JPH11213779A - Optical composite power cable to be joined to movable body and its utilization - Google Patents

Optical composite power cable to be joined to movable body and its utilization

Info

Publication number
JPH11213779A
JPH11213779A JP1310198A JP1310198A JPH11213779A JP H11213779 A JPH11213779 A JP H11213779A JP 1310198 A JP1310198 A JP 1310198A JP 1310198 A JP1310198 A JP 1310198A JP H11213779 A JPH11213779 A JP H11213779A
Authority
JP
Japan
Prior art keywords
cable
optical fiber
optical
movable body
power cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1310198A
Other languages
Japanese (ja)
Inventor
Shuji Ota
修二 太田
Kazuhiro Arikawa
一浩 有川
Masashi Nakayama
正士 中山
Toyohiko Sakaguchi
豊彦 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Kansai Electric Power Co Inc
Kawasaki Heavy Industries Ltd
Original Assignee
Furukawa Electric Co Ltd
Kansai Electric Power Co Inc
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Kansai Electric Power Co Inc, Kawasaki Heavy Industries Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1310198A priority Critical patent/JPH11213779A/en
Publication of JPH11213779A publication Critical patent/JPH11213779A/en
Pending legal-status Critical Current

Links

Landscapes

  • Communication Cables (AREA)
  • Electric Cable Installation (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent communication from getting impossible due to occurrence of transmission loss caused by insertion of an optical fiber cable into a gap even in the case there is a movable body such as a robot at a far distance and tensile force is high. SOLUTION: Aramid fiber wires 2 produced by coating and fixing bundles of Aramid fibers (polymer material with high strength) with resin are stranded and electric power cables 15 for power supply and optical fiber cables 13 are stranded around the outer side of the Aramid fiber wires 2 to include at least one optical fiber cable and the resultant body is sheathed in a rubber or a plastic sheath to give an optical composite power cable. A method for operating a movable body while untwisting the twisted cable at the time of abnormal movement of a movable body by constantly monitoring the transmission loss property of the cable instead of monitoring the situation of the cable extended long is employed for the method for operating the movable body, and consequently, the cable life is prolonged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は水中で作業するロボ
ット等の移動体に給電と光信号を送る光複合電力ケーブ
ルとその使用方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical composite power cable for supplying power and transmitting an optical signal to a moving body such as a robot working underwater, and a method of using the same.

【0002】[0002]

【従来の技術】移動体に給電し又その動作を制御するケ
ーブルには近年光複合電力ケーブルが用いられる。移動
体とはロボットや深海艇の様な自在に動ける機能を持っ
たものを指し、動力として電力を受けながら、車軸を回
したりスクリュウを回して移動し、ケーブルを後方に引
きながら要求される仕事を行うものである。
2. Description of the Related Art In recent years, an optical composite power cable has been used as a cable for supplying power to a mobile body and controlling its operation. A moving object is a robot or a deep-sea boat that has the ability to move freely, receives power as power, moves by turning an axle or turning a screw, and pulls the cable backward to perform the required work. Is what you do.

【0003】従って移動体に給電し又その動作を制御す
るケーブルは一般に軽く引張強度の大きいものが良い。
又移動体の動きを妨げない曲がりやすいものが望まし
い。更に磨耗しにくいケーブルが望ましい。引張力は移
動体を遠方に派遣する場合、及び遠方より呼び戻す場合
にかかり、ルート長が長く、ルート形状が複雑な曲がり
を持つと数トンに達する場合もありうる。
Accordingly, a cable that supplies power to a moving body and controls its operation is generally light and has high tensile strength.
Further, it is desirable that the movable body be easily bent without hindering the movement of the moving body. Further, a cable that does not easily wear is desirable. The pulling force is applied when the moving body is sent to a distant place or when the moving body is recalled from a distant place. When the route length is long and the route shape has a complicated bend, it may reach several tons.

【0004】従来使用している光複合電力ケーブルの断
面図を図6に示す。従来の光複合電力ケーブルは、海底
電線と同様の構成をしており外側に鉄線鎧装の代わり
に、テンシヨンメンバー16としてFRP線を1層又は
2層設け、内側に電力ケーブル15と光ファイバーケー
ブル13を撚合せたものが用いられていた。鉄線の代わ
りにFRPを用いるのは、水中重量を軽くすることがで
き錆びない等のメリットによる。
FIG. 6 is a cross-sectional view of a conventionally used optical composite power cable. The conventional optical composite power cable has a configuration similar to that of a submarine electric wire. One or two layers of FRP wires are provided as tension members 16 instead of iron sheathing on the outside, and the power cable 15 and the optical fiber cable are provided on the inside. 13 was used. The use of FRP instead of iron wire is advantageous in that it can reduce the weight in water and does not rust.

