JPH11218752A - Liquid crystal electrooptical element - Google Patents

Liquid crystal electrooptical element

Info

Publication number
JPH11218752A
JPH11218752A JP10331030A JP33103098A JPH11218752A JP H11218752 A JPH11218752 A JP H11218752A JP 10331030 A JP10331030 A JP 10331030A JP 33103098 A JP33103098 A JP 33103098A JP H11218752 A JPH11218752 A JP H11218752A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
selective reflection
substrate
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10331030A
Other languages
Japanese (ja)
Other versions
JP2973321B2 (en
Inventor
Eiji Chino
英治 千野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP10331030A priority Critical patent/JP2973321B2/en
Publication of JPH11218752A publication Critical patent/JPH11218752A/en
Application granted granted Critical
Publication of JP2973321B2 publication Critical patent/JP2973321B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a liquid crystal electrooptical element, in which a good contrast is maintained even though the number of circuit element is increased, by arranging the selectively reflecting means, which reflects the light beams having first polarizing axis components and transmits light beams having second polarizing axis components that are orthogonal to the first polarizing axis components. SOLUTION: A liquid crystal cell is composed of liquid crystal molecules 7 which are held by a substrate 2 having a transparent electrode 3 and an alignment layer 4 and a substrate 2 having a reflective member 8, has a reflection function and an alignment layer 4, thorough seal sections 5. Then, a cubic type selectively reflecting member is arranged for the cell to oppose against the member 8 so that a selectively reflecting member 9 of the cubic type selectively reflecting member and a substrate surface 2 of the liquid crystal electrooptical element make a 45 degree angle. In th element, the incident direction of S polarized light beams 15 is located in a same side of the cell with respect to the member 9 and the direction makes 90 degrees with respect to the substrate surface of the cell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示素子、液
晶テレビ、液晶プロジェクター等に使用される液晶電気
光学素子の構造、表示方法に関する。
The present invention relates to a structure and a display method of a liquid crystal electro-optical element used for a liquid crystal display device, a liquid crystal television, a liquid crystal projector and the like.

【0002】[0002]

【従来の技術】従来の液晶電気光学素子は図3に示す如
く対向した2枚の透明電極、あるいは回路素子17を有
する基板2の間にシール部5により液晶7を挟持した液
晶セルと、この液晶セルを挟んで両側に配置した偏光板
1から成り立つ。また特に視角補償のために、上記液晶
電気セル以外の光学的異方体11をさらに備えることも
ある。
2. Description of the Related Art As shown in FIG. 3, a conventional liquid crystal electro-optical element comprises a liquid crystal cell in which a liquid crystal 7 is sandwiched between two transparent electrodes facing each other or a substrate 2 having a circuit element 17 by a seal portion 5. It comprises a polarizing plate 1 arranged on both sides of a liquid crystal cell. In addition, an optically anisotropic body 11 other than the above-mentioned liquid crystal electric cell may be further provided for compensating a viewing angle.

【0003】[0003]

【発明が解決しようとする課題】近年、表示体に要求さ
れる表示可能画素数の増加にともない、液晶電気光学素
子の基板上に形成される回路素子数が急増している。透
過型の液晶セルの場合、透過できる光量はこれにともな
い減少するため、結果として得られる液晶電気光学素子
は表示可能画素数は増加するが、コントラストが低く、
暗い画像しか得られない傾向があった。これを改善する
ために、バックライトの採用、及び該バックライトの光
量の増加、あるいは回路素子の構造、設計の改良がなさ
れているが、効果は不十分であった。
In recent years, with the increase in the number of displayable pixels required for a display, the number of circuit elements formed on a substrate of a liquid crystal electro-optical element has increased rapidly. In the case of a transmissive liquid crystal cell, the amount of light that can be transmitted decreases accordingly, so that the resulting liquid crystal electro-optical element increases the number of displayable pixels, but has low contrast,
There was a tendency for only dark images to be obtained. In order to improve this, the adoption of a backlight and the increase in the amount of light of the backlight, or the structure and design of circuit elements have been improved, but the effect has been insufficient.

【0004】本発明は、これらの欠点を改良し、回路素
子数が増加してもコントラストが良好な液晶電気光学素
子を提供することを目的とする。
It is an object of the present invention to improve these disadvantages and to provide a liquid crystal electro-optical element having good contrast even when the number of circuit elements increases.

【0005】[0005]

【課題を解決するための手段】本発明者は、これら従来
の液晶電気光学素子が本質的に有していた問題を解決す
るために鋭意努力した結果本発明に至った。
The present inventors have made intensive efforts to solve the problems inherent in these conventional liquid crystal electro-optical elements, and have arrived at the present invention.

【0006】すなわち、本発明の液晶電気光学素子は、
少なくとも電極を備えた第一の基板と電極を備えた第二
の基板とそれらにより挟持された液晶よりなる液晶セル
と反射面が平面状の選択反射部材とを含む液晶電気光学
素子において、該液晶セルに反射機能を有する反射部材
を設け、かつ該反対部材と液晶セルを挟んだ反対側に、
反射両面が平面状の選択反射部材を特徴とし、さらには
液晶セルの基板付近の液晶分子の長軸が、電界無印加時
には基板に対してほぼ垂直に配向し、また電界印加時に
は液晶分子の長軸の基板への投射線が液晶セルの基板と
該選択反射部材とがなす交線に対して約45度傾き、か
つ液晶分子の誘導率異方性の値が負でであることを特徴
とする。
That is, the liquid crystal electro-optical element of the present invention comprises:
A liquid crystal electro-optical element including at least a first substrate having electrodes, a second substrate having electrodes, a liquid crystal cell sandwiched between them, and a selective reflection member having a flat reflecting surface. A reflection member having a reflection function is provided in the cell, and on the opposite side of the opposite member and the liquid crystal cell,
It features a selective reflection member with a flat reflecting surface on both sides, and the major axis of the liquid crystal molecules near the substrate of the liquid crystal cell is oriented almost perpendicular to the substrate when no electric field is applied, and the length of the liquid crystal molecules when an electric field is applied The projection line of the axis to the substrate is inclined at about 45 degrees with respect to the intersection line between the liquid crystal cell substrate and the selective reflection member, and the value of the anisotropy of the liquid crystal molecules is negative. I do.

【0007】図1に、本発明による液晶電気光学素子の
基本的な断面図(off状態)を示す。
FIG. 1 shows a basic sectional view (off state) of a liquid crystal electro-optical element according to the present invention.

