JPH11218536A - Method for computing production speed of creatinine by using hemodialytic data - Google Patents

Method for computing production speed of creatinine by using hemodialytic data

Info

Publication number
JPH11218536A
JPH11218536A JP10033618A JP3361898A JPH11218536A JP H11218536 A JPH11218536 A JP H11218536A JP 10033618 A JP10033618 A JP 10033618A JP 3361898 A JP3361898 A JP 3361898A JP H11218536 A JPH11218536 A JP H11218536A
Authority
JP
Japan
Prior art keywords
creatinine
dialysis
concentration
formula
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10033618A
Other languages
Japanese (ja)
Other versions
JP3901827B2 (en
Inventor
Toru Niisato
徹 新里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP03361898A priority Critical patent/JP3901827B2/en
Publication of JPH11218536A publication Critical patent/JPH11218536A/en
Application granted granted Critical
Publication of JP3901827B2 publication Critical patent/JP3901827B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a useful index regarding the muscle amount, the protein nutrition state or the like of a dialyzed patient by using only hemodialytic data by using a specific formula. SOLUTION: In the method, the production speed of creatinine is computed by using only hemodialytic data while Formula I is used. In the formula, g (24 h) represents the production speed of creatinine (in g/kg/d), Cs represents the concentration of the creatinine before a first or second dislysis per week (in mg/d(), and A represents a numerical value which is found by Formula II in the case of the first dislysis per week and by Formula III in the case of the second dialysis per week. In the Formula II and Formula III, Td represents the time for a dialysis (in h), and Ce represents the concentration of the creatinine after the first or second dialysis per week. Thereby, by using an analyzed result by a blood sampling method which is performed usually in a dialysis center and by using dialysis recorded data which is recorded usually, the production speed of the creatinine of a patient is found, and a useful index regarding the muscle amount, the protein nutrition state or the like of the pateint can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、血液透析データを
用いたクレアチニン産生速度の新規な算定方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for calculating creatinine production rate using hemodialysis data.

【0002】[0002]

【従来の技術】クレアチニン産生と大まかな相関がある
クレアチニンの尿排泄は筋肉量を反映すると報告されて
いる。最近ケシャビア(Keshaviah)(J. Am.
Soc.Nephrol 1994;4:1475−85)らは、
透析液中へのクレアチニン排泄量に基づいて決定された
血液透析患者のクレアチニン産生速度もまた筋肉量と相
関することを示した。体内の総蛋白質の約半分は筋肉を
形成しているので、クレアチニン産生速度は蛋白栄養状
態の有用な指標となると考えられる。クレアチニン産生
速度は透析終了時のクレアチニン濃度と次回の透析前ク
レアチニン濃度から容易に決定できる。しかしながら、
殆ど全ての透析センターに於ける生化学分析用の血液採
取は1回の透析の前後に行なわれている。従って、通常
の血液採取による分析結果を基に上記方法でクレアチニ
ン産生速度を決定することは不可能であった。
BACKGROUND OF THE INVENTION It has been reported that urinary excretion of creatinine, which roughly correlates with creatinine production, reflects muscle mass. Recently Keshaviah (J. Am.
Soc. Nephrol 1994; 4: 1475-85) et al.
It was shown that the rate of creatinine production in hemodialysis patients, which was determined based on the amount of creatinine excreted in the dialysate, also correlated with muscle mass. Since about half of the total protein in the body forms muscle, creatinine production rate may be a useful indicator of protein nutritional status. The creatinine production rate can be easily determined from the creatinine concentration at the end of dialysis and the creatinine concentration before the next dialysis. However,
Blood collection for biochemical analysis in almost all dialysis centers is performed before and after one dialysis. Therefore, it was impossible to determine the creatinine production rate by the above method based on the analysis results obtained by ordinary blood sampling.

【0003】[0003]

【本発明が解決しようとする課題】本発明の目的は、上
記した従来技術の問題点に鑑み、現在の透析センターに
於いて通常行なわれている血液採取方法による分析結果
を用いてクレアチニン産生速度を計算できる方法を提供
することにある。本発明ではこの方法を用いることによ
って、透析患者の筋肉量、蛋白栄養状態等に関する有用
な指標を提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, it is an object of the present invention to provide a method for producing creatinine using the results of analysis by a blood collection method usually performed in a current dialysis center. It is to provide a method by which can be calculated. In the present invention, it is an object of the present invention to provide a useful index relating to the muscle mass, protein nutritional status, and the like of a dialysis patient by using this method.

