JPH11216642A - Turning method in nc lathe - Google Patents

Turning method in nc lathe

Info

Publication number
JPH11216642A
JPH11216642A JP3809398A JP3809398A JPH11216642A JP H11216642 A JPH11216642 A JP H11216642A JP 3809398 A JP3809398 A JP 3809398A JP 3809398 A JP3809398 A JP 3809398A JP H11216642 A JPH11216642 A JP H11216642A
Authority
JP
Japan
Prior art keywords
work
displacement
workpiece
rotation
lathe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3809398A
Other languages
Japanese (ja)
Inventor
Koji Matsumoto
光司 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DMG Mori Co Ltd
Original Assignee
Mori Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mori Seiki Co Ltd filed Critical Mori Seiki Co Ltd
Priority to JP3809398A priority Critical patent/JPH11216642A/en
Publication of JPH11216642A publication Critical patent/JPH11216642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Turning (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve the turning with excellent dimensional accuracy by moving a tool tip along the section of a work after displacement taking into consideration the elastic displacement of the work accompanied by the rotation. SOLUTION: In a turning method, when a work W is turned using an NC lathe, the elastic displacement accompanied by the rotation of the work W is calculated, the moving route of a tool tip taking into consideration the elastic displacement is obtained, a working program including the obtained moving route in the command is prepared, and inputted in a numerical control device of the NC lathe to turn the work W. As an example, in a figure to show the displacement condition of the work W, the work W before the displacement is indicated by a two-dot chain line, while the displacement of the work W after the displacement is expanded and indicated by a solid line. The working error generated by the elastic displacement accompanied by the rotation of the work W can be extremely small, and the work can be turned with excellent dimensional accuracy even when the work W is easy to displace by the rotation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、NC旋盤を用いて
被加工物を旋削する加工方法に関し、更に詳しくは、被
加工物の回転に伴う弾性変位を考慮した旋削加工法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for turning a workpiece using an NC lathe, and more particularly to a turning method in which elastic displacement accompanying rotation of a workpiece is taken into consideration.

【0002】[0002]

【従来の技術】NC旋盤における旋削加工は、加工座標
系における工具刃先の移動経路等を指令した加工プログ
ラムに基づき、前記工具刃先が前記加工プログラムに指
令された経路を通るように、NC旋盤の送り駆動部を数
値制御することによって行われる。
2. Description of the Related Art Turning in an NC lathe is based on a machining program instructing a moving path of a tool edge in a machining coordinate system and the like, so that the tool edge passes along a path instructed by the machining program. This is performed by numerically controlling the feed drive unit.

【0003】図2は、簡単な旋削加工例を示したもので
あり、具体的には、主軸チャック(図示せず)の爪Cに
把持された被加工物(以下、「ワーク」という)Wの外
径部を旋削し、当該外径部の寸法をφX'bからφXb
に仕上げる旋削加工例を示したものである。同図に示し
たようにこの例では、工具Tの刃先Taを、Pa点,P
b点,Pc点,Pd点の順に順次経由せしめた後、再び
Pa点に復帰させるようにしている。
FIG. 2 shows an example of a simple turning process. Specifically, a workpiece (hereinafter, referred to as a "work") W held by a nail C of a spindle chuck (not shown). Is turned, and the dimension of the outer diameter is changed from φX'b to φXb.
This is an example of turning work to finish the work. As shown in the figure, in this example, the cutting edge Ta of the tool T
After passing through the points b, Pc, and Pd in this order, the point is returned to the Pa point again.

【0004】そしてこの場合、加工プログラムには加工
座標系(X−Z座標系)における各移動目標点の座標値
が指令される。例えば、図2に示したG点を加工座標系
の原点とした場合の、前記Pa点の座標を(Xa,Z
a)、Pb点の座標を(Xb,Zb)、Pc点の座標を
(Xc,Zc)、Pd点の座標を(Xd,Zd)とする
と、当該各座標値(Xa,Za),(Xb,Zb),
(Xc,Zc),(Xd,Zd),(Xa,Za)が加
工プログラムにおいて順次指令される。尚、X座標値は
ワークWの直径に相当する値である。
In this case, a coordinate value of each movement target point in a machining coordinate system (XZ coordinate system) is commanded to the machining program. For example, when the point G shown in FIG. 2 is set as the origin of the machining coordinate system, the coordinates of the point Pa are (Xa, Z
a), assuming that the coordinates of point Pb are (Xb, Zb), the coordinates of point Pc are (Xc, Zc), and the coordinates of point Pd are (Xd, Zd), the respective coordinate values (Xa, Za), (Xb , Zb),
(Xc, Zc), (Xd, Zd), (Xa, Za) are sequentially instructed in the machining program. The X coordinate value is a value corresponding to the diameter of the work W.