【0008】本発明による液晶電気光学素子は、反射型
の液晶セルと、反対面が平面状の選択反射部材が組み合
わされていることが必須である。反射型の液晶セルに必
須な反射機能を有する反射部材8としては、Al、C
r、Ag、Si、Ni、Mg、Pt、Auなどの反射機
能を有する金属単体、あるいはこれらの混合物からなる
板、箔、有機高分子フィルムヘの蒸着膜、スパッタ膜、
ガラス基板自身への蒸着膜、スパッタ膜などが好ましく
用いられる。これらの反射部材8は、基板の液晶と接す
る面に形成されるか、あるいは基板を挟んで反対側の液
晶とは接しない面に形成されてもよい。また、電極、あ
るいは回路素子の一部分、あるいは全てをこれらの金属
によって形成してもよいし、またさらには、電極、ある
いは回路素子の一部分、あるいは全てをこれらの金属に
よって被覆してもよい。これらの反射機能を有する反射
部材以外の電極、回路素子は通常の方法よって作製され
る。
In the liquid crystal electro-optical element according to the present invention, it is essential that a reflection type liquid crystal cell and a selective reflection member having a flat opposite surface are combined. As the reflection member 8 having a reflection function essential for a reflection type liquid crystal cell, Al, C
r, Ag, Si, Ni, Mg, Pt, Au, etc., a metal having a reflective function alone, or a plate, a foil, a vapor-deposited film on an organic polymer film, a sputtered film made of a mixture thereof,
A vapor-deposited film or a sputtered film on the glass substrate itself is preferably used. These reflecting members 8 may be formed on the surface of the substrate that is in contact with the liquid crystal, or may be formed on the opposite side of the substrate that is not in contact with the liquid crystal. Further, a part or all of the electrode or the circuit element may be formed of these metals, or a part or all of the electrode or the circuit element may be covered with these metals. These electrodes and circuit elements other than the reflecting member having the reflecting function are manufactured by a usual method.

【0009】反射型の液晶セルと組み合わされる、反射
面が平面状の選択反射部材は図4に示す如く2個のプリ
ズム状の光透過体10の斜面に金属あるいは金属酸化物
からなる選択反射部材9を形成した後両斜面を接触させ
た物で、さらに必要に応じては反射防止膜12を反射面
に設置したたいわゆるキュービック型選択反射部材であ
ってもよい。この場合は、平面状の選択反射部材の選択
反射平面が液晶セルの基板面に対して約45°傾けた場
合が本発明に対して最も効率よく作用する。キュービッ
ク型の該選択反射部材では、図5に示す如く選択反射部
材9に対して45°の角度で、選択反射部材に平行な偏
光の振動方向を持つ偏光、S偏光15(偏光の振動方向
が紙面に垂直な偏光)を入射すると、S偏光は入射方向
に対して90°の方向に反射される。また選択反射部材
に対して45°の角度で、斜面と直交する振動方向を持
つ偏光、P偏光16(偏光の振動方向が紙面に平行な偏
光)を入射すると、入射光は選択反射部材の影響を受け
ずに直進する。従って、入射光の偏光方向を変化させる
ことによって透過光あるいは反射光として制御が可能と
なる。
As shown in FIG. 4, a selective reflecting member having a flat reflecting surface combined with a reflective liquid crystal cell is a selective reflecting member made of metal or metal oxide on the inclined surfaces of two prism-shaped light transmitting members 10 as shown in FIG. A so-called cubic-type selective reflection member in which both slopes are brought into contact after the formation of 9 and, if necessary, an anti-reflection film 12 is provided on the reflection surface. In this case, the case where the selective reflection plane of the planar selective reflection member is inclined by about 45 ° with respect to the substrate surface of the liquid crystal cell works most efficiently with respect to the present invention. In the cubic type selective reflection member, as shown in FIG. 5, at a 45 ° angle to the selective reflection member 9, polarized light having a vibration direction of polarized light parallel to the selective reflection member, S-polarized light 15 (polarized light has a vibration direction of (Polarized light perpendicular to the paper surface), the S-polarized light is reflected in a direction at 90 ° to the incident direction. Also, when a polarized light having a vibration direction orthogonal to the slope and a P-polarized light 16 (polarized light whose polarization direction is parallel to the paper surface) is incident on the selective reflection member at an angle of 45 °, the incident light is affected by the selective reflection member. Go straight without receiving. Therefore, by changing the polarization direction of the incident light, control as transmitted light or reflected light becomes possible.

【0010】つぎに、選択反射部材と液晶セルを組み合
わせた本発明による液晶電気光学素子において、入射光
の偏光方向を変化させることによって透過光の制御が可
能となり、その結果画素のon−offが可能になるこ
とを説明する。画素をon−offするのに使用する光
はS偏光である。S偏光が本発明による液晶電気光学素
子に入射した場合の、S偏光の進行方向と液晶セル内の
液晶分子のプレチルト角の関係を考える(このとき、選
択反射部材と液晶セルの図1のように配置する)。まず
はじめに、図1のように液晶セル内の液晶分子のプレチ
ルト角6がほぼ垂直の場合を考える。選択反射部材9に
よって反射され、液晶セルに入射したS偏光15は、液
晶分子の複屈折の影響をうけることなく液晶セル内の反
射部材8で反射されS偏光の状態で液晶セルからでてい
く。そして再度選択反射部材9で反射され、S偏光は入
射方向へ戻っていく。そのため、この場合には選択反射
部材を挟んで液晶セルと反対側から液晶電気光学素子を
観察すると、光が選択反射部材を透過しないため画素は
暗状態、off状態である。
Next, in the liquid crystal electro-optical element according to the present invention in which the selective reflection member and the liquid crystal cell are combined, the transmitted light can be controlled by changing the polarization direction of the incident light, and as a result, the on-off of the pixel is reduced. Explain what is possible. The light used to turn the pixels on-off is S-polarized. Consider the relationship between the traveling direction of S-polarized light and the pretilt angle of the liquid crystal molecules in the liquid crystal cell when S-polarized light is incident on the liquid crystal electro-optical element according to the present invention (at this time, as shown in FIG. To place it). First, consider the case where the pretilt angle 6 of the liquid crystal molecules in the liquid crystal cell is almost vertical as shown in FIG. The S-polarized light 15 reflected by the selective reflection member 9 and incident on the liquid crystal cell is reflected by the reflection member 8 in the liquid crystal cell without being affected by the birefringence of the liquid crystal molecules, and exits the liquid crystal cell in a state of S polarization. . Then, the S-polarized light is reflected again by the selective reflection member 9 and returns in the incident direction. Therefore, in this case, when the liquid crystal electro-optical element is observed from the side opposite to the liquid crystal cell with the selective reflection member interposed therebetween, the pixels are in a dark state and an off state because light does not pass through the selective reflection member.