【0005】図7に発明者等が使用した水路と機械の配
置を示す。移動体19は1.4km長さの水路20の繋
ぎ部分の段差点検に使用されるロボットで、水路は左右
上下に曲がっている。また本移動体のケーブル根元には
張力計が有り、ロボット根元でのケーブル張力が測定さ
れる。引出されたケーブルの回収はベルトを用いた巻取
り機21を用い行っておりローラー22でケーブル張力
を検出している。
FIG. 7 shows the arrangement of water channels and machines used by the inventors. The moving body 19 is a robot used for checking a step at a connecting portion of the 1.4 km long water channel 20, and the water channel is bent right and left and up and down. In addition, a tension meter is provided at the base of the cable of the moving body, and the cable tension at the base of the robot is measured. The pulled-out cable is collected using a winding machine 21 using a belt, and the tension of the cable is detected by a roller 22.

【0006】[0006]

【発明が解決しようとする課題】図6のケーブルを用い
水路内の点検を行ったところ、度々光ファイバーのロス
が大きくなり通信不能の事態が発生した。ケーブルを巻
き上げて調査してみると最も柔らかい光ファイバーケー
ブルが電力ケーブルに押しつけられることにより隙間に
押し込まれ、そして光ファイバーの中に特に強く曲げら
れるケーブルが発生し局部曲げや捻じれにより伝送ロス
が発生し通信が不可能になってしまうと判明した。これ
は遠方にロボットがあり静摩擦や動摩擦により引っ張り
荷重が大きくなったり変動するとケーブル1本1本の巻
きが締まったり緩んだりしたため、捻じれが隙間への押
し込みを助長して光ファイバーケーブルを破壊するため
と理解できる。
When the inside of the waterway was inspected using the cable shown in FIG. 6, the loss of the optical fiber was frequently increased, and the communication became impossible. When the cable is wound up and examined, the softest optical fiber cable is pushed into the gap by being pressed against the power cable, and a cable that is particularly strongly bent occurs in the optical fiber, and transmission loss occurs due to local bending and twisting. It turned out that communication was impossible. This is because when a robot is far away and the tensile load increases or fluctuates due to static friction or dynamic friction, the winding of each cable is tightened or loosened, and the torsion promotes pushing into the gap and destroys the optical fiber cable. I can understand.

【0007】そしてその都度ケーブルの取り替え等で多
くの時間を要し、移動体の運用に支障を来す事態が発生
した。このため大きな張力を荷けても光ファイバーに影
響のでない構造のケーブルを作製することを課題とし、
又そのケーブルを用いて光ファイバーを傷めることなく
移動体を操作する方法を見つけることを課題とした
[0007] Each time, it takes a lot of time to replace the cable and the like, and a situation occurs in which the operation of the mobile body is hindered. For this reason, the task was to produce a cable with a structure that did not affect the optical fiber even when a large tension was applied.
Another object was to find a way to operate the moving object without damaging the optical fiber using the cable.

【0008】[0008]

【課題を解決するための手段】そこで移動体に給電と光
信号を送る光複合電力ケーブルにおいて図1に示すよう
に中央にアラミド繊維に代表される高分子高強度繊維束
を樹脂で被覆固めたアラミド繊維線2を撚合せその外側
に給電用の電力ケーブル15と光ファイバーケーブル1
3を撚合せ少なくとも1本以上の光ファイバーケーブル
を入れ、ゴム又はプラスチックシースを懸けた構造の移
動体に連結される光複合電力ケーブルを作製する。アラ
ミド繊維線は2層にし巻き方向を互いに交互にして捻じ
れに強くし、また電力ケーブルと光ファイバーケーブル
も外側2層で巻き方向を交互にし専有面積を増やし電力
ケーブル線心数を増やし細くし光ファイバーに加わる圧
力を小さくしている。これにより何れの方向にも緩み難
くしている。
Accordingly, in a composite optical power cable for feeding power and transmitting an optical signal to a mobile body, a high-strength high-molecular fiber bundle represented by aramid fiber is coated with a resin at the center as shown in FIG. An aramid fiber wire 2 is twisted and a power cable 15 for power supply and an optical fiber cable 1
At least one or more optical fiber cables are inserted into the optical fiber cable 3 to produce an optical composite power cable connected to a moving body having a rubber or plastic sheath. The aramid fiber wire is made into two layers and the winding direction is alternated to make it more resistant to twisting, and the power cable and the optical fiber cable are alternately wound in the outer two layers to increase the occupied area, increase the number of power cable cores and make the optical fiber thinner. The pressure applied to is reduced. This makes it difficult to loosen in any direction.