【0005】NC旋盤の数値制御装置は、前記移動目標
点の座標値が指令された加工プログラムを順次実行し、
前記工具刃先Taが前記各移動目標点を順次経由するよ
うに送り駆動部を数値制御する。これにより、工具刃先
Taが実際にPa点,Pb点,Pc点,Pd点,Pa点
の順に同部を経由して移動し、Pb点からPc点に移動
する間にワークWの外径部が切削され、その寸法がφ
X'bからφXbに仕上げられる。
The numerical control device of the NC lathe sequentially executes a machining program in which coordinate values of the movement target point are instructed,
The feed drive unit is numerically controlled so that the tool edge Ta sequentially passes through the moving target points. Thereby, the tool edge Ta actually moves through the same part in the order of Pa point, Pb point, Pc point, Pd point, and Pa point, and moves from the Pb point to the Pc point while the outer diameter portion of the workpiece W is being moved. Is cut and its size is φ
Finished from X'b to φXb.

【0006】[0006]

【発明が解決しようとする課題】ところで、ワークWを
回転させると、当該ワークWは遠心力によって半径方向
の内部応力を生じ、当該応力によって変位(歪み)を生
じる。そして、通常加工されるワークWの中には剛性の
低いものもあり、前記遠心力によって大きく変位するも
のもある。
When the work W is rotated, the work W generates an internal stress in the radial direction due to centrifugal force, and generates a displacement (distortion) due to the stress. Some of the workpieces W that are usually processed have low rigidity, and some of the workpieces W are largely displaced by the centrifugal force.

【0007】図3は、その一例を示したものであり、図
2におけるワークW(旋削前)を回転数3000rpm
で回転させたときの、当該ワークWの変位状態を示した
ものである。尚、ワークWの材料には、ポアソン比が
0.33、ヤング率が71.5kN/mm2 であるアル
ミニウム合金(AC4CH)を用い、その外径φX'b
を360.2mm、長さDを80mm、底部の厚みt1
を10mm、外径部肉厚t2 を5mmとした。また、図
3においては変位前のワークWを2点鎖線で示し、変位
後のワークWを、その変位量を拡大して実線で示してい
る。
FIG. 3 shows an example of this, and the work W (before turning) in FIG.
5 shows a state of displacement of the workpiece W when the workpiece W is rotated. The work W is made of an aluminum alloy (AC4CH) having a Poisson's ratio of 0.33 and a Young's modulus of 71.5 kN / mm 2 , and its outer diameter φX′b
Is 360.2 mm, length D is 80 mm, and bottom thickness t 1.
Was set to 10 mm, and the outer diameter portion thickness t 2 was set to 5 mm. In FIG. 3, the work W before the displacement is shown by a two-dot chain line, and the work W after the displacement is shown by a solid line with its displacement amount enlarged.

【0008】同図3に示したように、上述のワークWを
3000rpmもの高い回転数で回転させると、遠心力
によって当該ワークWが弾性変位し、ワークWの外径部
が半径方向外側に膨らんだ太鼓状になる。因みに、上述
した条件の下でワークWの変位量を測定したところ、外
径部における半径方向(X軸方向)の最大変位量ΔXは
22μmであり、Z軸方向の変位量ΔZは6μmであっ
た。
As shown in FIG. 3, when the above-described work W is rotated at a rotation speed as high as 3000 rpm, the work W is elastically displaced by centrifugal force, and the outer diameter portion of the work W expands outward in the radial direction. It becomes drum-shaped. Incidentally, when the displacement amount of the work W was measured under the above conditions, the maximum displacement amount ΔX in the radial direction (X-axis direction) at the outer diameter portion was 22 μm, and the displacement amount ΔZ in the Z-axis direction was 6 μm. Was.

【0009】かかる遠心力によって変位し易いワークW
を、その外径寸法がφXbとなるように旋削するにあた
り、従来の如く、当該変位量を考慮しないで工具刃先T
aをPb点からPc点に移動させるとすると、ワークW
が回転中であれば、回転に伴う変位によって同部の寸法
が旋削後の寸法φXbに維持されるものの、ワークWの
回転を停止すると、それまで作用していた遠心力がワー
クWに作用しなくなって生じていた変位が解消され、前
記外径部の寸法φXbは前記変位量分(2・ΔX=44
μm)だけ小さい寸法となる。承知のように、かかる4
4μmという加工誤差は通常の機械加工においてはかな
り大きなものである。
The work W which is easily displaced by such centrifugal force
Is turned in such a manner that its outer diameter becomes φXb.
a is moved from the point Pb to the point Pc.
Is rotating, the dimension of the same part is maintained at the dimension φXb after turning due to the displacement accompanying the rotation, but when the rotation of the work W is stopped, the centrifugal force that has been acting up to that time acts on the work W. The displacement that has occurred due to the displacement is eliminated, and the dimension φXb of the outer diameter portion is calculated by the displacement amount (2 · ΔX = 44).
μm). As you know, such 4
The processing error of 4 μm is quite large in ordinary machining.

