーションによる運転員の
作業量が非常に大きい。また、机上での検討であるた
め、手順作成ミスが入り込む要因が大きい。一方、水力
発電所の大型化等に伴い、配管系に対する監視制御の運
用効率化の要求は高まってきており、早急に実現するこ
とが重要である。
Problems to be Solved by the Invention Conventionally, the maintenance work of the generator and the auxiliary equipment requires the work of the piping system. However, as described above, since the establishment of the monitoring and control technology of the piping system has been delayed, The work was carried out according to the following desk-centered procedures. -The operator creates an operation procedure table on the desk.・ Simulate the pressurized state of the piping system after equipment operation according to the operation procedure table on a desk.・ Perform actual operations based on the simulation results on the desk. However, in this case, there are the following problems. In other words, the amount of work of the operator based on the creation of the procedure table and the desk simulation is very large. In addition, since the examination is performed on a desk, there is a large factor that a mistake in creating a procedure may occur. On the other hand, with the increase in the size of hydroelectric power plants, etc., the demand for more efficient operation of monitoring and control of piping systems has been increasing, and it is important to realize them as soon as possible.

【0004】本発明の課題は、配管系統の設備をモデル
化し、配管系統の監視制御を容易に実現すると共に監視
制御の運用効率化を図ることにある。
[0004] It is an object of the present invention to model the facilities of a piping system, to easily realize monitoring and control of the piping system, and to improve the operation efficiency of the monitoring control.

【0005】[0005]

【問題点を解決するための手段】上記課題は、配管系統
の制御対象要素を電力系統の制御対象要素に置き換える
と共に、配管系統のデータベースを電力系統のデータベ
ースに変換し、電力系統のマンマシン処理によって実行
する監視制御処理、操作手順処理、データメンテナンス
処理、シミュレーション処理、その他の処理を配管系統
のマンマシン処理の実行に共通させることによって、解
決される。ここで、配管系統の制御対象要素を電力系統
の制御対象要素に置き換えるとき、配管系統の制御対象
要素に対応する電力系統の制御対象要素が存在しない場
合、電力系統の複数機器の組合せによって規定する。ま
た、CRT画面上においてグラフィカルかつ対話的に配
管系統操作手順を作成する。そして、この配管操作手順
に従って配管系統の制御対象要素の制御を行い、CRT
画面上にその応動結果を表示する。一方、配管操作手順
のシミュレーション実行を行い、CRT画面上にシミュ
レーション結果を応動表示する。
The object of the present invention is to replace a control target element of a piping system with a control target element of a power system, convert a database of a piping system into a database of a power system, and perform a man-machine process of the power system. The problem is solved by making the monitoring control process, the operation procedure process, the data maintenance process, the simulation process, and the other processes executed by the process common to the execution of the man-machine process of the piping system. Here, when replacing the control target element of the piping system with the control target element of the power system, if there is no control target element of the power system corresponding to the control target element of the piping system, it is defined by a combination of a plurality of devices of the power system. . Also, a piping system operation procedure is created graphically and interactively on the CRT screen. Then, the control target elements of the piping system are controlled according to the piping operation procedure, and the CRT is controlled.
The response result is displayed on the screen. On the other hand, a simulation of the piping operation procedure is performed, and the simulation result is responsively displayed on the CRT screen.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施形態を図面を
用いて説明する。図1は、本発明の一実施形態による水
力発電所の配管系統監視制御システムを示す。CPU1
00は、配管系統の監視制御処理、操作手順処理、デー
タメンテナンス処理、シミュレーション処理、その他の
処理を行う。メインメモリ200は、これらの諸処理を
実行するためのプログラムやデータを記憶する。配管系
統図を入力手段500から入力すると、CRT400に
画面表示し、マンマシンI.F.300からの指示によ
り、前述した諸処理を実行する。必要な情報は、印字出
力手段600を介して印字出力する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a piping system monitoring and control system of a hydroelectric power plant according to an embodiment of the present invention. CPU1
00 performs monitoring control processing, operation procedure processing, data maintenance processing, simulation processing, and other processing of the piping system. The main memory 200 stores programs and data for executing these various processes. When the piping system diagram is input from the input means 500, a screen is displayed on the CRT 400, and the man-machine I.D. F. The various processes described above are executed according to an instruction from 300. Necessary information is printed out via the print output unit 600.