【0011】次に、図2のように液晶セル内の液晶分子
のプレチルト角6が30〜60度傾いた時を考える(こ
のときの、液晶分子長軸の配向方向は図9のようであ
る)。選択反射部材9によって反射され、液晶セルに入
射したS偏光15は、液晶分子の複屈折の影響をうけて
楕円偏光になって液晶セルから反射されでてくる。液晶
セルからでてきた楕円偏光のうち、S偏光成分15は選
択反射部材9により反射され入射方向に戻っていく。し
かし残り大部分の楕円偏光のP偏光成分16は選択反射
部材9の影響をうけずに入射方向と90度をなす方向に
選択反射部材を透過していく(P偏光成分の割合を最大
にするには図9のように液晶分子長軸を配置するのが望
ましい)。この場合には選択反射部材を挟んで液晶セル
と反対側から液晶電気光学素子を観察すると、光が選択
反射部材を透過するため画素は明状態、on状態にな
る。
Next, consider the case where the pretilt angle 6 of the liquid crystal molecules in the liquid crystal cell is inclined by 30 to 60 degrees as shown in FIG. 2 (the orientation direction of the long axis of the liquid crystal molecules at this time is as shown in FIG. 9). ). The S-polarized light 15 reflected by the selective reflection member 9 and incident on the liquid crystal cell becomes elliptically polarized light under the influence of birefringence of the liquid crystal molecules, and is reflected from the liquid crystal cell. The s-polarized light component 15 of the elliptically polarized light output from the liquid crystal cell is reflected by the selective reflection member 9 and returns to the incident direction. However, most of the remaining elliptically polarized P-polarized light component 16 passes through the selective reflection member in a direction at 90 degrees to the incident direction without being affected by the selective reflection member 9 (to maximize the ratio of the P-polarized light component). It is desirable to arrange the liquid crystal molecule long axis as shown in FIG. 9). In this case, when the liquid crystal electro-optical element is observed from the opposite side of the liquid crystal cell with the selective reflection member interposed therebetween, the pixels are in a bright state and an on state because light passes through the selective reflection member.

【0012】このように本発明による液晶電気光学素子
では、液晶セル内の液晶分子のプレチルト角6を変化さ
せることにより画素のon−offが可能である。
As described above, in the liquid crystal electro-optical device according to the present invention, the pixels can be turned on and off by changing the pretilt angle 6 of the liquid crystal molecules in the liquid crystal cell.

【0013】プレチルト角6を変化させる方法として
は、電圧印加、磁界印加の2方法が一般的であるが、電
圧印加のはうがより一般的である。電圧印加により液晶
分子のプレチルト角を変化させることについては、後で
説明する。
As a method of changing the pretilt angle 6, two methods of voltage application and magnetic field application are general, but voltage application is more general. Changing the pretilt angle of liquid crystal molecules by applying a voltage will be described later.

【0014】また選択反射部材は、図6に例示する如く
平板状の基板14の上に金属あるいは金属酸化物などか
らなる蒸着膜9を所定の厚さに蒸着せしめたもので、さ
らに必要に応じては反射防止膜12を設置したいわゆる
平板状選択反射部材でもよい。この平板状の選択反射部
材は、図7に示す如く該斜面に対して約58°の角度
で、S偏光15を入射すると、入射方向に対して約11
8°の方向に反射される。また同様に、斜面に対して約
58°の角度で、P偏光16を入射すると、入射光は選
択反射部材の影響を受けずに直進する。この場合も前述
のキュービック型選択反射部材と同様の仕組みで、本発
明により光のon−offが可能である。
The selective reflection member is formed by depositing a vapor deposition film 9 made of metal or metal oxide to a predetermined thickness on a flat substrate 14 as shown in FIG. Alternatively, a so-called plate-shaped selective reflection member provided with an antireflection film 12 may be used. When the S-polarized light 15 is incident on the inclined surface at an angle of about 58 ° with respect to the slope as shown in FIG.
It is reflected in the direction of 8 °. Similarly, when the P-polarized light 16 is incident at an angle of about 58 ° with respect to the slope, the incident light travels straight without being affected by the selective reflection member. In this case, the light can be turned on and off according to the present invention by the same mechanism as that of the cubic-type selective reflection member described above.

【0015】このように該選択反射部材は、選択的に偏
光を通過させるという意味において、従来の液晶電気光
学素子に使用されてきた偏光フィルムと類似の作用を示
す。図8の19、21はそれぞれ選択反射部材、及び従
来の偏光フィルムを使用した場合の最大透過可能光量を
示し、20、22はそれぞれ選択反射部材、及び従来の
偏光フィルムを使用した場合の最小透過可能光量を示
す。しかし、図8から明らかなように該選択反射部材自
身による透過光の吸収は著しく小さいため、該選択反射
部材を使用した液晶電気光学素子は、明るく、コントラ
ストが高いメリットを有する。より以上にコントラスト
を高めるために、該選択反射部材を複数個用いたり、他
の偏光素子と併用することも可能である。
As described above, the selective reflection member has a function similar to that of a polarizing film used in a conventional liquid crystal electro-optical element in the sense of selectively transmitting polarized light. In FIG. 8, 19 and 21 indicate the maximum transmissible light amounts when the selective reflection member and the conventional polarizing film are used, respectively, and 20 and 22 indicate the minimum transmission amount when the selective reflection member and the conventional polarizing film are used, respectively. Shows the possible light quantity. However, as is apparent from FIG. 8, since the absorption of transmitted light by the selective reflection member itself is extremely small, the liquid crystal electro-optical element using the selective reflection member has advantages of being bright and having high contrast. In order to further enhance the contrast, it is possible to use a plurality of the selective reflection members or to use them together with another polarizing element.