【0010】このように、回転に伴うワークWの変位を
考慮しないで、単にワークWの仕上り形状をなぞるよう
に工具刃先Taを移動させる従来の切削加工法において
は、ワークWが遠心力によって変位し易いものである場
合には、これを高精度に加工することができないという
問題があったのである。
As described above, in the conventional cutting method in which the tool edge Ta is simply moved so as to follow the finished shape of the work W without considering the displacement of the work W due to the rotation, the work W is displaced by centrifugal force. If it is easy to process, there is a problem that it cannot be processed with high accuracy.

【0011】かかる場合に、図3に示したワークWのよ
うに、比較的単純な形状に変形するものについては、所
謂工具補正によって対応し得ることもあり得るが、ワー
クWの形状が複雑である場合にはその変位状態も複雑で
あり、単なる工具補正によっては適切な対応をとること
ができない。即ち、このようなワークWは、その部分部
分において変位量が異なったり、また、ある部分につい
ては取り代が多くなるように変位する一方、ある部分に
ついては取り代が減少するように変位したりするため、
一律な対応ができないのである。
In such a case, a work which is deformed into a relatively simple shape such as the work W shown in FIG. 3 may be able to be dealt with by so-called tool correction, but the shape of the work W is complicated. In some cases, the displacement state is also complicated, and it is not possible to take appropriate measures by merely correcting the tool. That is, such a work W has a different displacement amount in that portion, or displaces so that a portion has a larger allowance for a certain portion, and displaces such that a portion has a reduced allowance for a certain portion. To do
They cannot respond uniformly.

【0012】本発明は以上の実情に鑑みなされたもので
あって、回転によって変位し易いワークであっても、こ
れを高い寸法精度で仕上げることのできる切削加工法の
提供を目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a cutting method capable of finishing a workpiece, which is easily displaced by rotation, with high dimensional accuracy.

【0013】[0013]

【課題を解決するための手段及びその効果】上記目的を
達成するための本発明は、NC旋盤の主軸チャックに把
持した被加工物を回転せしめるとともに、工具刃先が予
め定めた経路を通るように送り駆動部を数値制御して該
工具を移動せしめることにより、目的とした断面形状に
前記被加工物を旋削する旋削加工法であって、前記被加
工物の回転に伴う弾性変位量を算出し、算出した該弾性
変位量に基づいて、変位後の前記被加工物の断面形状に
沿った前記工具刃先の移動経路を決定し、決定した移動
経路上を前記工具刃先が通るように前記送り駆動部を数
値制御して前記工具を移動せしめることにより、目的と
した断面形状に前記被加工物を旋削することを特徴とす
るものである。
Means for Solving the Problems and Effects The present invention for achieving the above object is to rotate a workpiece gripped by a spindle chuck of an NC lathe so that a tool edge passes through a predetermined path. A turning method for turning the workpiece to a desired cross-sectional shape by numerically controlling the feed drive unit and moving the tool, wherein an elastic displacement amount accompanying rotation of the workpiece is calculated. Based on the calculated amount of elastic displacement, determine the movement path of the tool edge along the cross-sectional shape of the workpiece after the displacement, the feed drive so that the tool edge passes on the determined movement path The workpiece is turned into a desired cross-sectional shape by moving the tool by numerically controlling a part.

【0014】上述したように、NC旋盤により旋削され
る被加工物の中には剛性の低いものもあり、回転に伴う
遠心力によって大きく変位するものもある。そして、こ
の場合に、工具刃先が被加工物の仕上り断面形状に沿っ
た経路を通るように当該工具を移動させたのでは、被加
工物の変位量がそのまま加工誤差となり、被加工物を高
精度に仕上げることができない。
As described above, some of the workpieces turned by the NC lathe have low rigidity, and some of them are largely displaced by centrifugal force accompanying rotation. In this case, if the tool is moved so that the tool edge passes along a path along the finished cross-sectional shape of the workpiece, the displacement amount of the workpiece becomes a processing error as it is, and the workpiece becomes high. It cannot be finished with precision.