【0007】本発明の特徴は、配管系統の制御対象要素
を電力系統の制御対象要素に置き換えることにより、技
術の進んでいる電力系統関連の既開発技術を配管系統に
利用し、容易に操作手順表作成やシミュレーションを実
現することにある。図4は、本発明における配管系統の
設備データの置換例を示す。図4において、配管系統の
制御対象要素である配圧弁1、ストレーナ切替三方弁
2、バルブ3、ドラフト4、バルブ5〜8は、それぞれ
電力系統の制御対象要素である複合モデル1、複合モデ
ル2、遮断器3、変成器4、断路器5、6、遮断器7、
8に置き換える。ここで、電力系統の制御対象要素は、
図7に示すように、遮断器/断路器あるいはトランス等
の機器とそれらをつなぐ送電線および母線より構成され
ている。一方、配管系統の制御対象要素は、図8に示す
ように、バルブ等の機器とそれらをつなぐ配管からなっ
ている。このように、電力系統と配管系統は、似た構成
を持っており、これに着目すると、配管系統を電力系統
によって表現することが可能である。すなわち、配管系
統の設備を電力系統の設備に置き換えることにより、配
管系統用のために、特に新しいアーキテクチュアを開発
することなしに、すでに確立した電力系統のアーキテク
チャを配管系統に応用することができる。本実施形態で
は、図4に示すように、配管系統の制御対象要素を電力
系統の制御対象要素に置き換えることにより、技術の進
んでいる電力系統関連の既開発技術を配管系統に利用
し、容易に配管系統の作業手順表作成やシミュレーショ
ンを実現することができる。
A feature of the present invention is that, by replacing a control target element of a piping system with a control target element of a power system, an already developed technology related to a power system, which is advanced in technology, is used for the piping system, and an operation procedure is easily performed. The task is to create tables and simulate. FIG. 4 shows an example of replacement of facility data of a piping system in the present invention. In FIG. 4, a pressure distribution valve 1, a strainer switching three-way valve 2, a valve 3, a draft 4, and valves 5 to 8 which are control target elements of a piping system are a composite model 1 and a composite model 2 which are control target elements of an electric power system, respectively. , Circuit breaker 3, transformer 4, disconnector 5, 6, circuit breaker 7,
Replace with 8. Here, the control target elements of the power system are:
As shown in FIG. 7, it is composed of devices such as a breaker / disconnector or a transformer, and a transmission line and a bus connecting them. On the other hand, the control target element of the piping system is composed of devices such as valves and piping connecting them, as shown in FIG. As described above, the power system and the piping system have similar configurations, and if attention is paid to this, the piping system can be represented by the power system. That is, by replacing the equipment of the piping system with the equipment of the power system, the already established power system architecture can be applied to the piping system without developing a new architecture especially for the piping system. In this embodiment, as shown in FIG. 4, by replacing the control target element of the piping system with the control target element of the power system, the power system-related developed technology, which has advanced technology, can be used for the piping system. In addition, it is possible to create a work procedure table and a simulation for the piping system.

【0008】図9から図13を用いて、配管系統の機器
を電力系統の機器に置き換えて表現する例を示す。ま
ず、最も簡単な例1として、図9に手動バルブをあげ
る。手動バルブは配管の流れを接続するか、遮断するか
の機能を持っており、その状態が「開」と「閉」で表さ
れる。これは、電力系統では遮断器の「入」と「切」に
相当させることができるから、手動バルブは遮断器に置
き換えられる。
FIGS. 9 to 13 show an example in which equipment in a piping system is replaced with equipment in a power system. First, as the simplest example 1, FIG. 9 shows a manual valve. The manual valve has a function of connecting or shutting off the flow of the pipe, and its state is represented by “open” and “closed”. Since this can correspond to "on" and "off" of a circuit breaker in a power system, a manual valve is replaced with a circuit breaker.