【0009】そして光複合電力ケーブルを用い移動体に
給電と光信号を送り移動体を操作する方法において、ケ
ーブル捻じれが光ファイバー寿命に大きく影響するので
ある光ファイバーケーブルの伝送ロス特性を常に監視し
て光複合電力ケーブルを使用する方法を取り、さらに前
記光複合電力ケーブルを用い移動体に給電と光信号を送
るに際し、光ファイバーケーブルの伝送特性を監視しつ
つ、移動体を操作し、異常時移動体を回転して捻じれを
回復させ移動体を操作する使用方法を採用し、ケーブル
寿命を著しく長くした。
In the method of operating the mobile unit by feeding the optical signal and transmitting the optical signal to the mobile unit using the optical composite power cable, the transmission loss characteristic of the optical fiber cable, in which the twist of the cable greatly affects the life of the optical fiber, is constantly monitored. Take a method using an optical composite power cable, and further operate the mobile object while monitoring the transmission characteristics of the optical fiber cable when feeding and sending an optical signal to the mobile object using the optical composite power cable, The cable has a long life by adopting a method of operating a moving body by rotating to recover torsion.

【0010】[0010]

【発明の実施の形態】本発明によるケーブルを図1に示
し詳細を説明する。中央鋼線上にポリエチレン層を押出
し成形して所定外径の心1とし、その上にアラミド繊維
(高分子高強度材料)束を樹脂で被覆固めた線2を撚り
ピッチを交互に2層撚合せ、ポリエチレン層3を押出し
てテンションの負担部分を構成している。その外側にク
ッション層として発泡ポリエチレン4の層で外径を調整
している。そしてその外側に27心の電力ケーブルと4
心の光ファイバーケーブル13の混在した層が巻き方向
を違えて2層製作されている。電力ケーブルは撚線上に
ポリエチレン被覆され、光ファイバーはポリエチレンの
スペーサー17上に光ファイバー11が4コアが螺旋上
に巻かれポリエチレン被覆12を被り、外形がほぼ同径
となっている。その上に内部シース(PVC)を被覆し
更に外部シース(ポリエチレン)を厚さ4mm被覆して
いる。本ケーブルは重量3kg/mあり、水中重量0.
6kg/mで電力ケーブルは27心で各8sqmmであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A cable according to the present invention is shown in FIG. 1 and will be described in detail. A polyethylene layer is extruded on a central steel wire to form a core 1 having a predetermined outer diameter, and a wire 2 obtained by coating an aramid fiber (polymer high-strength material) bundle with a resin on the core is twisted, and two layers are alternately twisted at a pitch. The polyethylene layer 3 is extruded to constitute a portion that bears tension. The outer diameter is adjusted by a layer of foamed polyethylene 4 on the outside as a cushion layer. And a 27-core power cable and 4
Two layers of the mixed optical fiber cable 13 are manufactured in different winding directions. The power cable has a twisted wire covered with polyethylene, and the optical fiber has a polyethylene spacer 12 in which four optical fibers 11 are spirally wound on a polyethylene spacer 17 and has an outer diameter of approximately the same diameter. An inner sheath (PVC) is coated thereon, and an outer sheath (polyethylene) is further coated to a thickness of 4 mm. This cable weighs 3 kg / m and has an underwater weight of 0.3 kg / m.
At 6 kg / m, the power cable is 27 sq.

【0011】なお比較例として、図2のFRPのテンシ
ョンメンバーを交互巻きにし2層とした光ファイバー複
合ケーブルも作製した。テンションメンバーを2層とし
剛性を弱め又交互巻きにし何れの方向に捻じられても、
緩まない構成としている。
As a comparative example, an optical fiber composite cable in which the tension members of the FRP shown in FIG. Even if the tension member is made into two layers and the rigidity is weakened or alternately wound and twisted in any direction,
It does not loosen.