【0015】本発明によれば、前記被加工物の回転に伴
う弾性変位量を算出し、算出した該弾性変位量に基づい
て、変位後の前記被加工物の断面形状に沿った前記工具
刃先の移動経路を決定し、決定した移動経路上を前記工
具刃先が通るようにしているので、即ち、前記工具刃先
の移動経路を、前記被加工物の仕上り断面形状に沿った
経路に前記弾性変位量を加味したものとしているので、
前記被加工物の回転中においては、切削後の前記被加工
物の断面寸法は目的とする仕上り断面寸法に弾性変位量
を加算した寸法となっているが、前記被加工物の回転を
停止するとそれまで生じていた前記弾性変位が解消さ
れ、回転停止後の前記被加工物の断面寸法は目的とした
仕上り断面寸法となる。
According to the present invention, the amount of elastic displacement associated with the rotation of the workpiece is calculated, and based on the calculated amount of elastic displacement, the tool edge along the cross-sectional shape of the workpiece after the displacement is calculated. Is determined, and the tool cutting edge is made to pass on the determined moving route. That is, the moving path of the tool cutting edge is changed to a path along the finished sectional shape of the workpiece by the elastic displacement. Because it is assumed that the amount is taken into account,
During the rotation of the workpiece, the cross-sectional dimension of the workpiece after cutting is a dimension obtained by adding the amount of elastic displacement to the desired finished cross-sectional dimension, but when the rotation of the workpiece is stopped. The elastic displacement that has occurred up to that point is eliminated, and the cross-sectional dimension of the workpiece after rotation has stopped is the desired finished cross-sectional dimension.

【0016】このように、本発明によれば、回転に伴う
被加工物の弾性変位を考慮し、変位後の被加工物の断面
形状に沿って工具刃先を移動させているので、回転によ
って変位し易い被加工物であっても、これを高い寸法精
度で旋削加工することができる。
As described above, according to the present invention, the tool edge is moved along the sectional shape of the workpiece after the displacement in consideration of the elastic displacement of the workpiece due to the rotation. Even a work piece that is easy to perform can be turned with high dimensional accuracy.

【0017】尚、本発明における被加工物の回転に伴う
弾性変位量の算出には、実際に被加工物を回転させてそ
の変位量を測定する場合、並びに、有限要素法などの変
位解析手法を用いて変位量を算出する場合の双方を含ん
でいる。
In the present invention, the amount of elastic displacement caused by the rotation of the workpiece is calculated when the workpiece is actually rotated and its displacement is measured, and a displacement analysis method such as the finite element method is used. And the case where the displacement amount is calculated by using

【0018】[0018]

【発明の実施の形態】以下、本発明の具体的な実施形態
について添付図面に基づき説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described with reference to the accompanying drawings.

【0019】まず、本実施形態に係る旋削加工法の概略
について説明すると、本例に係る旋削加工法は、NC旋
盤を用いて上述の図2に示したワークWを旋削する際
に、当該ワークWの回転に伴った弾性変位量を算出し、
ついで当該弾性変位量を加味した工具刃先の移動経路を
求め、求めた移動経路を指令内容に含む加工プログラム
を作成し、作成した加工プログラムをNC旋盤の数値制
御装置に入力した後、当該NC旋盤を作動せしめ、前記
加工プログラムに従って前記ワークWを旋削するすると
いうものである。
First, the outline of the turning method according to the present embodiment will be described. The turning method according to the present example is performed when the above-described work W shown in FIG. 2 is turned using an NC lathe. Calculate the amount of elastic displacement associated with the rotation of W,
Then, a movement path of the tool edge is calculated in consideration of the elastic displacement amount, a machining program including the determined movement path in the command content is created, and the created machining program is input to the numerical control device of the NC lathe. And turning the workpiece W in accordance with the machining program.

【0020】尚、如上のように、本例で用いたワークW
は、上述の図2に示したワークWと同じものであり、再
度繰返して説明すると、当該ワークWは、材料としてポ
アソン比が0.33、ヤング率が71.5kN/mm2
であるアルミニウム合金(AC4CH)を用い、その外
径φX'b をφ360.2mm、長さDを80mm、底
部の厚みt1 を10mm、外径部肉厚t2 を5mmとし
たものである。また、本例ではこのワークWの外径部
を、3000rpmの回転数の下で、φX'b=φ36
0.2mmからφXb=φ360mmに旋削仕上げする
ものとする。以下、本例に係る旋削加工法の詳細につい
て説明する。
As described above, the work W used in this example
Is the same as the work W shown in FIG. 2 described above, and will be described again. The work W has a Poisson's ratio of 0.33 and a Young's modulus of 71.5 kN / mm 2 as a material.
The outer diameter φX′b was φ360.2 mm, the length D was 80 mm, the bottom thickness t 1 was 10 mm, and the outer diameter portion thickness t 2 was 5 mm. In this example, the outer diameter portion of the work W is set to φX′b = φ36 at a rotation speed of 3000 rpm.
Turning from 0.2 mm to φXb = φ360 mm shall be performed. Hereinafter, details of the turning method according to this example will be described.