【0009】次に、より複雑な例2を示す。配管系統に
は配圧弁という機器があり、これは、図10に示すよう
に、配圧弁上部に圧力があるか/配圧弁下部に圧力があ
るかにより、配管の流れを切り替えるものである。この
配圧弁に対応する機器は、電力系統には単独の機器とし
て存在しない。また、三方弁、ストレーナ切替三方弁等
も電力系統には単独の機器として存在しない。これは、
電力系統の機器には単独で流れの方向を変えられる機器
がないためである。しかし、電力系統の複数機器を組合
せることにより、置換することができる。すなわち、図
11に示すように、遮断器、断路器の組み合わせの電力
系統モデルに置換することができる。図11において、
配圧弁の配管A、配管B、配管Cは、それぞれ電気系の
線路端の送電線、甲母線、乙母線に対応し、配圧弁の動
作状態による流れの方向を線路端モデルの遮断器、断路
器の開閉状態の組合せによって規定する。この遮断器と
断路器からなる電力系統モデルは、変電所の回路構成要
素としてよく使用されているものである。図12に示す
ように、配圧弁上部に圧力があった場合は、甲側断路器
「切」、乙側断路器「入」、一方、図13に示すよう
に、配圧弁下部に圧力があった場合は、甲側断路器
「入」、乙側断路器「切」に相当することになる。同様
にして、配管系統の全ての機器を電力系統の機器に全て
置き換えることができる。いわば、配管系のガス、油、
水の流れを電気の流れに置き換えるものである。
Next, a more complicated example 2 will be described. In the piping system, there is a device called a pressure distribution valve, which switches the flow of the piping depending on whether there is pressure at the upper part of the pressure distribution valve or pressure at the lower part of the pressure distribution valve as shown in FIG. The device corresponding to the pressure distribution valve does not exist as a single device in the power system. Further, a three-way valve, a strainer switching three-way valve, and the like do not exist as independent devices in the power system. this is,
This is because there is no device in the power system that can independently change the flow direction. However, it can be replaced by combining a plurality of devices in the power system. That is, as shown in FIG. 11, a power system model of a combination of a circuit breaker and a disconnecting switch can be used. In FIG.
Piping A, Piping B, and Piping C of the pressure distribution valve correspond to the transmission line, instep bus, and line B at the line end of the electric system, respectively. Specified by the combination of the open / closed state of the container. The power system model including the circuit breaker and the disconnector is often used as a circuit component of a substation. As shown in FIG. 12, when there is pressure at the upper part of the pressure distribution valve, pressure is applied to the lower part of the pressure distribution valve as shown in FIG. In this case, it corresponds to the instep disconnector “ON” and the second party disconnector “OFF”. Similarly, all the devices in the piping system can be replaced with all the devices in the power system. In other words, gas, oil,
It replaces the flow of water with the flow of electricity.

【0010】これにより、図4に示すように、配管系統
の設備群は、電力系統の設備群として表すことができ
る。ここでは、配圧弁とストレーナ切替三方弁は、遮断
器、断路器からなる電力系統モデルに、バルブは遮断器
または断路器に、ドラフトは変成器にそれぞれ置換で
き、配管系統の種々の処理は、電力系統の問題として処
理できる。このようにして、従来の電力系統の監視制御
システムを用いて配管系統の監視制御も容易に実現でき
る。
Thus, as shown in FIG. 4, the equipment group of the piping system can be represented as the equipment group of the power system. Here, the pressure distribution valve and the strainer switching three-way valve can be replaced with a power system model consisting of a circuit breaker and a disconnector, the valve can be replaced with a circuit breaker or a disconnector, and the draft can be replaced with a transformer. Can be treated as a power system problem. In this way, the monitoring and control of the piping system can be easily realized using the conventional power system monitoring and control system.

