JPH11213776A - Thin coaxial cable - Google Patents

Thin coaxial cable

Info

Publication number
JPH11213776A
JPH11213776A JP10034310A JP3431098A JPH11213776A JP H11213776 A JPH11213776 A JP H11213776A JP 10034310 A JP10034310 A JP 10034310A JP 3431098 A JP3431098 A JP 3431098A JP H11213776 A JPH11213776 A JP H11213776A
Authority
JP
Japan
Prior art keywords
layer
insulating layer
coaxial cable
porous
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10034310A
Other languages
Japanese (ja)
Inventor
Tatsuo Yamaguchi
辰男 山口
Hiroshi Kitazawa
弘 北沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Totoku Electric Co Ltd
Original Assignee
Totoku Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totoku Electric Co Ltd filed Critical Totoku Electric Co Ltd
Priority to JP10034310A priority Critical patent/JPH11213776A/en
Publication of JPH11213776A publication Critical patent/JPH11213776A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Landscapes

  • Communication Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the terminal working property without damaging excellent high frequency electric characteristic and heat resisting performance by providing a low dielectric constant insulating layer consisting of a porous ethylene tetrafluoride resin insulating layer having a sintered surface on the circumference of a central conductor. SOLUTION: A non-sintered porous ethylene tetrafluoride resin is paste extruded to cover the circumference of a central conductor such as silver plated copper wire to form a nonsintered porous ethylene tetrafluoride layer with a porosity of about 50%. This is sintered for about 3 seconds in a sand bath tank of about 320 deg.C to form a porous ethylene tetrafluoricle resin insulating layer 3 with a coating thickness of about 0.18 mm and an average porosity of about 25%, which consists of a surface sintered layer 3a and a porous layer 3b, whereby an insulator core 4 having an outer diameter of about 0.48 mm is provided. An external conductor layer 5 is provided on the circumference of the insulator core 4 to form a thin coaxial cable 1. The external conductor layer 5 is formed of, for example, Ni-P anchor metal layer 5a and a copper plated metal layer 5b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、小型電子機器の高周波
伝送線路に用いられる細径同軸ケーブルに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small-diameter coaxial cable used for a high-frequency transmission line of a small electronic device.

【0002】[0002]

【従来の技術】携帯用電話機等の小型電子機器内の高周
波伝送線路として使用される細径同軸ケーブルは、可撓
性に富み高周波電気特性に優れるとともに端末加工の容
易さが要求される。細径同軸ケーブルの一般的構成は、
中心導体の外周に、ふっ素系樹脂或いはポリエチレン樹
脂等を押出成形被覆するか前記樹脂のテープを重ね巻き
して低誘電率絶縁層を形成し、この低誘電率絶縁層の外
周に外部金属導体層を設けてなっている。外部金属導体
層には、金属テープを重ね巻きしたものまたは導線を横
巻きしたもの、或いは銅パイプを低誘電率絶縁層に嵌挿
し銅パイプと低誘電率絶縁層が密着するまでダイスで引
き絞り加工して形成したもの、或いは本願出願人が特開
平6−187847号公報に開示のように、低誘電率絶
縁層外周に無電解めっきによるアンカー金属層と電気め
っきによる良導電性金属層とを施し形成したものなどが
ある。
2. Description of the Related Art A small-diameter coaxial cable used as a high-frequency transmission line in a small electronic device such as a portable telephone is required to have high flexibility, excellent high-frequency electric characteristics, and easy terminal processing. The general configuration of a small diameter coaxial cable is
The outer periphery of the central conductor is formed by extrusion molding or coating a fluororesin or a polyethylene resin or the like or a tape of the above resin to form a low dielectric constant insulating layer, and an outer metal conductor layer is formed on the outer periphery of the low dielectric constant insulating layer. Is provided. For the outer metal conductor layer, wrap metal tape or wrap a conductor horizontally, or insert a copper pipe into the low-k insulating layer and draw with a die until the copper pipe and the low-k insulating layer are in close contact. An anchor metal layer formed by electroless plating and a good conductive metal layer formed by electroplating on the outer periphery of a low dielectric constant insulating layer as disclosed in Japanese Patent Application Laid-Open No. 6-187847 by the present applicant. And the like formed by application.

【0003】[0003]

【発明が解決しようとする課題】細径同軸ケーブルは、
他の電子部品と同様に回路基板等とはんだ接続する際に
リフロー炉を用いた自動はんだ接続方式が適用されるよ
うになり、細径同軸ケーブルの耐熱性能の更なる改良が
求められ、低誘電率絶縁層に充実型のふっ素樹脂絶縁体
に代わって耐熱性能の良い多孔質4ふっ化エチレン樹脂
(PTFE)絶縁体が多用されるようになった。
The small-diameter coaxial cable is
As with other electronic components, when soldering to circuit boards, etc., an automatic soldering method using a reflow furnace has been applied. In place of the solid fluororesin insulator, a porous tetrafluoroethylene resin (PTFE) insulator having good heat resistance has come to be frequently used for the high-rate insulating layer.