【0021】まず、上述した寸法のワークWを3000
rpmで回転させたときの弾性変位量を算出した。具体
的には、ワークWを微小単位の要素に分割したモデルを
作成し、ヤング率,ポアソン比等の材料定数及び適宜設
定した各要素間の境界条件等から有限要素法による変位
解析を行い、ワークWの弾性変位量を算出した。次に、
算出された弾性変位量を基にしてワークWの変位状態を
求めた。求められたワークWの変位状態を図1に示す。
尚、図1においては、変位前のワークWを2点鎖線で示
し、変位後のワークWを、その変位量を拡大して実線で
示している。
First, a work W having the above-mentioned dimensions is 3,000
The amount of elastic displacement when rotating at rpm was calculated. Specifically, a model in which the work W is divided into small units of elements is created, and displacement analysis is performed by the finite element method based on material constants such as Young's modulus and Poisson's ratio, and boundary conditions between elements set as appropriate. The amount of elastic displacement of the work W was calculated. next,
The displacement state of the work W was obtained based on the calculated elastic displacement amount. FIG. 1 shows the obtained displacement state of the work W.
In FIG. 1, the work W before displacement is shown by a two-dot chain line, and the work W after displacement is shown by a solid line with its displacement amount enlarged.

【0022】同図1に示したように、本例においては、
ワークWの外径部が半径方向外側に膨らんだ太鼓状にな
り、仕上り寸法φXbに相当する外径部について、Z軸
方向に沿って等間隔に11個のポイントPb1〜Pb11
を抽出すると、これらはそれぞれPb1がP'b1に、P
2がP'b2に、Pb3がP'b3に、Pb4がP'b4に、
Pb5がP'b5に、Pb6がP'b6に、Pb7がP'b
7に、Pb8がP'b8に、Pb9がP'b9に、Pb10がP'
10に、Pb11がP'b11に変位し、X軸方向における
それぞれの変位量ΔX1は20μm、ΔX2は21μm、
ΔX3は21.5μm、ΔX4は22μm、ΔX5は22
μm、ΔX6は21μm、ΔX7は19.5μm、ΔX8
は17μm、ΔX9は13.5μm、ΔX10は8.5μ
m、ΔX11は3μmであった。尚、Pb12におけるX軸
方向の変位量は0μmであり、Pb1におけるZ軸方向
の変位量ΔZは−3μmであった。
As shown in FIG. 1, in this embodiment,
Outer diameter portion of the workpiece W becomes inflated barrel shape radially outward, the outer diameter portion corresponding to the finished dimension FaiXb, 11 pieces points at equal intervals along the Z-axis direction Pb 1 ~Pb 11
, Pb 1 becomes P′b 1 , P
b 2 is the P'b 2, the Pb 3 is P'b 3, Pb 4 within P'b 4,
Pb 5 is to P'b 5, Pb 6 is to P'b 6, Pb 7 is P'b
7 , Pb 8 is P'b 8 , Pb 9 is P'b 9 , Pb 10 is P '
a b 10, displaced Pb 11 is P'b 11, each displacement amount [Delta] X 1 is 20μm in the X-axis direction, [Delta] X 2 is 21 [mu] m,
ΔX 3 is 21.5 μm, ΔX 4 is 22 μm, ΔX 5 is 22
μm, ΔX 6 is 21 μm, ΔX 7 is 19.5 μm, ΔX 8
Is 17 μm, ΔX 9 is 13.5 μm, ΔX 10 is 8.5 μm
m and ΔX 11 were 3 μm. Incidentally, the displacement amount in the X-axis direction in the Pb 12 is 0 .mu.m, Z axis direction displacement amount ΔZ in Pb 1 was -3Myuemu.