【0012】上記ケーブルを使用して再度図7のロボッ
ト及びケーブルを合わせた重量10屯、水中重量2屯の
水路内点検清掃ロボット19を動作させるにあたり、光
ファイバーケーブルの伝送ロス特性を常に監視した。そ
の系統を図3に示す。本装置はノート型パソコンによ
り、光減衰量測定機及び光ファイバーチャンネルセレク
ターを制御し、異常警報及びデータ記録を合わせ行って
いるものである。警報は無負荷時4dBの回路ロスが7
dBに達すると警報を出し、10dBに達すると異常警
報を出し、ロボット走行を停止し、ロボットをケーブル
軸回りに回転させる事により捻じれを戻しケーブルの捻
じれと張力による光ファイバーのロスを回復し点検清掃
作業を続行する。観測データを図4に示す。光減衰量測
定器では光ファイバーに沿ったロスが表わされており両
端のコネクターのノイズが入っているが、その間のどの
辺りで異常が起こっているか観察できる。この両端の差
がロスであるが、パソコンが計算し作業時間に対し記録
しているほぼ4dBで安定している。
When the above cable was used to operate the robot 19 of FIG. 7 and the cable together with the robot and the cable of 10 tons and the underwater weight of 2 tons for inspection and cleaning, the transmission loss characteristics of the optical fiber cable were constantly monitored. The system is shown in FIG. This device controls an optical attenuation meter and an optical fiber channel selector by a notebook personal computer, and performs an abnormal alarm and data recording together. The alarm is 7 when 4dB circuit loss at no load
When it reaches dB, an alarm is issued. When it reaches 10 dB, an abnormal alarm is issued, the robot stops running, and the robot is rotated around the cable axis to recover the twist and recover the loss of the optical fiber due to the twist and tension of the cable. Continue inspection and cleaning work. The observation data is shown in FIG. The optical attenuation meter shows the loss along the optical fiber and includes noise at the connectors at both ends. It is possible to observe where the abnormality has occurred during that time. Although the difference between the two ends is a loss, it is stable at approximately 4 dB calculated by the personal computer and recorded with respect to the working time.

【0013】[0013]

【発明の効果】移動体に給電と光信号を送る光複合電力
ケーブルにおいて中央にアラミド繊維(高分子高強度材
料)束を樹脂で被覆固めた線を撚合せその外側に給電ケ
ーブルと光ファイバーケーブルを撚合せ少なくとも1本
以上の光ファイバーケーブルを入れ、ゴム又はプラスチ
ックシースを懸けた移動体に連結される光複合電力ケー
ブルを用いれば、鎧装2層の比較例のケーブルと同等に
曲げ、しごき、引張に対し光減衰量の生じないケーブル
ができ又引張荷重による捻じりトルクの発生も少ないこ
とが表1に示すように確認された。
According to the present invention, in a composite optical power cable for feeding power and transmitting an optical signal to a moving object, a wire in which a bundle of aramid fibers (a high-strength material of a polymer) coated with resin is twisted at the center and a feeding cable and an optical fiber cable are provided outside the wire. If at least one optical fiber cable is inserted and an optical composite power cable connected to a moving body with a rubber or plastic sheath is used, bending, ironing, and pulling can be performed in the same manner as the cable of the comparative example having two layers of armor. In contrast, it was confirmed as shown in Table 1 that a cable having no light attenuation was produced and that the occurrence of torsion torque due to the tensile load was small.

【0014】[0014]

【表1】 [Table 1]

【0015】その上本ケーブルは可撓性にも優れている
事が図5の片持ち曲げ試験で実証された。更にアラミド
線は市販されておりFRPのテンションメンバーに比較
し容易入手出来るので、ケーブル全体でもコストが低
い。従ってロボット等の移動体側から見ると最も引っ張
りやすい安価な作りやすいケーブルであることが実証さ
れた。また光複合電力ケーブルを用い移動体に給電と光
信号を送り移動体を操作する方法において、光ファイバ
ーケーブルの伝送ロス特性を常に監視していることを特
徴とする使用方法を用いれば引き戻し開始時及びロボッ
トの根掛かり等に対応し減衰量が図3のように発生して
いることが理解でき、その結果早く異常の立ち上がりを
知ることができ捻じれを調節できケーブル寿命が著しく
延びた。
In addition, the cantilever bending test shown in FIG. 5 proves that the present cable has excellent flexibility. Further, since aramid wire is commercially available and can be easily obtained as compared with FRP tension members, the cost of the entire cable is low. Therefore, it has been proved that the cable is the most inexpensive and easy-to-make cable when viewed from the side of a moving body such as a robot. In addition, in the method of operating the mobile unit by feeding the optical signal and transmitting the optical signal to the mobile unit using the optical composite power cable, if the use method is characterized in that the transmission loss characteristics of the optical fiber cable are constantly monitored, the pull-back operation is started and It can be understood that the amount of attenuation is generated as shown in FIG. 3 corresponding to the root of the robot and the like, and as a result, the rise of the abnormality can be quickly detected, the torsion can be adjusted, and the cable life has been significantly extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明になる光複合電力ケーブルの断面図FIG. 1 is a sectional view of an optical composite power cable according to the present invention.