【0011】図2は、本発明の監視制御システムの機能
ブロック図であり、電力系統/配管系統の共通処理及び
データベース部を示す。図2において、電力系統の特有
処理に当って、電力系統の監視制御システムがマンマシ
ンによって電力系統の諸処理つまり監視制御処理、操作
手順処理、データメンテナンス処理、シミュレーション
処理、その他の処理等をデータベースを参考にして実行
するシステムであるとき、本実施形態の監視制御システ
ムは、配管系統/電力系統変換の処理(配管系統の設備
を電力系統の設備に置換する処理)を行い、配管系統デ
ータを電力系統データに変換することによって、配管系
統の特有処理を電力系統の監視制御システムを使用して
電力系統の諸処理と同様に実行する。このように、本実
施形態では、電力系統のデータベースと各種処理を配管
系統の監視制御システムに共用することによって、シス
テムの簡素化に寄与し、また、システム開発の効率化を
図ることができる。
FIG. 2 is a functional block diagram of the monitoring control system of the present invention, showing the common processing of the electric power system / piping system and the database unit. In FIG. 2, in the power system specific processing, the power system monitoring and control system uses a man-machine to perform various processing of the power system, that is, monitoring and control processing, operation procedure processing, data maintenance processing, simulation processing, and other processing in a database. When the system is executed with reference to the above, the monitoring control system of the present embodiment performs the processing of the piping system / power system conversion (the processing of replacing the equipment of the piping system with the equipment of the power system) and converts the piping system data. By converting the data into the power system data, the specific processing of the piping system is executed in the same manner as the various processes of the power system using the power system monitoring and control system. As described above, in this embodiment, the database of the power system and the various processes are shared by the monitoring and control system of the piping system, thereby contributing to simplification of the system and increasing the efficiency of system development.

【0012】次に、図3を用いて、本発明の配管系統の
操作手順作成機能とシミュレーション機能について説明
する。図3の四角枠はCRT400の表示画面、長円枠
はCPU100の機能を示す。CRT400には、配管
系統を表示する配管系統画面ウインドウ10と操作手順
を表示する操作手順画面ウインドウ20を設ける。ま
た、配管系統画面10には、実系統の実機器応動表示1
1とシミュレーション系統の応動表示12の双方を表示
する。配管系統図を入力手段500から入力すると、C
RT400上に配管系統画面10が表示される。この配
管系統画面10において、操作手順に従って実行したい
機器をマンマシンI.F.300によって選択(機器選
択機能30)すると、その機器に対応した操作項目がポ
ップアップメニュー40として画面上に表示される。そ
のポップアップメニュー40から操作したい選択項目を
同様に選択(操作選択機能50)すると、その内容(設
備名、機器名、操作内容、時刻等)が操作手順表20に
追加される。ここで実施予定時間等も設定しておく。こ
のようにして操作したい機器を順次選択および操作内容
の設定をして操作手順表20をCRT画面上にグラフィ
カルかつ対話的に作成する。そして、この操作手順は、
指定した時刻になると、CPU100内の機器制御実行
機能60により、ソフトウエアによって自動的に実行さ
れ(又は、オペレータの実行指示により実行され)、実
機器が制御されると、その実機器の応動結果が配管系統
画面上に次々表示される。また、その操作手順実行の結
果は、自動的に操作事項報告書として自動作成され、印
字出力手段600を介して印字出力される。なお、操作
手順に論理的な矛盾が有れば、その内容をワーニングメ
ッセージ表示し、その都度修正する。一方、実機器を制
御する前に模擬確認する場合、操作手順表20のシミュ
レーション機能70を用いる。操作手順画面上にシミュ
レーション実行ボタン21等を設けておき、このボタン
を操作すると、CPU100内のシミュレーション機能
70により、ソフトウエアによって模擬実行され、その
シュミレーション結果が配管系統画面上に次々表示さ
れ、所期の系統状態となり、問題が無いかを確認する。
なお、シミュレーション実行中に実系統で状態変化等が
発生した場合は、自動的にシミュレーションを中止し、
実系統表示に復帰する。このようにして、本実施形態に
よれば、操作手順表作成は、従来の机上における紙ベー
スでの作成に比べて格段の効率向上となると共に、論理
的矛盾チェック、実機器制御前のシミュレーションによ
り、操作手順自体の信頼性向上に寄与できる。また、操
作手順の作成アルゴリズムを予め記憶させていくことに
より、操作手順を自動的に作成させる方法も採用するこ
とができる。
Next, with reference to FIG. 3, a description will be given of the operation procedure creation function and the simulation function of the piping system of the present invention. The square frame in FIG. 3 indicates the display screen of the CRT 400, and the oval frame indicates the function of the CPU 100. The CRT 400 is provided with a piping system screen window 10 for displaying a piping system and an operation procedure screen window 20 for displaying an operation procedure. In addition, on the piping system screen 10, an actual device response display 1 of the actual system is displayed.
1 and the responsive display 12 of the simulation system. When the piping system diagram is input from the input means 500, C
The piping system screen 10 is displayed on the RT 400. On the piping system screen 10, the equipment to be executed according to the operation procedure is designated by the man-machine I.M. F. When a selection is made by the device 300 (device selection function 30), an operation item corresponding to the device is displayed as a pop-up menu 40 on the screen. When a selection item to be operated is similarly selected from the pop-up menu 40 (operation selection function 50), the content (equipment name, equipment name, operation content, time, etc.) is added to the operation procedure table 20. Here, the scheduled execution time is also set. In this way, the devices to be operated are sequentially selected and the operation contents are set, and the operation procedure table 20 is graphically and interactively created on the CRT screen. And this operation procedure,
At the designated time, the device control execution function 60 in the CPU 100 is automatically executed by software (or executed according to an execution instruction of an operator), and when the actual device is controlled, the response result of the actual device is displayed. It is displayed one after another on the piping system screen. The result of the execution of the operation procedure is automatically created as an operation item report, and is printed out via the printout means 600. If there is a logical contradiction in the operation procedure, a warning message is displayed on the content, and correction is made each time. On the other hand, when performing simulation confirmation before controlling the actual device, the simulation function 70 of the operation procedure table 20 is used. A simulation execution button 21 or the like is provided on the operation procedure screen, and when this button is operated, a simulation function 70 in the CPU 100 performs simulation execution by software, and simulation results are displayed one after another on the piping system screen. System status and confirm that there are no problems.
If a state change or the like occurs in the real system during the simulation, the simulation is automatically stopped,
The display returns to the actual system display. As described above, according to the present embodiment, the creation of the operation procedure table is significantly improved compared to the conventional paper-based creation on a desk, and the logical inconsistency check and the simulation before the actual device control are performed. This can contribute to improving the reliability of the operation procedure itself. Also, a method of automatically creating an operation procedure by storing an operation procedure creation algorithm in advance can be adopted.