【0004】[0004]

【課題を解決するための手段】本発明者は、実測した透
析前クレアチニン濃度と透析後クレアチニン濃度からク
レアチニン産生速度を決定するための方程式を開発し
た。開発にあたって本発明者は、1)患者は月、水、金
あるいは火、木、土のどちらか一方の曜日に週に3回の
透析治療を受ける、2)残存腎機能は殆ど無い、3)消
化管クレアチニンクリアランスは0.04リットル/k
g/day一定である、4)透析中の消化管クレアチニ
ンクリアランスは無視できる、5)血清クレアチニン濃
度は週の1回目あるいは2回目の透析前後値のみ測定す
る、6)患者は安定状態にある、7)クレアチニン分布
容積(リットル)の理想体重(kg)に対する比率は
0.49であるという7つの仮定を加えて本発明の血液
透析データを用いたクレアチニン産生速度の算定方法を
得るに至った。
The present inventors have developed an equation for determining the rate of creatinine production from the measured creatinine concentration before dialysis and the creatinine concentration after dialysis. In development, the inventor states that 1) the patient receives dialysis treatment three times a week on one of the following days of the week: Monday, Wednesday, Friday or Tuesday, Thursday or Saturday; 2) little residual renal function; 3) Gastrointestinal creatinine clearance 0.04 l / k
g / day is constant, 4) gastrointestinal creatinine clearance during dialysis can be ignored, 5) serum creatinine concentration is measured only before and after the first or second dialysis weekly, 6) the patient is in a stable state, 7) With the addition of seven assumptions that the ratio of the creatinine distribution volume (liter) to the ideal body weight (kg) is 0.49, a method for calculating the creatinine production rate using the hemodialysis data of the present invention was obtained.

【0005】すなわち本発明は、式(1)を用いること
を特徴とする血液透析データを用いたクレアチニン産生
速度の算定方法である。 g(24h)=7056Cs/A (1) ここで、g(24h)はクレアチニン産生速度(g/k
g/d)、Csは週の1回目あるいは2回目の透析前ク
レアチニン濃度(mg/dl)、Aは週の1回目の透析
については式(2)を、週の2回目の透析については式
(3)を用いて求める数値を示す。式(2)及び式
(3)において、Tdは透析時間(h)、Ceは週の1
回目あるいは2回目の透析後クレアチニン濃度(mg/
dl)、Csは前記と同様に週の1回目あるいは2回目
の透析前クレアチニン濃度(mg/dl)を示す。
That is, the present invention is a method for calculating a creatinine production rate using hemodialysis data, characterized by using the equation (1). g (24h) = 7056Cs / A (1) Here, g (24h) is a creatinine production rate (g / k).
g / d), Cs is the creatinine concentration (mg / dl) before the first or second week of dialysis, A is the formula (2) for the first dialysis of the week, and the formula is 2 for the second dialysis of the week. The numerical value obtained by using (3) is shown. In Equations (2) and (3), Td is the dialysis time (h), and Ce is 1 of the week.
Creatinine concentration (mg / mg) after the second or second dialysis
dl) and Cs indicate the creatinine concentration (mg / dl) before the first or second dialysis in the same manner as described above.

【0006】[0006]

【数3】 (Equation 3)

【0007】[0007]

【数4】 (Equation 4)

【0008】本発明で示した数式は係数の有効数字を下
位の桁まで表示しているが、計算結果として得られる数
字の有効数字が2桁まで正確に算出できる範囲で省略し
てもかまわない。好ましい有効数字は3桁である。
In the formulas shown in the present invention, the significant figures of the coefficients are displayed to the lower digits, but may be omitted as long as the significant figures of the numbers obtained as the calculation result can be accurately calculated to two digits. . Preferred significant figures are three digits.

【0009】[0009]

【発明の実施の形態】以下本発明を更に詳細に説明す
る。本発明に於いてクレアチニン分布容積(リットル)
の理想体重(kg)に対する比率は0.49であるが、
以下の様にして求めた。本発明者は、次式(4)を用い
患者36人の透析リバウンド後のクレアチニン分布容積
V(リットル)を測定した。 V=(E−Cs・ΔBW)/(Cs−Cr) (4) ここで、Csは透析前クレアチニン濃度(mg/l)、
Crは透析後リバウンドクレアチニン濃度(mg/
l)、ΔΒWは透析による体重減少量(kg)、Eは透
析により透析液中へ除去されたクレアチニン量(mg)
である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in more detail. In the present invention, creatinine distribution volume (liter)
The ratio of to the ideal body weight (kg) is 0.49,
It was determined as follows. The present inventor measured the creatinine distribution volume V (liter) after dialysis rebound of 36 patients using the following equation (4). V = (E−Cs · ΔBW) / (Cs−Cr) (4) where Cs is the creatinine concentration before dialysis (mg / l),
Cr is the rebound creatinine concentration (mg /
l), ΔΒW is the weight loss by dialysis (kg), E is the amount of creatinine removed into the dialysate by dialysis (mg)
It is.