【0023】ついで、工具刃先(図示せず)がP'b,
P'b1,P'b2,P'b3,P'b4,P'b5,P'b6
P'b7,P'b8,P'b9,P'b10,P'b11,Pb12
Pc,Pdを直線補間で順次経由するような加工プログ
ラムを作成した。尚、G点を加工座標系の原点とした場
合の、上記各点の座標は、P'b(X)=(Xb+2Δ
1),P'b(Z)=3、P'b1(X)=(Xb+2ΔX1),
P'b1(Z)=0、P'b2(X)=(Xb+2ΔX2),P'b
2(Z)=−(D−t1)/11、P'b3(X)=(Xb+2Δ
3),P'b3(Z)=−2(D−t1)/11、P'b4(X)
=(Xb+2ΔX4),P'b4(Z)=−3(D−t1)/1
1、P'b5(X)=(Xb+2ΔX5),P'b5(Z)=−4
(D−t1)/11、P'b6(X)=(Xb+2ΔX6),P'
6(Z)=−5(D−t1)/11、P'b7(X)=(Xb+
2ΔX7),P'b7(Z)=−6(D−t1)/11、P'b
8(X)=(Xb+2ΔX8),P'b8(Z)=−7(D−t1)
/11、P'b9(X)=(Xb+2ΔX9),P'b9(Z)=
−8(D−t1)/11、P'b10(X)=(Xb+2Δ
10),P'b10(Z)=−9(D−t1)/11、P'b
11(X)=(Xb+2ΔX11),P'b11(Z)=−10(D−
1)/11、Pb12(X)=Xb,Pb12(Z)=−(D−
1)、Pc(X)=Xb,Pc(Z)=−(D−t1)−2、
Pd(X)=(Xb+50),Pd(Z)=−(D−t1)−
2、である。また、本例におけるZ軸方向の変位量ΔZ
は極めて微小量であり、加工精度に与える影響が極僅か
であるため、当該Z軸方向における変位量ΔZ分につい
ての工具移動経路に関する修正は行わないこととした。
Next, the tool edge (not shown) is P'b,
P'b 1, P'b 2, P'b 3 , P'b 4, P'b 5, P'b 6,
P'b 7, P'b 8, P'b 9 , P'b 10, P'b 11, Pb 12,
A machining program was created so that Pc and Pd were sequentially passed through linear interpolation. When the G point is set as the origin of the machining coordinate system, the coordinates of each point are P′b (X) = (Xb + 2Δ
X 1 ), P′b (Z) = 3, P′b 1 (X) = (Xb + 2ΔX 1 ),
P′b 1 (Z) = 0, P′b 2 (X) = (Xb + 2ΔX 2 ), P′b
2 (Z) = − (D−t 1 ) / 11, P′b 3 (X) = (Xb + 2Δ
X 3 ), P′b 3 (Z) = − 2 (D−t 1 ) / 11, P′b 4 (X)
= (Xb + 2ΔX 4 ), P′b 4 (Z) = − 3 (D−t 1 ) / 1
1, P′b 5 (X) = (Xb + 2ΔX 5 ), P′b 5 (Z) = − 4
(D−t 1 ) / 11, P′b 6 (X) = (Xb + 2ΔX 6 ), P ′
b 6 (Z) = − 5 (D−t 1 ) / 11, P′b 7 (X) = (Xb +
2ΔX 7 ), P′b 7 (Z) = − 6 (D−t 1 ) / 11, P′b
8 (X) = (Xb + 2ΔX 8 ), P′b 8 (Z) = − 7 (D−t 1 )
/ 11, P'b 9 (X) = (Xb + 2ΔX 9 ), P'b 9 (Z) =
−8 (D−t 1 ) / 11, P′b 10 (X) = (Xb + 2Δ)
X 10 ), P′b 10 (Z) = − 9 (D−t 1 ) / 11, P′b
11 (X) = (Xb + 2ΔX 11 ), P′b 11 (Z) = − 10 (D−
t 1 ) / 11, Pb 12 (X) = Xb, Pb 12 (Z) = − (D−
t 1 ), Pc (X) = Xb, Pc (Z) = − (D−t 1 ) −2,
Pd (X) = (Xb + 50), Pd (Z) = − (D−t 1 ) −
2. Further, the displacement amount ΔZ in the Z-axis direction in this example
Is extremely small and has a negligible effect on the machining accuracy. Therefore, the correction of the tool movement path for the displacement ΔZ in the Z-axis direction is not performed.