【0013】[0013]

【発明の効果】以上説明したように、本発明によれば、
配管系統の機器を電力系統の機器に置換すると共に、配
管系統のデータを電力系統のデータに変換して扱うた
め、配管系統の監視制御を容易に実現することができ
る。また、電力系統の開発済の監視制御機能、操作手順
作成機能、データメンテナンス機能、シミュレーション
機能等を配管系統に活用することができ、水力発電所の
配管系の運用が大幅に自動化され、効率化すると共に、
信頼性も著しく向上する。また、操作手順表作成がCR
T上でグラフィカルに効率的に実行できると共に、操作
手順実行のシミュレーションが自動的に実行可となり、
手順の誤り訂正を事前に実行することができる。
As described above, according to the present invention,
Since the equipment of the piping system is replaced with the equipment of the power system, and the data of the piping system is converted into the data of the power system and handled, the monitoring and control of the piping system can be easily realized. In addition, the developed monitoring and control function of the power system, the operation procedure creation function, the data maintenance function, the simulation function, etc. can be used for the piping system, and the operation of the piping system of the hydroelectric power plant is largely automated, improving efficiency. Along with
The reliability is also significantly improved. In addition, operation procedure table creation is CR
It can be executed graphically and efficiently on T, and the simulation of operation procedure execution can be automatically executed.
Procedure error correction can be performed in advance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態による水力発電所の配管系
統監視制御システム
FIG. 1 is a piping system monitoring control system of a hydroelectric power plant according to an embodiment of the present invention.

【図2】本発明の監視制御システムの機能ブロック図FIG. 2 is a functional block diagram of the monitoring control system of the present invention.

【図3】本発明の配管系統の操作手順作成とシミュレー
ションの説明図
FIG. 3 is an explanatory diagram of creating an operation procedure and a simulation of the piping system of the present invention.

【図4】本発明における配管系統の設備データの置換例FIG. 4 is an example of replacement of equipment data of a piping system in the present invention.

【図5】水力発電所用監視制御システムの構成例FIG. 5 is a configuration example of a monitoring and control system for a hydroelectric power plant.

【図6】水力発電所の配管系統の例FIG. 6 shows an example of a piping system of a hydroelectric power plant.

【図7】電力系統設備の説明図FIG. 7 is an explanatory diagram of power system equipment.

【図8】配管系統設備の説明図FIG. 8 is an explanatory diagram of piping system equipment.

【図9】手動バルブの遮断器への置換の説明図FIG. 9 is an explanatory diagram of replacement of a manual valve with a circuit breaker.