【0010】本発明に於いて、理想体重IBW(kg)
は次式(5)により求めた。 IBW=0.9(H−100) (5) ここでHは身長(cm)である。この様にして求めたク
レアチニン分布容積の理想体重に対する比率は0.49
±0.06(平均値±標準偏差)であり、変動係数は1
2%であった。
In the present invention, the ideal body weight IBW (kg)
Was determined by the following equation (5). IBW = 0.9 (H-100) (5) Here, H is height (cm). The ratio of the creatinine distribution volume thus determined to the ideal body weight is 0.49.
± 0.06 (mean ± standard deviation) and the coefficient of variation is 1
2%.

【0011】(クレアチニン産生速度の計算)本発明者
は1プールモデル、透析尿素動態の可変容積モデルの解
析から、クレアチニンクリアランスと透析時間の積をク
レアチニン分布容積で除した値(Kt/V)が一定なら
安定期透析前クレアチニン濃度Csはクレアチニン産生
速度をクレアチニン分布容積で除した値(g/V)に比
例することを見出した。 Cs=a・g/V (6) なお、クレアチニンのKt/Vをこれ以降単にKt/V
と記載する。
(Calculation of creatinine production rate) From the analysis of the one pool model and the variable volume model of dialysis urea kinetics, the present inventor found that the value (Kt / V) obtained by dividing the product of creatinine clearance and dialysis time by the creatinine distribution volume was obtained. It has been found that the creatinine concentration Cs before the dialysis in the stable period is proportional to the value (g / V) obtained by dividing the creatinine production rate by the creatinine distribution volume, if it is constant. Cs = a · g / V (6) Note that Kt / V of creatinine is simply referred to as Kt / V hereinafter.
It is described.

【0012】この一次方程式の傾きaはKt/Vの値に
より、また透析時間により変化する。そこで、0.4か
ら1.1の範囲で、0.05きざみのKt/Vかつ15
0から330分の範囲で15分きざみの透析時間に対し
て傾きaを決定した。それぞれのKt/Vにおける傾き
aを決定するために、g/Vが4.25×10-5mg/
ml/min(≒30mg/kg/day)に於けるC
s(mg/dl)をコンピュータを用いて算出し、これ
を用いてCs・V/g(=a)を計算した。その結果、
透析時間が150から330分の範囲では、Kt/Vに
かかわらず、Cs・V/gの変動はほとんど認められな
かった。
The slope a of this linear equation changes depending on the value of Kt / V and on the dialysis time. Therefore, in the range of 0.4 to 1.1, Kt / V and 15 in increments of 0.05
The slope a was determined for the dialysis time in 15-minute increments in the range from 0 to 330 minutes. To determine the slope a at each Kt / V, g / V is 4.25 × 10 −5 mg / g
C at ml / min (≒ 30 mg / kg / day)
s (mg / dl) was calculated using a computer, and Cs · V / g (= a) was calculated using this. as a result,
When the dialysis time was in the range of 150 to 330 minutes, little change in Cs · V / g was observed regardless of Kt / V.

【0013】そこで、透析時間240分におけるCs対
g/VとKt/Vとの間の相関を決定した。すなわち、
Cs対g/VをKt/Vの関数としてプロットし、これ
をレーベンバーグ(Levenberg)−マークォー
ト(Marquadt)演算法を使い、非線型最小二乗
曲線近似法を用いて方程式化した。結果として次式
(7)がデータに最も合う式として得られた(r>0.
9999)。
Thus, the correlation between Cs versus g / V and Kt / V at a dialysis time of 240 minutes was determined. That is,
Cs versus g / V was plotted as a function of Kt / V, which was equationed using a Levenberg-Marquardt algorithm and using a nonlinear least-squares curve approximation. As a result, the following equation (7) was obtained as the equation that best fits the data (r> 0.
9999).

【0014】[0014]

【数5】 (式中、Cs, g/V, Kt/V は前記と同じ意味で用いられ
る。以下同様)
(Equation 5) (In the formula, Cs, g / V, and Kt / V are used in the same meaning as described above. The same applies hereinafter.)

【0015】次に式(7)Kt/VをCe/Csにおき
かえるためにKt/VとCe/Csとの関係を求めた。
血液透析中のクレアチニン出納は次の式(8)で表わさ
れることが知られている。
Next, the relationship between Kt / V and Ce / Cs was determined in order to replace Kt / V with Ce / Cs in equation (7).
It is known that creatinine balance during hemodialysis is represented by the following equation (8).

【0016】[0016]

【数6】 (Equation 6)

【0017】式(7)および式(8)から次式(9)が
得られる。
The following equation (9) is obtained from the equations (7) and (8).

【0018】[0018]

【数7】 (Equation 7)

【0019】式中、Tdは透析時間(min)である。In the formula, Td is the dialysis time (min).