【0024】次に、作成した加工プログラムをNC旋盤
の数値制御装置に入力し、主軸チャック(図示せず)の
爪Cに前記ワークWを把持せしめた後、当該NC旋盤を
起動して前記ワークWを旋削した。旋削後のワークWを
主軸チャック(図示せず)の爪Cに把持せしめた状態
で、回転数3000rpmで回転させ、外径部の寸法を
Z軸方向に沿って実測したところ、その断面形状は上記
P'b,P'b1,P'b2,P'b3,P'b4,P'b5,P'
6,P'b7,P'b8,P'b9,P'b10,P'b11,P
12,Pcで描かれる線形状と相似の形状を示した。一
方、ワークWの回転を停止すると、上記Pb,Pb1
Pb2,Pb3,Pb4,Pb5,Pb6,Pb7,Pb8
Pb9,Pb10,Pb11,Pb12,Pcで描かれる線形
状と相似の形状を示した。
Next, the created machining program is input to the numerical control device of the NC lathe, and the work W is gripped by the pawl C of the spindle chuck (not shown). W was turned. The workpiece W after turning was rotated at 3000 rpm while the claws C of a spindle chuck (not shown) gripped the workpiece W, and the dimension of the outer diameter was measured along the Z-axis direction. the P'b, P'b 1, P'b 2, P'b 3, P'b 4, P'b 5, P '
b 6, P'b 7, P'b 8 , P'b 9, P'b 10, P'b 11, P
A shape similar to the line shape drawn by b 12 and Pc was shown. On the other hand, when the rotation of the work W is stopped, the above Pb, Pb 1 ,
Pb 2 , Pb 3 , Pb 4 , Pb 5 , Pb 6 , Pb 7 , Pb 8 ,
Shapes similar to the line shapes drawn by Pb 9 , Pb 10 , Pb 11 , Pb 12 , and Pc were shown.

【0025】このように、本実施形態に係る旋削加工法
によれば、ワークWの回転に伴う弾性変位量を予め算出
し、算出した当該弾性変位量を加味して工具刃先の移動
経路を設定し、工具刃先をワークWの変位後の断面形状
に沿うように移動させることにより、ワークWを旋削し
ているので、ワークWの回転に伴う弾性変位によって生
じる加工誤差を極僅かなものとすることができ、例え、
回転によって変位し易いワークWであっても、これを高
い寸法精度で旋削加工することができる。
As described above, according to the turning method according to the present embodiment, the amount of elastic displacement accompanying the rotation of the work W is calculated in advance, and the path of movement of the tool edge is set in consideration of the calculated amount of elastic displacement. Since the workpiece W is turned by moving the tool edge along the cross-sectional shape after the displacement of the workpiece W, machining errors caused by elastic displacement accompanying rotation of the workpiece W are minimized. Can be,
Even a work W that is easily displaced by rotation can be turned with high dimensional accuracy.

【0026】尚、上述した例では、変位後のワークWの
断面形状に沿った複数のポイント(P'b1〜P'b11
の間を直線補間により結んで、前記工具刃先(図示せ
ず)が当該直線上を移動するようにしたが、これに限る
ものではなく、前記ポイント間を円弧補間により結び、
当該円弧上を前記工具刃先(図示せず)が移動するよう
にしても良い。
[0026] In the example described above, a plurality of points along the cross-sectional shape of the workpiece W after displacement (P'b 1 ~P'b 11)
Are connected by linear interpolation, so that the tool edge (not shown) moves on the straight line. However, the present invention is not limited to this, and the points are connected by circular interpolation.
The tool edge (not shown) may be moved on the arc.

【0027】また、上述の複数のポイント間隔を短くし
て更に多数のポイントを設定すれば、工具刃先(図示せ
ず)の移動経路を更に変位後のワークWの断面形状と略
一致したものとすることができ、更に、弾性変位によっ
て生じる加工誤差をほとんど皆無にすることができる。
Further, if the above-mentioned plurality of point intervals are shortened to set more points, the movement path of the tool edge (not shown) substantially matches the sectional shape of the workpiece W after further displacement. In addition, machining errors caused by elastic displacement can be almost completely eliminated.

【0028】また、算出した変位データを基に、自動プ
ログラミング装置によって加工プログラムを自動作成す
るようにしても良い。
Further, a machining program may be automatically created by an automatic programming device based on the calculated displacement data.

【0029】また、本例では有限要素法によりワークW
の変位量を算出したが、これに限るものではなく、他の
変位解析手法を用いて変位量を算出しても良い。また、
変位解析手法を用いて変位量を算出するのではなく、ワ
ークWを実際に回転させてその変位量を実測するように
しても良い。
Also, in this example, the work W
Although the displacement amount is calculated, the displacement amount is not limited to this, and the displacement amount may be calculated using another displacement analysis method. Also,
Instead of calculating the displacement amount using the displacement analysis method, the work W may be actually rotated and the displacement amount may be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る旋削加工法を説明する
ための説明図である。
FIG. 1 is an explanatory diagram for explaining a turning method according to an embodiment of the present invention.

【図2】NC旋盤を用いた従来の旋削加工法を説明する
ための説明図である。
FIG. 2 is an explanatory diagram for explaining a conventional turning method using an NC lathe.