【図10】配圧弁の電力系統複合機器モデルへの置換の
説明図(その1)
FIG. 10 is an explanatory view of replacement of a pressure distribution valve with a power system composite device model (part 1).

【図11】配圧弁の電力系統複合機器モデルへの置換の
説明図(その2)
FIG. 11 is an explanatory diagram of replacement of a pressure distribution valve with a power system composite device model (part 2).

【図12】配圧弁の電力系統複合機器モデルへの置換の
説明図(その3)
FIG. 12 is an explanatory diagram of replacement of a pressure distribution valve with a power system composite device model (part 3).

【図13】配圧弁の電力系統複合機器モデルへの置換の
説明図(その4)
FIG. 13 is an explanatory diagram of replacement of a pressure distribution valve with a power system composite device model (part 4).

【符号の説明】[Explanation of symbols]

1…配圧弁、複合モデル、2…ストレーナ切替三方弁、
複合モデル、3…バルブ、遮断器、4…ドラフト、変成
器、5、6…バルブ、断路器、7、8…バルブ、遮断
器、10…配管系統画面ウインドウ、11…実機器応動
表示、12…シミュレーション応動表示、20…操作手
順画面ウインドウ、21…シミュレーション実行ボタ
ン、30…機器選択機能、40…ポップアップメニュ
ー、50…操作選択機能、60…機器制御実行機能、7
0…シミュレーション機能、100…CPU、200…
メインメモリ、300…マンマシンI.F.、400…
CRT、500…配管系統図入力手段、600…印字出
力手段
1 ... pressure distribution valve, compound model, 2 ... strainer switching three-way valve,
Composite model, 3 ... Valve, circuit breaker, 4 ... Draft, transformer, 5, 6 ... Valve, disconnector, 7,8 ... Valve, circuit breaker, 10 ... Piping system screen window, 11 ... Response display on actual equipment, 12 ... Simulation response display, 20 ... Operation procedure screen window, 21 ... Simulation execution button, 30 ... Device selection function, 40 ... Popup menu, 50 ... Operation selection function, 60 ... Device control execution function, 7
0: simulation function, 100: CPU, 200:
Main memory, 300 ... Man machine I. F. , 400 ...
CRT, 500: piping system diagram input means, 600: print output means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 隆志 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Takashi Uchida 5-2-1 Omikacho, Hitachi City, Ibaraki Prefecture Inside the Omika Plant, Hitachi, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 配管系統の制御対象要素を電力系統の制
御対象要素に置き換えると共に、配管系統のデータベー
スを電力系統のデータベースに変換し、電力系統のマン
マシン処理によって実行する監視制御処理、操作手順処
理、データメンテナンス処理、シミュレーション処理、
その他の処理を配管系統のマンマシン処理の実行に共通
させることを特徴とする水力発電所の配管系統監視制御
システム。
The present invention relates to a monitoring control process and an operation procedure in which a control target element of a piping system is replaced with a control target element of a power system, a database of a piping system is converted into a database of a power system, and a man-machine process of the power system is executed. Processing, data maintenance processing, simulation processing,
A piping system monitoring and control system for a hydroelectric power plant, characterized in that other processing is common to execution of man-machine processing of a piping system.
【請求項2】 請求項1において、配管系統の制御対象
要素を電力系統の制御対象要素に置き換えるとき、配管
系統の制御対象要素に対応する電力系統の制御対象要素
が存在しない場合、電力系統の複数機器の組合せによっ
て規定することを特徴とする水力発電所の配管系統監視
制御システム。
2. The method according to claim 1, wherein when the control target element of the piping system is replaced with the control target element of the power system, when there is no control target element of the power system corresponding to the control target element of the piping system, A piping system monitoring and control system for a hydroelectric power plant, which is defined by a combination of a plurality of devices.
【請求項3】 請求項1または請求項2において、当該
配管系統監視制御システムは、CRT画面上においてグ
ラフィカルかつ対話的に配管系統操作手順を作成する機
能を有することを特徴とする水力発電所の配管系統監視
制御システム。
3. The hydraulic power plant according to claim 1, wherein the piping system monitoring and control system has a function of graphically and interactively creating a piping system operation procedure on a CRT screen. Piping system monitoring and control system.
【請求項4】 請求項3において、当該配管系統監視制
御システムは、配管操作手順に従って配管系統の制御対
象要素の制御を行う機能を有し、CRT画面上にその応
動結果を表示することを特徴とする水力発電所の配管系
統監視制御システム。
4. The piping system monitoring control system according to claim 3, wherein the piping system monitoring and control system has a function of controlling a control target element of the piping system in accordance with a piping operation procedure, and displays a response result on a CRT screen. The monitoring and control system of the piping system of the hydropower plant.
【請求項5】 請求項3において、当該配管系統監視制
御システムは、配管操作手順のシミュレーション実行を
行う機能を有し、CRT画面上にシミュレーション結果
を応動表示することを特徴とする水力発電所の配管系統
監視制御システム。
5. The hydraulic power plant according to claim 3, wherein the piping system monitoring and control system has a function of executing a simulation of a piping operation procedure, and displays a simulation result on a CRT screen. Piping system monitoring and control system.
JP3353998A 1998-02-02 1998-02-02 Piping system supervisory and controlling system for hydraulic power plant Pending JPH11219212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3353998A JPH11219212A (en) 1998-02-02 1998-02-02 Piping system supervisory and controlling system for hydraulic power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3353998A JPH11219212A (en) 1998-02-02 1998-02-02 Piping system supervisory and controlling system for hydraulic power plant