【0020】ここで、ln(Ce/Cs)とKt/Vと
の関係を図1に示した。図1に示す様に、Tdが一定の
とき、式(9)から計算されたCe/Csの対数値、す
なわちln(Ce/Cs)とKt/Vとの関係は直線関
係であった。そこで、ln(Ce/Cs)とKt/Vと
の関係をy=ax+bの形の一次方程式で表現するため
に、120分から360分の範囲の15分きざみのTd
においてln(Ce/Cs)の値をKt/Vの二つの値
(0.4と1.1)において計算した。ここでxはln
(Ce/Cs)であり、yはKt/Vである。このよう
にして求めたln(Ce/Cs)対Kt/Vの線の傾き
aをTdの関数としてプロットすると、aとTdとの関
係も直線関係であることがわかった。そこで、Tdとa
の回帰式を次式(10)で表わすと(r>0.99
9)、 a=−0.000316Td−0.99925 (10) となった。
Here, the relationship between In (Ce / Cs) and Kt / V is shown in FIG. As shown in FIG. 1, when Td is constant, the logarithmic value of Ce / Cs calculated from Expression (9), that is, the relationship between ln (Ce / Cs) and Kt / V is a linear relationship. Therefore, in order to express the relationship between In (Ce / Cs) and Kt / V by a linear equation of the form y = ax + b, Td in 15-minute intervals in the range of 120 minutes to 360 minutes
The value of ln (Ce / Cs) was calculated at two values of Kt / V (0.4 and 1.1). Where x is ln
(Ce / Cs), and y is Kt / V. When plotting the slope a of the line of ln (Ce / Cs) versus Kt / V obtained as a function of Td, it was found that the relationship between a and Td was also a linear relationship. Therefore, Td and a
Is expressed by the following equation (10) (r> 0.99)
9), a = −0.000316Td−0.99925 (10)

【0021】同様にln(Ce/Cs)対Kt/Vの直
線の切片をTdの関数としてプロットすると、bとTd
の関係も直線関係であり、回帰方程式は次式(11)で
表わされた(r>0.999)。 b= 0.0000611Td−0.0021816 (11) その結果、Kt/Vは次式(12)により表わされる。 Kt/V=− (0.000316Td+0.999)ln(Ce/Cs)+(0.0000611Td− 0.00219) (12) ここで式(12)より計算されたKt/Vを式(7)に
代入し、クレアチニン分布容積が490ml/kgであ
ることを考慮することによって本発明におけるクレアチ
ニン産生速度を求める式が得られる。
Similarly, plotting the intercept of a straight line of In (Ce / Cs) versus Kt / V as a function of Td gives b and Td
Is also a linear relationship, and the regression equation is expressed by the following equation (11) (r> 0.999). b = 0.0000611Td−0.0021816 (11) As a result, Kt / V is represented by the following equation (12). Kt / V = − (0.000316Td + 0.999) ln (Ce / Cs) + (0.0000611Td−0.00219) (12) Here, Kt / V calculated from the equation (12) is substituted into the equation (7), and creatinine is obtained. Taking into account that the volume of distribution is 490 ml / kg, an equation for determining the creatinine production rate in the present invention is obtained.

【0022】(本発明におけるクレアチニン産生速度を
求める式のクレアチニン分布容積の変化による補正)こ
こではクレアチニン分布容積の変化を無視しているの
で、ここで得られるg/Vは少なめに出る。そこで、も
し以下の方法により、体重の変化に対してここで得られ
たg/Vを補正すればより正確なg/Vが得られる。前
の週の3回目の透析−透析間に於けるクレアチニン出納
は、クレアチニン分布容積の変化を無視すれば式(1
3)で表わされ、クレアチニン分布容積の変化を考慮し
た場合式(14)で表わされる。 g・Ti−Ei3=V・Cs1 −V・Ce3 (13) G・Ti−Ei3=(V+ΔV)・Cs1 −V・Ce3 (14)
(Correction of the formula for determining the creatinine production rate in the present invention by the change in the creatinine distribution volume) Since the change in the creatinine distribution volume is ignored here, the g / V obtained here is small. Therefore, if the g / V obtained here is corrected for the change in weight by the following method, a more accurate g / V can be obtained. The creatinine balance between the third dialysis and dialysis in the previous week can be calculated by the equation (1) if the change in the creatinine distribution volume is ignored.
3), which is expressed by equation (14) when the change in the creatinine distribution volume is considered. g · Ti-E i3 = V · Cs 1 −V · Ce 3 (13) G · Ti-E i3 = (V + ΔV) · Cs 1 −V · Ce 3 (14)