【図2】従来の光複合電力ケーブルを改善した比較例の
断面図
FIG. 2 is a cross-sectional view of a comparative example in which a conventional optical composite power cable is improved.

【図3】本発明の伝送ロス監視系統図FIG. 3 is a transmission loss monitoring system diagram of the present invention.

【図4】本発明の伝送ロス監視データの実施例FIG. 4 is an embodiment of transmission loss monitoring data of the present invention.

【図5】可撓性評価試験の方法と結果FIG. 5: Method and results of the flexibility evaluation test

【図6】光複合電力ケーブルの従来例の断面図FIG. 6 is a sectional view of a conventional example of an optical composite power cable.

【図7】水路と機械の配置の説明図FIG. 7 is an explanatory view of the arrangement of water channels and machines.

【符号の説明】[Explanation of symbols]

1心 2アラミド繊維線 3ポリエチレン層 4発泡ポリエチレン 11光ファイバー 12ポリエチレン被覆 13光ファイバーケーブル 14シース 15電力ケーブル 16FRPテンションメンバー 17スペーサー 18外部シース 19移動体(点検清掃ロボット) 20水路 21巻取り機 22ローラー 23ケーブル束 1 core 2 aramid fiber wire 3 polyethylene layer 4 foamed polyethylene 11 optical fiber 12 polyethylene coating 13 optical fiber cable 14 sheath 15 power cable 16 FRP tension member 17 spacer 18 outer sheath 19 moving body (inspection and cleaning robot) 20 water channel 21 winder 22 roller 23 Cable bundle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 修二 大阪市北区中之島三丁目3番22号関西電力 株式会社内 (72)発明者 有川 一浩 大阪市北区中之島三丁目3番22号関西電力 株式会社内 (72)発明者 中山 正士 兵庫県神戸市中央区東川崎町3丁目1番1 号川崎重工業株式会社神戸工場内 (72)発明者 坂口 豊彦 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shuji Ota 3-2-222 Nakanoshima, Kita-ku, Osaka-shi Kansai Electric Power Co., Inc. (72) Inventor Kazuhiro Arikawa 3-2-2, Nakanoshima, Kita-ku, Osaka-Kansai Electric Power Co., Ltd. (72) Inventor: Masashi Nakayama 3-1-1, Higashikawasaki-cho, Chuo-ku, Kobe-shi, Hyogo Kawasaki Heavy Industries, Ltd.Kobe Plant (72) Inventor: Toyohiko Sakaguchi 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Old Kawa Electric Industry Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】移動体に給電と光信号を送る光複合電力ケ
ーブルにおいて中央に高分子高強度繊維束を樹脂で被覆
固めた線を撚合せその外側に給電ケーブルと光ファイバ
ーケーブルを撚合せ少なくとも1本以上の光ファイバー
ケーブルを入れ、ゴム又はプラスチックシースを懸けた
移動体に連結される光複合電力ケーブル。
1. An optical composite power cable for feeding power and transmitting an optical signal to a moving body, twisting a wire in which a high-strength polymer fiber bundle coated with a resin is solidified at the center and twisting a power feeding cable and an optical fiber cable on the outside thereof. An optical composite power cable that contains more than one optical fiber cable and is connected to a moving object with a rubber or plastic sheath.
【請求項2】光複合電力ケーブルを用い移動体に給電と
光信号を送り移動体を操作する方法において、光ファイ
バーケーブルの伝送ロス特性を常に監視して使用するこ
とを特徴とする使用方法。
2. A method for operating a mobile unit by feeding and supplying an optical signal to the mobile unit using an optical composite power cable, wherein the transmission loss characteristic of the optical fiber cable is constantly monitored and used.
【請求項3】請求項1の光複合電力ケーブルを用い移動
体に給電と光信号を送るに際し、内層の光ファイバーケ
ーブルの伝送特性を監視しつつ、移動体を操作し、異常
時移動体を回転して伝送特性を回復させ移動体を操作す
る使用方法。
3. When a power supply and an optical signal are sent to a mobile unit using the optical composite power cable according to claim 1, the mobile unit is operated and the mobile unit is rotated in an abnormal state while monitoring the transmission characteristics of the optical fiber cable in the inner layer. To recover the transmission characteristics and operate the mobile object.
JP1310198A 1998-01-27 1998-01-27 Optical composite power cable to be joined to movable body and its utilization Pending JPH11213779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1310198A JPH11213779A (en) 1998-01-27 1998-01-27 Optical composite power cable to be joined to movable body and its utilization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1310198A JPH11213779A (en) 1998-01-27 1998-01-27 Optical composite power cable to be joined to movable body and its utilization