【0016】電圧無印加時の液晶セル内の液晶分子の配
向は、第一の基板、第二の基板のいずれにおいてもホメ
オトロピック配向に近いチルト配向であり、その基板面
と液晶分子長軸とのなす角プレチルト角6は、70〜8
9.9°が好ましく、液晶分子の安定配向の点から、基
板面に対して83〜89.5°が好ましい。このプレチ
ルト角は、液晶セル電圧が印加されたときに、液晶分子
がある一定の方向に倒れることを目的とする。
The orientation of the liquid crystal molecules in the liquid crystal cell when no voltage is applied is a tilt orientation close to homeotropic alignment on both the first substrate and the second substrate. The pretilt angle 6 is 70 to 8
9.9 ° is preferable, and from the viewpoint of stable alignment of liquid crystal molecules, it is preferably 83 to 89.5 ° with respect to the substrate surface. The purpose of this pretilt angle is to allow liquid crystal molecules to fall in a certain direction when a liquid crystal cell voltage is applied.

【0017】このプレチルト角を実現するための液晶分
子の配向方法としては、ポリイミド、SiあるいはTi
化合物、Cr錯体などの垂直配向能力を有する配向剤を
基板表面に塗布後ラビングして配向膜4を形成する方
法、あるいはSiO、MgFなどの金属酸化物を基板
の法線方向に対して約85°程度の方向から斜方蒸着し
たのち上述の垂直配向剤を塗布して配向膜4を形成する
方法なとが代表的である。ポリイミドとしては、側鎖に
長鎖アルキル鎖を有するものが代表的である。Siカッ
プリング剤としては、ヘプタデカフルオロデシルメチル
ジクロロシラン、ヘブタデカフルオロデシルメチルジメ
トキシシラン、ヘブタデカフルオロデシルトリメトキシ
シラン、n−オクタデシルトリメトキシシラン、などが
好ましく用いられる。Ti化合物としては、Ti(O−
、Ti(O−C、Ti(O−C
1735などのTiアルコキシド化合物、及び前
記Tiアルコキシド化合物の部分加水分解物Ti(O−
)α(OCOC1735)β、Ti(O−C
)α(OC(CH)CHCOCH)β(α=
1〜3 β=4−α)などのTiアシレート化合物など
が好ましく用いられる。また、Cr錯体としては、酪
酸、カプロン酸、ベラルゴン酸、カプリン酸、ウンデカ
ン酸、ステアリン酸、ミリスチン酸などの脂肪族カルボ
ン酸Cr錯体、バーフルオロノナン酸などの弗素置換カ
ルボン酸Cr錯体などが好ましく用いられる。金属酸化
物としては、MgF、Al、Sm、Si
O、CeF、SiOなどが好ましく用いられる。こ
れらのSiあるいはTiカップリング剤、及びCr錯体
は、単独で使用しても良く、また互いに混合して用いて
も同様の効果を得ることができる。斜め蒸着の入射角度
としては基板垂線方向に対して、70〜89.9度が好
ましく、液晶分子の配向安定性から83〜89.5度が
更に好ましい。
As a method of aligning liquid crystal molecules to realize the pretilt angle, polyimide, Si or Ti
A method of forming an alignment film 4 by applying an aligning agent having a vertical alignment ability such as a compound and a Cr complex on the substrate surface and then rubbing the same, or a method of forming a metal oxide such as SiO and MgF 2 on the substrate in a direction normal to the substrate. A typical method is to form the alignment film 4 by oblique deposition from a direction of about 85 ° and then applying the above-described vertical alignment agent. As a polyimide, a polyimide having a long alkyl chain in a side chain is typical. As the Si coupling agent, heptadecafluorodecylmethyldichlorosilane, heptadecafluorodecylmethyldimethoxysilane, heptadecafluorodecyltrimethoxysilane, n-octadecyltrimethoxysilane, and the like are preferably used. As the Ti compound, Ti (O-
C 3 H 7) 4, Ti (O-C 4 H 9) 4, Ti (O-C
17 H 35 ) 4 , and a partial hydrolyzate of the Ti alkoxide compound, Ti (O—
C 3 H 7 ) α (OCOC 17 H 35 ) β, Ti (OC
3 H 7 ) α (OC (CH 3 ) CHCOCH 3 ) β (α =
Ti acylate compounds such as 1-3 β = 4-α) are preferably used. Further, as the Cr complex, aliphatic carboxylic acid Cr complexes such as butyric acid, caproic acid, berargonic acid, capric acid, undecanoic acid, stearic acid, and myristic acid, and fluorine-substituted carboxylic acid Cr complexes such as verfluorononanoic acid are preferable. Used. As the metal oxide, MgF 2 , Al 2 O 3 , Sm 2 O 3 , Si
O, CeF 3 , SiO 2 and the like are preferably used. These Si or Ti coupling agents and Cr complexes may be used alone, or the same effect can be obtained by mixing them with each other. The incident angle of the oblique deposition is preferably 70 to 89.9 degrees with respect to the direction perpendicular to the substrate, and more preferably 83 to 89.5 degrees with respect to the alignment stability of the liquid crystal molecules.