【0023】ここでTiは前の週の第3回目の透析−透
析間の長さ(min)、すなわち、前の週の3回目の透
析終了時と今週の初回の透析の開始時との間の長さ、E
i3は前の週の第3回目の透析−透析間に於いて消化管で
分解されたクレアチニンの量(mg)、Ce3は前の週の
3回目の透析終了時のクレアチニン濃度(mg/m
l)、Gはクレアチニン分布容積が変数であるクレアチ
ニン動態モデルにおけるクレアチニン産生速度(mg/
min)、gはクレアチニン分布容積が定数であるクレ
アチニン動態モデルにおけるクレアチニン産生速度(m
g/min)、Vは分布容積(容積変化のあるモデルに
おいては透析終了時の容積)(ml)、ΔVは前の週の
3回目の透析と今週の初回の透析との間のクレアチニン
分布容積の増加量(ml)である。
Here, Ti is the length (min) between the third dialysis and the last dialysis in the previous week, that is, between the end of the third dialysis in the previous week and the start of the first dialysis in this week. The length of E
i3 is the amount (mg) of creatinine degraded in the gastrointestinal tract during the third dialysis between the previous week and Ce3 is the creatinine concentration (mg / m3) at the end of the third dialysis of the previous week.
l), G is the creatinine production rate (mg / mg) in a creatinine kinetic model in which the creatinine distribution volume is a variable.
min) and g are the creatinine production rate (m) in a creatinine kinetic model in which the creatinine distribution volume is a constant.
g / min), V is the volume of distribution (volume at the end of dialysis in models with volume change) (ml), ΔV is the volume of creatinine distribution between the third dialysis of the previous week and the first dialysis of this week (Ml).

【0024】式(13)と式(14)よりg/Vを補正
するための次式(15)が得られる。
From equations (13) and (14), the following equation (15) for correcting g / V is obtained.

【0025】[0025]

【数8】 (Equation 8)

【0026】ここでIBWは理想体重(kg)、ΔBW
は週の初回の透析中の体重減少量(kg)である。
Where IBW is the ideal weight (kg), ΔBW
Is the weight loss (kg) during the first dialysis of the week.

【0027】クレアチニン産生速度をクレアチニン分布
容積の変化で補正する別の方法に、透析前クレアチニン
濃度を予めクレアチニン分布容積の変化で補正しておく
方法がある。透析前の体内のクレアチニン量が、透析−
透析間に体重増加がない場合とこれがある場合とで等し
いなら、以下の式が成り立つ。 Cs×V=Cs'(V×ΔV) ただし、Csは体重増加のない場合の透析前クレアチニ
ン濃度、Cs′は体重増加のある場合の透析前クレアチ
ニン濃度、Vはクレアチニン分布容積、ΔVはクレアチ
ニン分布容積の変化量(=体重増加)を示す。
As another method of correcting the creatinine production rate by a change in the creatinine distribution volume, there is a method in which the creatinine concentration before dialysis is corrected in advance by a change in the creatinine distribution volume. The amount of creatinine in the body before dialysis
If there is no weight gain between dialysis and no weight gain, then the following equation holds. Cs × V = Cs ′ (V × ΔV) where Cs is the creatinine concentration before dialysis when there is no weight gain, Cs ′ is the creatinine concentration before dialysis when there is weight gain, V is the creatinine distribution volume, and ΔV is the creatinine distribution. The change in volume (= weight gain) is shown.

【0028】したがって、透析前クレアチニン濃度は次
式(16)を用いて補正することができ、このようにし
て補正された透析前クレアチニン濃度を用いて算出され
たクレアチニン産生速度は、すでにクレアチニン分布容
積の変化で補正されている。
Therefore, the creatinine concentration before dialysis can be corrected using the following equation (16), and the creatinine production rate calculated using the creatinine concentration before dialysis corrected in this way is the same as the creatinine distribution volume. Has been corrected.

【0029】[0029]

【数9】 (Equation 9)

【0030】(透析後リバウンドクレアチニン濃度の推
定)本発明に於いては、細胞膜のクレアチニン移動抵抗
による透析終了時の細胞内外のクレアチニン濃度差の存
在を無視している。もしより正確なクレアチニン産生速
度を求める場合には、以下の方法で推定した透析後リバ
ウンドクレアチニン濃度を透析後クレアチニン濃度の代
わりに用いる。クレアチニン濃度の透析後リバウンドの
大きさは透析中のクレアチニン除去速度に関係している
と考えられる。透析後リバウンドクレアチニン濃度を推
定するために、18人の透析患者について、クレアチニ
ン除去速度を反映するパラメータとクレアチニン濃度の
リバウンドの大きさを反映する各種パラメータとの間の
相関について調べた。
(Estimation of Rebound Creatinine Concentration after Dialysis) In the present invention, the existence of a difference in intracellular and extracellular creatinine concentration at the end of dialysis due to creatinine transfer resistance of the cell membrane is neglected. If a more accurate creatinine production rate is determined, the post-dialysis rebound creatinine concentration estimated by the following method is used instead of the post-dialysis creatinine concentration. The magnitude of post-dialysis rebound of creatinine concentration is thought to be related to the rate of creatinine removal during dialysis. In order to estimate the post-dialysis rebound creatinine concentration, the correlation between parameters reflecting the rate of creatinine removal and various parameters reflecting the magnitude of the rebound of creatinine concentration was examined for 18 dialysis patients.