【図3】回転によって生じるワークの弾性変位を説明す
るための説明図である。
FIG. 3 is an explanatory diagram for explaining an elastic displacement of a work caused by rotation.

【符号の説明】[Explanation of symbols]

C 爪 T 工具 Ta 工具刃先 W ワーク G 原点 C Claw T Tool Ta Tool edge W Work G Origin

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 NC旋盤の主軸チャックに把持した被加
工物を回転せしめるとともに、工具刃先が予め定めた経
路を通るように送り駆動部を数値制御して該工具を移動
せしめることにより、目的とした断面形状に前記被加工
物を旋削する旋削加工法であって、 前記被加工物の回転に伴う弾性変位量を算出し、算出し
た該弾性変位量に基づいて、変位後の前記被加工物の断
面形状に沿った前記工具刃先の移動経路を決定し、決定
した移動経路上を前記工具刃先が通るように前記送り駆
動部を数値制御して前記工具を移動せしめることによ
り、目的とした断面形状に前記被加工物を旋削すること
を特徴とするNC旋盤における旋削加工法。
An object is achieved by rotating a workpiece gripped by a spindle chuck of an NC lathe and moving a tool by numerically controlling a feed drive unit so that a tool edge passes a predetermined path. A turning method of turning the work piece into a cross-sectional shape obtained by calculating an elastic displacement amount accompanying rotation of the work piece, and based on the calculated elastic displacement amount, the work piece after the displacement. By determining the movement path of the tool edge along the cross-sectional shape of, and by moving the tool by numerically controlling the feed drive unit so that the tool edge passes on the determined movement path, the target cross section A turning method in an NC lathe, wherein the workpiece is turned into a shape.
JP3809398A 1998-02-04 1998-02-04 Turning method in nc lathe Pending JPH11216642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3809398A JPH11216642A (en) 1998-02-04 1998-02-04 Turning method in nc lathe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3809398A JPH11216642A (en) 1998-02-04 1998-02-04 Turning method in nc lathe

Publications (1)

Publication Number Publication Date
JPH11216642A true JPH11216642A (en) 1999-08-10

Family

ID=12515869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3809398A Pending JPH11216642A (en) 1998-02-04 1998-02-04 Turning method in nc lathe

Country Status (1)

Country Link
JP (1) JPH11216642A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116587A (en) * 2004-10-25 2006-05-11 Nissan Motor Co Ltd Method and device for working minute recess
WO2021014749A1 (en) * 2019-07-24 2021-01-28 株式会社日立製作所 Nc program generation system and nc program generation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116587A (en) * 2004-10-25 2006-05-11 Nissan Motor Co Ltd Method and device for working minute recess
WO2021014749A1 (en) * 2019-07-24 2021-01-28 株式会社日立製作所 Nc program generation system and nc program generation method
JP2021022014A (en) * 2019-07-24 2021-02-18 株式会社日立製作所 NC program generation system and NC program generation method

Similar Documents

Publication Publication Date Title
JP5220183B2 (en) Numerical control device and control method of the numerical control device
JP2017204072A (en) Process program processing device and multiple spindle processor having the same
JPH0351548B2 (en)
JP3650027B2 (en) NC machining support method and apparatus
JP7195110B2 (en) Machine tools and controllers
US20160274560A1 (en) Numerical controller performing reciprocal turning in complex fixed cycle
JP4112436B2 (en) Numerical control device for machine tool and numerical control method for machine tool
US10248100B2 (en) Numerical controller
WO2021014749A1 (en) Nc program generation system and nc program generation method
US20230103408A1 (en) Turning method for workpiece, machine tool, and non-transitory computer-readable storage medium storing machining program
US6163735A (en) Numerically controlled machine tool
JP2006235776A (en) Machine tool and processing method by this machine tool
JPH11216642A (en) Turning method in nc lathe
JP3696805B2 (en) Machine tool moving position setting method
JP2919754B2 (en) Backlash measurement and correction device for spherical or circular surface machining
JP6444923B2 (en) Numerical controller
JP2005144620A (en) Shape processing method by numerical control processing machine, numerical control device, machine tool, nc program making device and nc program making program
US10996655B2 (en) Numerical controller
JP4112433B2 (en) Numerical control device for machine tool and numerical control method for machine tool
JP2001228909A (en) Machine tool and its control method
JP6919427B2 (en) Machine tools, machine tool control methods, and machine tool control programs
JP3490962B2 (en) Tool path creation method and machining method
JPH0412482B2 (en)
JP6935606B1 (en) Information processing equipment and information processing programs
JPH08174335A (en) Method for chamfering gear-like workpiece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061206

A131 Notification of reasons for refusal

Effective date: 20070116

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522