【0018】少なくともこのようにして形成された電
極、あるいは回路素子および配向膜を有する2枚の基板
によって挟持される液晶分子7は、その誘電率異方性△
εの値(液晶分子の長軸方向に平行及び垂直な方向の誘
電率をそれぞれε‖、ε⊥とすると誘電率異方性△εは
△ε=ε‖−ε⊥で表わされる)が負であることが望ま
しい。△εの負であることにより2枚の基板間に電圧を
印加したときに、液晶分子が前述の基板に対してほぼ垂
直に配向した状態から印加した電圧に応じて液晶分子長
軸の傾斜角度を変化させる。このときの液晶分子の配列
方向としては、液晶セルを平面状の選択反射部材を挟ん
で反対側から見ると、図9のようになる。図9で、13
は電圧無印加時の液晶分子の基板への投影像を示し、1
4は電圧印加時の液晶分子の基板面への投影像を示す。
基板間に電圧が印加されていない場合は、図1に示すよ
うに、基板に対して液晶分子の長軸方向がほぼ垂直に配
列するため、選択反射部剤9により反射されたS偏光1
5は液晶分子の複屈折の影響を受けずにS偏光15の状
態で反射されて液晶セルからでていく。そして、再度選
択反射部材9によって反射され入射方向に戻っていく。
逆に基板間に電圧が印加された場合は、図2に示すよう
に、基板に対してほぼ垂直に配列していた液晶分子の長
軸方向が、印加された電圧に応じてその液晶分子長軸の
傾斜方向を変化させる。そのため、選択反射部剤9によ
り反射されて液晶セルに入射したS偏光15は液晶分子
の複屈折の液晶を受けて楕円偏光の状態で反射されて液
晶セルからでていく。そして、選択反射部材9に到達し
た楕円偏光のうち、P偏光成分16は透過直進し、S偏
光成分15は反射されて入射方向に戻っていく。このと
き電界印加時の液晶分子の長軸の基板への投射線が、駅
所セルの基板と該選択反射部材とがなす交線に対して、
図9に示すように約45度傾いているときが最大のコト
ラスト(P偏光成分量が最大)を示す。
At least the liquid crystal molecules 7 sandwiched between the electrodes formed in this way or the two substrates having the circuit element and the alignment film have a dielectric anisotropy Δ △.
The value of ε (where the dielectric constants in the directions parallel and perpendicular to the major axis direction of the liquid crystal molecules are ε‖ and ε⊥, respectively, the dielectric anisotropy △ ε is expressed by △ ε = ε‖−ε⊥) is negative. It is desirable that When a voltage is applied between the two substrates due to the negative Δε, the tilt angle of the long axis of the liquid crystal molecules according to the applied voltage from the state where the liquid crystal molecules are oriented almost perpendicular to the above-mentioned substrate. To change. At this time, the arrangement direction of the liquid crystal molecules is as shown in FIG. 9 when the liquid crystal cell is viewed from the opposite side with the planar selective reflection member interposed therebetween. In FIG.
Indicates a projected image of liquid crystal molecules on the substrate when no voltage is applied, and
4 shows a projected image of the liquid crystal molecules on the substrate surface when a voltage is applied.
When no voltage is applied between the substrates, as shown in FIG. 1, since the major axis direction of the liquid crystal molecules is arranged almost perpendicular to the substrate, the S-polarized light 1 reflected by the selective reflection agent 9
5 is reflected by the S-polarized light 15 without being affected by the birefringence of the liquid crystal molecules and exits from the liquid crystal cell. Then, the light is reflected again by the selective reflection member 9 and returns to the incident direction.
Conversely, when a voltage is applied between the substrates, as shown in FIG. 2, the long axis direction of the liquid crystal molecules arranged substantially perpendicular to the substrate changes the length of the liquid crystal molecules according to the applied voltage. Change the tilt direction of the shaft. Therefore, the S-polarized light 15 reflected by the selective reflection member 9 and entering the liquid crystal cell receives the birefringent liquid crystal of the liquid crystal molecules, is reflected in the state of elliptically polarized light, and exits the liquid crystal cell. Then, of the elliptically polarized light that has reached the selective reflection member 9, the P-polarized light component 16 is transmitted straight, and the S-polarized light component 15 is reflected and returns to the incident direction. At this time, the projection line of the long axis of the liquid crystal molecules upon application of the electric field to the substrate of the station cell and the intersection line formed by the selective reflection member,
As shown in FIG. 9, when tilted by about 45 degrees, the maximum contrast (P polarization component amount is maximum) is shown.

【0019】以上のようにして、本発明による液晶電気
光学素子では、一度選択反射部材9によって反射された
S偏光15を液晶セルへの印加電圧の有無で、その偏光
方向を変化させることにより画素のon状態とoff状
態の切り替えが可能となる。
As described above, in the liquid crystal electro-optical element according to the present invention, the polarization direction of the S-polarized light 15 once reflected by the selective reflection member 9 is changed depending on the presence or absence of a voltage applied to the liquid crystal cell. Can be switched between the on state and the off state.

【0020】以下、実施例によって本発明をより詳細に
説明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0021】[0021]

【発明の実施の形態】[実施例1]図1は、本発明による
実施例の液晶電気光学素子の断面図を示すものである。
透明電極3及び配向膜4を有する基板2と、反射機能を
有する反射部材8と配向膜4を有する基板2がシール部
5を介して挟持された液晶分子7によって液晶セルが構
成される。さらに、この液晶セルの反射機能を有する反
射部材8と対持する形で設置される選択反射部材9とに
より基本的に本発明の液晶電気光学素子が構成される。
ここでは、その選択反射部材9と液晶セルの基板面2が
45度の角度をなすように配置される。
[Embodiment 1] FIG. 1 is a sectional view of a liquid crystal electro-optical element according to an embodiment of the present invention.
A liquid crystal cell is constituted by the substrate 2 having the transparent electrode 3 and the alignment film 4, and the liquid crystal molecules 7 in which the reflection member 8 having the reflection function and the substrate 2 having the alignment film 4 are sandwiched via the seal portion 5. Further, the liquid crystal electro-optical element of the present invention is basically constituted by the reflection member 8 having the reflection function of the liquid crystal cell and the selective reflection member 9 installed in a manner to support the liquid crystal cell.
Here, the selective reflection member 9 and the substrate surface 2 of the liquid crystal cell are arranged so as to form an angle of 45 degrees.

【0022】液晶セルの配向膜4は垂直配向処理を行な
ってからラビングしたものである。垂直配向処理は、垂
直配向剤としてミリスチン酸Cr錯体とTi(OC
の等量混合物を、スピンコートすることによって
行なった。次に、この垂直配向処理をした基板表面にラ
ビングを施した。ラビングは、ナイロン植毛布を用いた
回転ラビングで2キロ荷重下で1回こすった。ラビング
方向は、上下の基板で逆方向で、かつ電界印加時の液晶
分子の長軸の基板への投射線が、液晶セルの基板と該選
択反射部剤とがなす交線に対して約45度傾いているよ
うに設定した(図9参照)。
The alignment film 4 of the liquid crystal cell is rubbed after performing a vertical alignment process. In the vertical alignment treatment, a myristic acid Cr complex and Ti (OC 2 H
5 ) The mixture was prepared by spin-coating a mixture of 4 equivalents. Next, rubbing was performed on the surface of the substrate subjected to the vertical alignment treatment. The rubbing was rubbed once under a load of 2 kg by rotating rubbing using a nylon flocking cloth. The rubbing direction is opposite to that of the upper and lower substrates, and the projection line of the long axis of the liquid crystal molecules upon application of the electric field to the substrate is about 45 ° with respect to the intersection line between the liquid crystal cell substrate and the selective reflection agent. (See FIG. 9).

【0023】反射機能を有する反射膜8としては、Al
を1000オングストローム真空蒸着したものを用い
た。
The reflection film 8 having a reflection function is made of Al
Was vacuum-deposited by 1000 Å.