【0031】患者の平均体重は53.1±2.5kgで
平均血液流量は211±8ml/minであった。患者
は全て無尿であり、透析時間は13人が4時間、5人が
4.5時間であった。15人の患者は内シャント、3人
は外シャントであった。内シャント15人のうち9人の
患者では体外循環した血液はシャントでは無く、静脈に
戻した。体外循環した血液を静脈に戻した患者と外シャ
ントの患者では、透析終了時の血液採取は血液流量を下
げずに行なった。残り6人の患者では透析終了時の血液
採取の1分前に血液流量を50ml/minに落とし
た。また、透析後リバウンドクレアチニン濃度を測定す
るために透析終了1時間後に血液採取を行なった。
The average patient weight was 53.1 ± 2.5 kg and the average blood flow was 211 ± 8 ml / min. All patients were urinary free and the dialysis time was 4 hours for 13 and 4.5 hours for 5 patients. Fifteen patients had internal shunts and three had external shunts. In 9 of the 15 internal shunts, extracorporeal blood was returned to the vein instead of the shunt. Blood collection at the end of dialysis was performed without decreasing the blood flow in patients who returned extracorporeally circulated blood to the vein and those in the external shunt. In the remaining six patients, the blood flow was reduced to 50 ml / min one minute before blood collection at the end of dialysis. One hour after completion of dialysis, blood was collected to measure the rebound creatinine concentration after dialysis.

【0032】本発明では、aCrを実際に測定された透
析後リバウンドクレアチニン濃度(mg/ml)、aC
sおよびaCeを夫々実際に測定された透析前、透析後
クレアチニン濃度(mg/ml)とする時、aCr/a
Ce、(aCs−aCr)/(aCs−aCe)および
(aCr−aCe)/(aCs−aCe)を透析後リバ
ウンドの大きさを示すパラメータとして用い、K/Vを
クレアチニン除去速度のパラメータとして用いた。K/
Vは次式(17)、(18)により、aCs、aCeお
よび透析時間Td(min)を用いて計算した。 (Kt/V)=In(aCs/aCe) (17) (K/V)=(Kt/V)/Td (18)
In the present invention, the concentration of rebound creatinine (mg / ml) after adialysis actually measured for aCr, aC
When s and aCe are the creatinine concentration (mg / ml) before and after dialysis actually measured, respectively, aCr / a
Ce, (aCs-aCr) / (aCs-aCe) and (aCr-aCe) / (aCs-aCe) were used as parameters indicating the magnitude of rebound after dialysis, and K / V was used as a parameter for creatinine removal rate. . K /
V was calculated by the following equations (17) and (18) using aCs, aCe, and dialysis time Td (min). (Kt / V) = In (aCs / aCe) (17) (K / V) = (Kt / V) / Td (18)

【0033】相関係数は、夫々、K/VとaCr/aC
eとの間が0.775、K/Vと(aCs−aCr)/
(aCs−aCe)との間が0.274、K/Vと(a
Cr−aCe)/(aCs−aCe)との間が−0.2
74であった。従って、透析後リバウンドクレアチニン
濃度を推定するために次式(19)で示されるK/Vと
aCr/aCeとの間の回帰式を用いることができる。
The correlation coefficients are K / V and aCr / aC, respectively.
e is 0.775, K / V and (aCs-aCr) /
0.274 between (aCs-aCe), K / V and (a
-0.2 between (Cr-aCe) / (aCs-aCe)
74. Therefore, to estimate the post-dialysis rebound creatinine concentration, a regression equation between K / V and aCr / aCe expressed by the following equation (19) can be used.

【0034】[0034]

【数10】 (Equation 10)

【0035】上記相関に基づき、透析後リバウンドクレ
アチニン濃度eCr(mg/ml)を推定するための次
式(20)が得られる。
Based on the above correlation, the following equation (20) for estimating the post-dialysis rebound creatinine concentration eCr (mg / ml) is obtained.