Publications (1)

Publication Number Publication Date
JPH11219212A true JPH11219212A (en) 1999-08-10

Family

ID=12389378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3353998A Pending JPH11219212A (en) 1998-02-02 1998-02-02 Piping system supervisory and controlling system for hydraulic power plant

Country Status (1)

Country Link
JP (1) JPH11219212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109578191A (en) * 2019-01-10 2019-04-05 中国长江电力股份有限公司 Governor master connects, leads and matches and the hydraulic system for tracking intelligent fault diagnosis processing method of proportioning valve
CN113673100A (en) * 2021-08-18 2021-11-19 雅砻江流域水电开发有限公司 Three-dimensional visual intelligent simulation system of hydropower station and training method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109578191A (en) * 2019-01-10 2019-04-05 中国长江电力股份有限公司 Governor master connects, leads and matches and the hydraulic system for tracking intelligent fault diagnosis processing method of proportioning valve
CN113673100A (en) * 2021-08-18 2021-11-19 雅砻江流域水电开发有限公司 Three-dimensional visual intelligent simulation system of hydropower station and training method thereof

Similar Documents

Publication Publication Date Title
Hotta et al. Implementation of a real-time expert system for a restoration guide in a dispatching center
CA2743214A1 (en) System and method for optimized decision-making in water supply networks and/or water supply operations
CN104360835A (en) Automatic sequential control operation ticket generation method based on topologic mode
US7756696B2 (en) Simulation system of technical plant
Propst Calculating electrical risk and reliability
JPH11219212A (en) Piping system supervisory and controlling system for hydraulic power plant
JP2000357200A (en) Method for planning knowledge base
Bastl et al. Disturbance analysis systems
Vadari et al. An online implementation of transient stability in a dispatcher training simulator
CN110161881A (en) A kind of power station emulation mode and analogue system based on actively perceive
CN110275499A (en) A kind of power plant DCS integrated control method
Magee et al. A large two computer dispatcher training simulator
Yujin et al. On operation ticket expert system for a substation using object oriented technique
Kamwa et al. Petri net based specification of a real-time supervisory controller for an autonomous wind-diesel system
CN117996945A (en) Intelligent monitoring method for load power supply of nuclear power plant
Chen et al. Graphical Modeling and simulation of the Power Station Switch System
Lee et al. The integrated monitoring and control system for the combined cycle power plant
Carre et al. Towards MV network automation
Li et al. Research on the construction method of virtual mapping digital twin system for substation
Fujii et al. Recent computerized power generation plant automation and advanced man-machine interface system
Bartak et al. VVER-440 training simulators upgrades-Experience of CORYS TESS
Ancelin et al. From LESSEPS to the workstation for reliability engineers
Romero-Jiménez et al. 110 MW Geothermal Power Plant Multiple Simulator, Using Wireless Technology
Harding et al. An integrated information management system for distribution networks
Wang et al. Multiagent fault‐diagnosis expert system in power systems