【0024】このようにして得た基板を組み立て、液晶
7を封入した.セルギャップは、6.0μmに設定し
た。封入した液晶7は、メルク社製ZLI−4318
(△ε=−2.0 △n=0.1243)を使用した。
The substrate thus obtained was assembled, and the liquid crystal 7 was sealed. The cell gap was set to 6.0 μm. The encapsulated liquid crystal 7 is ZLI-4318 manufactured by Merck.
(△ ε = −2.0 Δn = 0.1243) was used.

【0025】得られた液晶セルのプレチルト角6は87
度であった(プレチルト角は、磁場中でのクリスタルロ
ーテーション法により測定した)。
The pretilt angle 6 of the obtained liquid crystal cell is 87
(Pretilt angle was measured by a crystal rotation method in a magnetic field).

【0026】このようにして作成した液晶セルに、反射
機能を有する反射部材8と対持する形で、キュービック
型選択反射部材をその選択反射部材9と液晶電気光学素
子の基板面2が45度の角度をなすよう配置することに
より本発明の液晶電気光学素子を作成した。この液晶電
気光学素子において、S偏光15の入射方向は、選択反
射面9に対し液晶セルと同じ側にあり、かつ、液晶セル
の基板面と90度の角度をなすように配置した。
In the liquid crystal cell thus prepared, the cubic-type selective reflection member is held at 45 ° by the selective reflection member 9 and the substrate surface 2 of the liquid crystal electro-optical element so as to support the reflection member 8 having a reflection function. The liquid crystal electro-optical element of the present invention was produced by arranging the liquid crystal electro-optical element at an angle of. In this liquid crystal electro-optical element, the incident direction of the S-polarized light 15 was arranged on the same side as the liquid crystal cell with respect to the selective reflection surface 9 and was arranged at an angle of 90 degrees with the substrate surface of the liquid crystal cell.

【0027】得られた液晶電気光学素子の特性を表1に
示す。
Table 1 shows the characteristics of the obtained liquid crystal electro-optical element.

【0028】[実施例2]実施例1において、コントラス
トをさらに高めるために、入射光源と選択反射部剤との
間にキュービック型選択反射部剤を新たに設置した以外
は実施例1と全く同様にした。両選択反射部剤の選択反
射面が約90度の角度をなすように設置した。この液晶
電気光学素子の電圧印加時の断面図を図10にしめす。
Example 2 Example 1 is exactly the same as Example 1 except that a cubic-type selective reflection agent is newly provided between the incident light source and the selective reflection agent in order to further enhance the contrast. I made it. The selective reflection surfaces of both selective reflection members were set so as to form an angle of about 90 degrees. FIG. 10 is a cross-sectional view of the liquid crystal electro-optical element when a voltage is applied.

【0029】得られた液晶電気光学素子の特性を表lに
示す。
Table 1 shows the characteristics of the obtained liquid crystal electro-optical element.

【0030】[実施例3]実施例2において、入射光源と
選択反射部材との間にはコントラストをさらに高めるた
めに設置したキュービック型選択反射部材を、いわゆる
グラン・ティラー偏光プリズム18に変えた以外は実施
例1と全く同様にした。液晶電気光学素子の配置の概略
図を図11に示す。グラン・ティラー偏光プリズム18
は図12に示すように、入射光線をP偏光に変換する。
[Third Embodiment] In the second embodiment, the cubic-type selective reflection member provided between the incident light source and the selective reflection member for further enhancing the contrast is changed to a so-called Gran-Tiller polarizing prism 18. Was exactly the same as in Example 1. FIG. 11 shows a schematic view of the arrangement of the liquid crystal electro-optical element. Gran Tiller Polarizing Prism 18
Converts the incident light into P-polarized light, as shown in FIG.

【0031】得られた液晶電気光学素子の特性を表1に
示す。
Table 1 shows the characteristics of the obtained liquid crystal electro-optical element.

【0032】[実施例4]実施例2において、入射光源と
選択反射部材との間にはコントラストをさらに高めるた
めに設置したキュービック型選択反射部材を、いわゆる
グラン・トムソン偏光プリズム19に変えた以外は実施
例1と全く同様にした。液晶電気光学素子の電圧印加時
の断面図を図13に示す。グラン・ティラー偏光プリズ
ム19は図14に示すように、入射光線をS偏光に変換
する。
[Embodiment 4] In Embodiment 2, a cubic-type selective reflection member provided between the incident light source and the selective reflection member for further enhancing the contrast is replaced with a so-called Glan-Thomson polarizing prism 19. Was exactly the same as in Example 1. FIG. 13 is a sectional view of the liquid crystal electro-optical element when a voltage is applied. The Gran-Tiller polarizing prism 19 converts the incident light into S-polarized light as shown in FIG.

【0033】得られた液晶電気光学素子の特性を表1に
示す。
Table 1 shows the characteristics of the obtained liquid crystal electro-optical element.

【0034】[実施例5]実施例2において、入射光源と
選択反射部材との間にはコントラストをさらに高めるた
めに設置したキュービック型選択反射部材を、従来の偏
光フィルムに変えS偏光が入射するように配置配正した
以外は実施例1と全く同様にした。液晶電気光学素子の
電圧印加時の断面図を図15に示す。
Fifth Embodiment In the second embodiment, the cubic-type selective reflection member provided between the incident light source and the selective reflection member for further enhancing the contrast is changed to a conventional polarizing film, and S-polarized light enters. The procedure was exactly the same as that of Example 1 except that the arrangement was adjusted as described above. FIG. 15 is a cross-sectional view of the liquid crystal electro-optical element when a voltage is applied.

【0035】得られた液晶電気光学素子の特性を表1に
示す。
Table 1 shows the characteristics of the obtained liquid crystal electro-optical element.

【0036】[実施例6]実施例2において、配向膜をS
iOを入射角度85度で1400オングストローム斜方
蒸着したのちにSiカップリング剤、オクタデシルトリ
メトキシシラン、をスピンコートにより塗布した以外は
実施例1と全く同様にした。
[Embodiment 6] In the embodiment 2, the alignment film is made of S
The procedure was the same as in Example 1, except that iO was obliquely vapor-deposited at 1400 angstroms at an incident angle of 85 ° and then a Si coupling agent and octadecyltrimethoxysilane were applied by spin coating.

【0037】得られた液晶電気光学素子の特性を表1に
示す。
Table 1 shows the characteristics of the obtained liquid crystal electro-optical element.