【0036】[0036]

【数11】 [Equation 11]

【0037】透析後リバウンドクレアチニン濃度推定方
法の妥当性を調べるために、別の患者17人について実
測した透析後リバウンドクレアチニン濃度と式(20)
で求めた濃度とを比較した。これらの患者の平均体重は
55.1±3.5kgであり、平均血液流量は213±
6ml/minであった。患者は全て無尿であり、透析
時間は14人が4時間、3人が4.5時間であった。全
ての患者は内シャントであり、17人中5人は、体外循
環した血液をシャントではなく、静脈に戻した。全ての
患者で血液採取はクレアチニン除去速度とクレアチニン
濃度のリバウンドの大きさとの関係を調べるための試験
と同様の方法で行なった。このようにして推定された透
析後リバンドクレアチニン濃度と実測値との関係を図2
に示した。図2に示す様に、この様にして推定された透
析後リバウンドクレアチニン濃度は実測された濃度と実
質的に等価であった。
In order to examine the validity of the method for estimating the rebound creatinine concentration after dialysis, the rebound creatinine concentration after dialysis actually measured for another 17 patients and the formula (20)
Was compared with the concentration determined in the above. The average weight of these patients was 55.1 ± 3.5 kg and the average blood flow was 213 ±
It was 6 ml / min. All patients were urinary free and the dialysis time was 4 hours for 14 people and 4.5 hours for 3 people. All patients were internal shunts, and 5 of 17 returned extracorporeally circulated blood to the vein instead of the shunt. In all patients, blood was collected in the same manner as in the study to determine the relationship between the rate of creatinine removal and the magnitude of the rebound in creatinine concentration. FIG. 2 shows the relationship between the post-dialysis riband creatinine concentration thus estimated and the actually measured value.
It was shown to. As shown in FIG. 2, the post-dialysis rebound creatinine concentration estimated in this way was substantially equivalent to the actually measured concentration.

【0038】[0038]

【実施例】14人の無尿の安定期の血液透析患者のクレ
アチニン産生速度について本発明の方法と従来の透析−
透析間のクレアチニン動態モデルによる方法とで算出
し、両者を比較した。その結果を図3に示す。x軸は本
発明を用いて算定した結果(クレアチニン分布容積の変
化と透析後リバウンドで補正ずみ)であり、y軸は透析
終了1時間後に測定したクレアチニン濃度(すなわち透
析後リバウンド濃度)と次回の透析前クレアチニン濃度
から計算した、従来法による結果である。回帰直線に対
する方程式を次式(21)に示す。 y=0.963x+0.200 (21) 本発明による結果と従来法による結果がよく一致してい
ることが判る。
EXAMPLE The creatinine production rate of 14 urinary stable urinary stable hemodialysis patients with the method of the present invention and conventional dialysis.
It was calculated by a method based on a creatinine kinetic model during dialysis, and the two were compared. The result is shown in FIG. The x-axis is the result calculated using the present invention (corrected by the change in the creatinine distribution volume and the rebound after dialysis), and the y-axis is the creatinine concentration measured one hour after the end of dialysis (that is, the rebound concentration after dialysis) and the next time. It is the result by the conventional method calculated from the creatinine concentration before dialysis. The equation for the regression line is shown in the following equation (21). y = 0.963x + 0.200 (21) It can be seen that the result according to the present invention and the result according to the conventional method are in good agreement.

【0039】[0039]

【発明の効果】本発明により、透析センターに於いて通
常行なわれている血液採取方法による分析結果と通常記
録される透析記録のデータを用いるだけで患者のクレア
チニン産生速度を求めることができる様になり、患者の
筋肉量、蛋白栄養状態等に関する有用な指標が得られる
様になった。
According to the present invention, it is possible to determine the creatinine production rate of a patient only by using the analysis results obtained by a blood collection method usually performed in a dialysis center and the data of a normally recorded dialysis record. Thus, useful indices concerning the muscle mass, protein nutritional status, and the like of the patient can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ln(Ce/Cs)とKt/Vの関係を示すグ
ラフ
FIG. 1 is a graph showing the relationship between ln (Ce / Cs) and Kt / V.

【図2】推定された透析後リバウンドクレアチニン濃度
と実測値との関係を示すグラフ
FIG. 2 is a graph showing a relationship between an estimated post-dialysis rebound creatinine concentration and an actually measured value.