Publications (1)

Publication Number Publication Date
JPH11213779A true JPH11213779A (en) 1999-08-06

Family

ID=11823772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1310198A Pending JPH11213779A (en) 1998-01-27 1998-01-27 Optical composite power cable to be joined to movable body and its utilization

Country Status (1)

Country Link
JP (1) JPH11213779A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100451255B1 (en) * 2002-03-18 2004-10-06 엘지전선 주식회사 FTTC composite cable for data transmission and power source supply
JP2008103374A (en) * 2006-10-17 2008-05-01 Tokyo Electron Ltd Composite piping, and application/development processing apparatus equipped with composite piping
KR101067698B1 (en) 2009-07-28 2011-09-27 에쓰이에이치에프코리아 (주) Optical electrical composition cable
CN103325447A (en) * 2013-05-31 2013-09-25 成都亨通光通信有限公司 Photoelectricity integrated mixed cable
CN108957668A (en) * 2018-09-28 2018-12-07 江苏亨通光电股份有限公司 A kind of reinforced ant proof air-blowing micro-cable and its manufacture craft

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100451255B1 (en) * 2002-03-18 2004-10-06 엘지전선 주식회사 FTTC composite cable for data transmission and power source supply
JP2008103374A (en) * 2006-10-17 2008-05-01 Tokyo Electron Ltd Composite piping, and application/development processing apparatus equipped with composite piping
KR101067698B1 (en) 2009-07-28 2011-09-27 에쓰이에이치에프코리아 (주) Optical electrical composition cable
CN103325447A (en) * 2013-05-31 2013-09-25 成都亨通光通信有限公司 Photoelectricity integrated mixed cable
CN108957668A (en) * 2018-09-28 2018-12-07 江苏亨通光电股份有限公司 A kind of reinforced ant proof air-blowing micro-cable and its manufacture craft

Similar Documents

Publication Publication Date Title
AU2006344002B2 (en) Cable and process for manufacturing the same
EP3115816B1 (en) Optical cable
KR101332961B1 (en) Extensible optical signal transmission cable
CA2324089C (en) High fiber count, compact, loose tube optical fiber cable employing ribbon units and flexible buffer tubes
KR20060030026A (en) Fiber optic cable having a strength member
WO2004077120A1 (en) Loose tube optical cable
US6845200B1 (en) Fiber optic assemblies, cable, and manufacturing methods therefor
JPH11213779A (en) Optical composite power cable to be joined to movable body and its utilization
KR20190037533A (en) Buoyant Optical-Power Composite Cable
GB2036361A (en) Reinforced Optical Fiber Conductor and Optical Fiber Cable Incorporating such Conductors
CN112099161A (en) Optical cable without yarn binding
CN110120283B (en) Towline cable and cable preparation method
JP4657846B2 (en) Optical fiber cable manufacturing apparatus and manufacturing method
KR101023561B1 (en) An Electric Power Cable For Windturbine Having High Torsional Endurance Property And Method For Producing The Same
CN112562891A (en) Cable for movable part and life prediction system
CN217061521U (en) Anti-bending cable
CN218939268U (en) Tensile, wear-resistant and winding-resistant reel cable for mobile equipment
CN214012539U (en) Anti-torsion, pulling-resistant and bending-resistant towline cable
CN218333157U (en) Torsion-resistant and wear-resistant cable for winding drum device
CN217008724U (en) Oil-resistant extrusion-resistant multi-core towline cable
CN218384598U (en) Novel composite umbilical cable
CN214012540U (en) Flexible bending-resistant towline cable
JP2005037641A (en) Optical fiber cable
JP3384488B2 (en) Submarine optical cable
JP6651886B2 (en) Cable with abnormality detection function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061031