【0038】[実施例7]実施例2において、反射機能を
有する反射膜として、Crを1200オングストローム
蒸着した以外は実施例1とまったく同様にした。
Example 7 The procedure of Example 2 was carried out exactly as in Example 1, except that the reflective film having a reflecting function was formed by depositing Cr at 1200 Å.

【0039】得られた液晶電気光学素子の特性を表1に
示す。
Table 1 shows the characteristics of the obtained liquid crystal electro-optical element.

【0040】[比較例]図16に示す如く対向した2枚の
透明電極3を有する基板2間に液晶7を挟持した液晶セ
ルと、この液晶セルを挟んで両側に配置した偏光板1か
ら成り立つ従来からの液晶電気光学素子を比較例とす
る。反射機能を有する反射部材を透明電極にかえ、選択
反射膜を一対の偏光フィルムに変えた以実施例1と全く
同様にした。
COMPARATIVE EXAMPLE As shown in FIG. 16, the liquid crystal cell comprises a liquid crystal 7 sandwiched between substrates 2 having two transparent electrodes 3 opposed to each other, and polarizing plates 1 arranged on both sides of the liquid crystal cell. A conventional liquid crystal electro-optical element is used as a comparative example. The procedure was the same as in Example 1 except that the reflecting member having a reflecting function was replaced with a transparent electrode, and the selective reflection film was changed to a pair of polarizing films.

【0041】得られた液晶電気光学素子の特性を表1に
示す。
Table 1 shows the characteristics of the obtained liquid crystal electro-optical element.

【0042】なお、表1中の測定項目はそれぞれ下記の
項目を表わし、測定はすべて30°で実施した。
The measurement items in Table 1 represent the following items, and all the measurements were performed at 30 °.

【0043】 [0043]

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【発明の効果】以上のように、本発明による液晶電気光
学素子を使用すれば回路素子数が増加してもコントラス
トが高い液晶電気光学素子を得ることができる。
As described above, when the liquid crystal electro-optical element according to the present invention is used, a liquid crystal electro-optical element having a high contrast can be obtained even if the number of circuit elements increases.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による液晶電気光学素子の電圧無印加時
の基本的な概念図。
FIG. 1 is a basic conceptual diagram of a liquid crystal electro-optical element according to the present invention when no voltage is applied.

【図2】本発明による液晶電気光学素子の電圧印加時の
基本的な概念図。
FIG. 2 is a basic conceptual diagram when a voltage is applied to the liquid crystal electro-optical element according to the present invention.

【図3】従来の液晶電気光学素子の概略を示す図。FIG. 3 is a view schematically showing a conventional liquid crystal electro-optical element.

【図4】いわゆるキュービック型選択反射部材を示す
図。
FIG. 4 is a diagram illustrating a so-called cubic-type selective reflection member.

【図5】いわゆるキュービック型の選択反射部材の、選
択的な反射、および透過を示す図。
FIG. 5 is a view showing selective reflection and transmission of a so-called cubic-type selective reflection member.

【図6】いわゆる平板状選択反射部材を示す図。FIG. 6 is a view showing a so-called flat selective reflection member.

【図7】いわゆる平板状の選択反射部材の、選択的な反
射、および透過を示す図。
FIG. 7 is a diagram showing selective reflection and transmission of a so-called flat selective reflection member.

【図8】従来の偏光板と本発明で使用している選択反射
部材の透過率を比較した図。
FIG. 8 is a diagram comparing the transmittances of a conventional polarizing plate and a selective reflection member used in the present invention.

【図9】電圧印加時と電圧無印加時の液晶分子の基板へ
の投射を示した図。
FIG. 9 is a diagram illustrating projection of liquid crystal molecules onto a substrate when a voltage is applied and when no voltage is applied.

【図10】本発明による液晶電気光学素子において、選
択反射部材を複数使用した場合の電圧印加時の断面図を
示す図。
FIG. 10 is a cross-sectional view of a liquid crystal electro-optical element according to the present invention when a plurality of selective reflection members are used and a voltage is applied.

【図11】本発明による液晶電気光学素子に、グラン・
ティう一偏光プリズムを組み合わせた場合の概略を示す
図。
FIG. 11 shows a liquid crystal electro-optical element according to the present invention.
The figure which shows the outline at the time of combining a U-polarization prism.

【図12】グラン・ティラー偏光プリズムにおける光の
偏光状態を示す図。
FIG. 12 is a diagram showing a polarization state of light in a Gran-Tiller polarization prism.

【図13】本弁明による液晶電気光学素子に、グラン・
トムソン偏光プリズムを組み合わせた場合の電圧印加時
の断面図を示す図。
FIG. 13 shows a liquid crystal electro-optical element according to the present invention,
The figure which shows the sectional view at the time of voltage application when combining a Thomson polarizing prism.

【図14】グラン・トムソン偏光プリズムにおける光の
偏光状態を示す図。
FIG. 14 is a diagram illustrating a polarization state of light in a Glan-Thompson polarizing prism.

【図15】本発明による液晶電気光学素子に、偏フィル
ムを組み合わせた場合の電圧印加時の断面図を示す図。
FIG. 15 is a cross-sectional view of a liquid crystal electro-optical device according to the present invention when a voltage is applied when a polarizing film is combined.

【図16】比較例として使用した従来の液晶電気光学素
子の断面図を示す図。
FIG. 16 is a cross-sectional view of a conventional liquid crystal electro-optical element used as a comparative example.

【符号の説明】[Explanation of symbols]

1 偏光板 2 基板 3 透明電極 4 配向膜 5 シール部 6 プレチルト角 7 液晶分子 8 反射機能を有する反射部材 9 金属あるいは金属酸化物からなる選択反射膜 10 プリズム状の光透過体 11 光学的異方体 12 反射防止膜 13 電圧無印加時の液晶分子の基板への投影図 14 電圧印加時の液晶分子の基板への投影図 15 S偏光 16 P偏光 17 回路素子 18 グランテイラー偏光プリズム 19 グラントムソン偏光プリズム 20 入射光方向 DESCRIPTION OF SYMBOLS 1 Polarizing plate 2 Substrate 3 Transparent electrode 4 Alignment film 5 Sealing part 6 Pretilt angle 7 Liquid crystal molecule 8 Reflection member having a reflection function 9 Selective reflection film made of metal or metal oxide 10 Prism-shaped light transmitting body 11 Optical anisotropy Body 12 Antireflection film 13 Projection of liquid crystal molecules onto substrate when no voltage is applied 14 Projection of liquid crystal molecules onto substrate when voltage is applied 15 S-polarized light 16 P-polarized light 17 Circuit element 18 Glan-Taylor polarizing prism 19 Glan-Thompson polarized light Prism 20 Incident light direction