【図3】実施例のクレアチニン産生濃度を示すグラフFIG. 3 is a graph showing the creatinine production concentration of the example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 式(1)を用いることを特徴とする血液
透析データを用いたクレアチニン産生速度の算定方法。 g(24h)=7056Cs/A (1) ここでg(24h)はクレアチニン産生速度(g/kg
/d)、Csは週の1回目あるいは2回目の透析前クレ
アチニン濃度(mg/dl)、Aは週の1回目の透析に
ついては式(2)を、週の2回目の透析については式
(3)を用いて求める数値を示す。式(2)及び式
(3)において、Tdは透析時間(h)、Ceは週の1
回目あるいは2回目の透析後クレアチニン濃度(mg/
dl)、Csは前記と同様に週の1回目あるいは2回目
の透析前クレアチニン濃度(mg/dl)を示す。 【数1】 【数2】
1. A method for calculating a creatinine production rate using hemodialysis data, wherein equation (1) is used. g (24h) = 7056Cs / A (1) Here, g (24h) is a creatinine production rate (g / kg).
/ D), Cs is the creatinine concentration (mg / dl) before the first or second week of dialysis, A is the formula (2) for the first dialysis of the week, and the formula (2) for the second dialysis of the week. The numerical value obtained by using 3) is shown. In Equations (2) and (3), Td is the dialysis time (h), and Ce is 1 of the week.
Creatinine concentration (mg / mg) after the second or second dialysis
dl) and Cs indicate the creatinine concentration (mg / dl) before the first or second dialysis in the same manner as described above. (Equation 1) (Equation 2)
JP03361898A 1998-01-30 1998-01-30 Calculation method of creatinine production rate using hemodialysis data Expired - Lifetime JP3901827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03361898A JP3901827B2 (en) 1998-01-30 1998-01-30 Calculation method of creatinine production rate using hemodialysis data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03361898A JP3901827B2 (en) 1998-01-30 1998-01-30 Calculation method of creatinine production rate using hemodialysis data

Publications (2)

Publication Number Publication Date
JPH11218536A true JPH11218536A (en) 1999-08-10
JP3901827B2 JP3901827B2 (en) 2007-04-04

Family

ID=12391451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03361898A Expired - Lifetime JP3901827B2 (en) 1998-01-30 1998-01-30 Calculation method of creatinine production rate using hemodialysis data

Country Status (1)

Country Link
JP (1) JP3901827B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018511053A (en) * 2015-03-24 2018-04-19 フレゼニウス メディカル ケア ドイッチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and instrument for calculating patient filtration rate
WO2020182395A1 (en) * 2019-03-11 2020-09-17 Gambro Lundia Ab Estimating generation rate of substance in dialysis patients
WO2022172926A1 (en) * 2021-02-12 2022-08-18 ニプロ株式会社 Device for calculating muscle mass and method for calculating muscle mass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018511053A (en) * 2015-03-24 2018-04-19 フレゼニウス メディカル ケア ドイッチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and instrument for calculating patient filtration rate
WO2020182395A1 (en) * 2019-03-11 2020-09-17 Gambro Lundia Ab Estimating generation rate of substance in dialysis patients
WO2022172926A1 (en) * 2021-02-12 2022-08-18 ニプロ株式会社 Device for calculating muscle mass and method for calculating muscle mass

Also Published As

Publication number Publication date
JP3901827B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
EP0986410B1 (en) Device for calculating dialysis efficiency
Daugirdas Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error.
US7077819B1 (en) Method for determining the distribution volume of a blood component during an extracorporeal blood treatment and device for carrying out the method
US6861266B1 (en) Method and device for calculating dialysis efficiency
AU674177B2 (en) Hemodialysis monitoring system for hemodialysis machines
JP4077034B2 (en) Automated method and apparatus for obtaining cross-compartment transfer coefficients for equilibrium samples and two-pool dynamics
Jagenburg et al. Determination of glomerular filtration rate in advanced renal insufficiency
US6217539B1 (en) Method of in-vivo determination of hemodialysis parameters and a device for carrying out the method
JP3895770B2 (en) Apparatus and method for automatically performing a peritoneal equilibrium test
Leblanc et al. Postdialysis urea rebound: determinants and influence on dialysis delivery in chronic hemodialysis patients
WO1995003839A1 (en) Method for determining adequacy of dialysis
JPH05329204A (en) Method for blood dialysis
Ziółko et al. Accuracy of hemodialysis modeling
Bankhead et al. Accuracy of urea removal estimated by kinetic models
Wuepper et al. Determination of urea distribution volume for Kt/V assessed by conductivity monitoring
Evans et al. Mathematical modelling of haemodialysis in children
JPH11218536A (en) Method for computing production speed of creatinine by using hemodialytic data
JP4200187B2 (en) How to determine kidney clearance
Kanagasundaram et al. Prescribing an equilibrated intermittent hemodialysis dose in intensive care unit acute renal failure
Csako et al. On the albumin dependence of measurements of free thyroxin. I. Technical performance of seven methods.
Stegeman et al. Determination of protein catabolic rate in patients on chronic intermittent hemodialysis: Urea output measurements compared with dietary protein intake and with calculation of urea generation rate
EP3738624B1 (en) Apparatus for calculating amount of extracellular fluid and method for calculating amount of extracellular fluid
JP2020174739A (en) Extracellular fluid amount standardization apparatus, extracellular fluid amount evaluation apparatus equipped with the same, and computer program for standardizing extracellular fluid amount
Chadha et al. What are the clinical correlates of adequate peritoneal dialysis?
Dahl et al. Measuring total body water in peritoneal dialysis patients using an ethanol dilution technique

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20050114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term