【手続補正書】[Procedure amendment]

【提出日】平成10年12月21日[Submission date] December 21, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】すなわち、本発明の液晶電気光学素子は、
一対の基板間に液晶を挟持してなる反射型液晶セルを有
する液晶電気光学素子において、前記液晶セルの光入射
側に、第1偏光軸成分の光を反射し且つ該第1偏光軸成
分と直交する第2偏光軸成分の光を透過する反射面を有
する選択反射手段が配置されてなり、前記液晶は電界印
加時に前記液晶の分子の前記基板への投影光の長軸方向
が前記反射面と前記基板の平面とのなす交線に対して約
45度となる方向に傾き、前記液晶セルは前記選択反射
手段から入射する入射光を楕円偏光の光として出射する
ことを特徴とする。
That is, the liquid crystal electro-optical element of the present invention comprises:
In a liquid crystal electro-optical element having a reflection type liquid crystal cell in which a liquid crystal is sandwiched between a pair of substrates, a light of a first polarization axis component is reflected on a light incident side of the liquid crystal cell, and A selective reflection unit having a reflection surface that transmits light of the second orthogonal polarization axis component is disposed, and the long axis direction of light projected from the liquid crystal molecules onto the substrate when the electric field is applied is changed to the reflection surface. And the liquid crystal cell emits the incident light from the selective reflection means as elliptically polarized light.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一対の基板間に液晶を挟持してなる反射型
液晶セルを有する液晶電気光学素子において、 前記液晶セルの光入射側に、第1偏光軸成分の光を反射
し且つ該第1偏光軸成分と直交する第2偏光軸成分の光
を透過する選択反射手段が配置されてなり、 前記液晶セルの液晶は、電界無印加時には入射した第1
偏光軸成分の光を第1偏光軸成分の光として出射し、電
界印加時には前記液晶分子の前記基板への投影光の長軸
方向が、前記選択反射手段の反射面と前記基板の平面と
のなす交線に対して約45度になるように傾き入射した
前記第1偏光軸成分の光を楕円偏光の光として出射する
ことを特徴とする液晶電気光学素子。
1. A liquid crystal electro-optical element having a reflection type liquid crystal cell in which liquid crystal is sandwiched between a pair of substrates, wherein a light of a first polarization axis component is reflected on a light incident side of the liquid crystal cell, and A selective reflection means for transmitting light of a second polarization axis component orthogonal to the one polarization axis component is disposed, and the liquid crystal of the liquid crystal cell enters the first incident light when no electric field is applied.
The light of the polarization axis component is emitted as the light of the first polarization axis component, and when an electric field is applied, the major axis direction of the projection light of the liquid crystal molecules onto the substrate is shifted between the reflection surface of the selective reflection unit and the plane of the substrate. A liquid crystal electro-optical element, wherein the light of the first polarization axis component, which is incident at an inclination of about 45 degrees with respect to the intersection line, is emitted as elliptically polarized light.
JP10331030A 1998-11-20 1998-11-20 Liquid crystal electro-optical element Expired - Lifetime JP2973321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10331030A JP2973321B2 (en) 1998-11-20 1998-11-20 Liquid crystal electro-optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10331030A JP2973321B2 (en) 1998-11-20 1998-11-20 Liquid crystal electro-optical element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1218128A Division JP3055786B2 (en) 1989-08-24 1989-08-24 Liquid crystal electro-optical element

Publications (2)

Publication Number Publication Date
JPH11218752A true JPH11218752A (en) 1999-08-10
JP2973321B2 JP2973321B2 (en) 1999-11-08

Family

ID=18239048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10331030A Expired - Lifetime JP2973321B2 (en) 1998-11-20 1998-11-20 Liquid crystal electro-optical element

Country Status (1)

Country Link
JP (1) JP2973321B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003075080A1 (en) * 2002-03-05 2003-09-12 Citizen Watch Co., Ltd. Optical switch
WO2004070468A1 (en) * 2003-02-10 2004-08-19 Fujitsu Limited Optical switch device
US7050230B2 (en) 2003-02-10 2006-05-23 Fujitsu Limited Optical switch device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003075080A1 (en) * 2002-03-05 2003-09-12 Citizen Watch Co., Ltd. Optical switch
US7099526B2 (en) 2002-03-05 2006-08-29 Citizen Watch Co., Ltd. Optical switch
WO2004070468A1 (en) * 2003-02-10 2004-08-19 Fujitsu Limited Optical switch device
US7050230B2 (en) 2003-02-10 2006-05-23 Fujitsu Limited Optical switch device

Also Published As

Publication number Publication date
JP2973321B2 (en) 1999-11-08

Similar Documents

Publication Publication Date Title
JP3445284B2 (en) Laminated retarder and liquid crystal display device comprising the same
JP3793890B2 (en) Reflective fringe field drive mode liquid crystal display
EP0448124A2 (en) Optical modulation device and display apparatus
JPH1164852A (en) Projection type liquid crystal display device
US20060114381A1 (en) Liquid crystal display device with dual modes
JP2003322855A (en) Liquid crystal display element
JP2006146088A (en) Liquid crystal display device
JP2973321B2 (en) Liquid crystal electro-optical element
JP3322397B2 (en) Laminated retarder
JP2000047194A (en) Liquid crystal display device
JP3055786B2 (en) Liquid crystal electro-optical element
US20060146270A1 (en) OCB mode transflective liquid crystal display device
US20060038951A1 (en) Liquid crystal display device with a pretilt angle of liquid crystal molecules
JPH09203895A (en) Liquid crystal display element and optical anisotropic element
JP3081615B2 (en) Liquid crystal electro-optical device
JPH11101977A (en) Liquid crystal electro-optical element
JPH10239668A (en) Reflection type liquid crystal display device
JPH03243919A (en) Liquid crystal electrooptical element
JP2003186014A (en) Liquid crystal display element
JPH09222601A (en) Liquid crystal display element and optically anisotropic element
JP3185798B2 (en) Liquid crystal electro-optical device
JPH1090727A (en) Liquid crystal display element
JP3233903B2 (en) Liquid crystal electro-optical device
JP2755428B2 (en) Reflective liquid crystal display
JPH0996810A (en) Liquid crystal display element and optically anisotropic element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

EXPY Cancellation because of completion of term