【0004】しかし、細径同軸ケーブルの絶縁層を多孔
質PTFE絶縁体で形成した場合、端末加工処理におい
て多孔質PTFE絶縁層を中心導体から輪切り状に剥離
する際に、多孔質PTFE絶縁層が剥離工具によって押
し潰され引き伸ばされてしまって多孔質PTFE絶縁層
を輪切り状に確実に剥離することが難しく、また剥離の
際に中心導体に損傷を与えてしまうという問題があっ
た。これは、多孔質PTFE絶縁体の剛性が充実型ふっ
素樹脂絶縁体の剛性に比べ低いことに起因している。
However, when the insulating layer of the small-diameter coaxial cable is formed of a porous PTFE insulator, when the porous PTFE insulating layer is peeled off from the center conductor in a ring shape in the terminal processing, the porous PTFE insulating layer is not formed. There has been a problem that it is difficult to reliably peel off the porous PTFE insulating layer in a ring shape by being crushed and stretched by a peeling tool, and there is a problem that the center conductor is damaged at the time of peeling. This is because the rigidity of the porous PTFE insulator is lower than the rigidity of the solid fluororesin insulator.

【0005】そこで、本発明の目的は、優れた高周波電
気特性と耐熱性能を損なうことなく端末加工性の改善を
図り、端末加工の際に中心導体に損傷を与えることなく
多孔質PTFE絶縁層を確実に輪切り剥離することので
きる細径同軸ケーブルを提供することにある。
Therefore, an object of the present invention is to improve the terminal processability without impairing the excellent high-frequency electrical characteristics and heat resistance, and to form a porous PTFE insulating layer without damaging the center conductor during terminal processing. An object of the present invention is to provide a small-diameter coaxial cable that can be surely cut off in a round slice.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明の細径同軸ケーブルは、中心導体の外周に低
誘電率樹脂絶縁層と外部金属導体層を順次設けた細径同
軸ケーブルにおいて、前記低誘電率樹脂絶縁層を表面の
焼結された多孔質PTFE絶縁層で形成したことを構成
上の特徴とするものである。
In order to solve the above-mentioned problems, a small-diameter coaxial cable according to the present invention relates to a small-diameter coaxial cable in which a low dielectric constant resin insulating layer and an external metal conductor layer are sequentially provided on the outer periphery of a center conductor. The low dielectric constant resin insulating layer is formed by a porous PTFE insulating layer having a sintered surface.

【0007】[0007]

【作用】本発明の細径同軸ケーブルは、剛性に劣る多孔
質PTFE絶縁層の剛性の向上を図る手段として、多孔
質PTFE絶縁層の表面を焼結し、絶縁層表面に充実状
外皮を形成するものである。焼結体は充実体と同程度の
剛性を持つようになるので、多孔質PTFE絶縁層表面
は焼結層により剛性が高まる。多孔質PTFE絶縁層表
面の剛性が高まることにより、端末加工の際に剥離工具
の刃を多孔質PTFE絶縁層を押し潰すことなく多孔質
PTFE絶縁層内深くまで挿入することができるので、
多孔質PTFE絶縁層を無理に引き伸ばすことなく中心
導体から確実、容易に輪切り剥離することが可能とな
る。従って剥離の際に中心導体に損傷を与えるおそれも
なくなる。しかも、多孔質PTFE絶縁層は表面層以外
の内層がそのまま多孔質体で形成されているので、高周
波電気特性と耐熱性能が大きく損なわれることはない。
The thin coaxial cable of the present invention is characterized in that the surface of the porous PTFE insulating layer is sintered to form a solid outer skin on the surface of the insulating layer as a means for improving the rigidity of the porous PTFE insulating layer having poor rigidity. Is what you do. Since the sintered body has the same rigidity as the solid body, the rigidity of the surface of the porous PTFE insulating layer is increased by the sintered layer. Since the rigidity of the surface of the porous PTFE insulating layer is increased, the blade of the peeling tool can be inserted deep into the porous PTFE insulating layer without crushing the porous PTFE insulating layer during terminal processing.
The porous PTFE insulating layer can be reliably and easily stripped off from the center conductor without forcibly stretching the insulating layer. Therefore, there is no risk of damaging the center conductor during peeling. Further, since the inner layer other than the surface layer of the porous PTFE insulating layer is formed of a porous body as it is, the high-frequency electric characteristics and the heat resistance are not significantly impaired.

【0008】また、上記細径同軸ケーブルにおいて、表
面焼結した多孔質PTFE絶縁層内の気孔率を内層から
表面に向かって順次減少して形成すれば、中心導体と接
触する多孔質PTFE絶縁層の内側は高気孔率の状態に
形成されるので、多孔質PTFE絶縁層と中心導体との
密着強度が増大することがないので好ましい。
In the above-mentioned small diameter coaxial cable, if the porosity in the surface-sintered porous PTFE insulating layer is gradually reduced from the inner layer to the surface, the porous PTFE insulating layer in contact with the center conductor is formed. Is formed in a high porosity state, so that the adhesion strength between the porous PTFE insulating layer and the center conductor does not increase, which is preferable.

【0009】[0009]

【実施例】以下、図に示す実施例に基づき本発明を説明
する。なお、これにより本発明が限定されるものではな
い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on an embodiment shown in the drawings. Note that the present invention is not limited by this.

【0010】図1は、本発明の細径同軸ケーブルの1実
施例を示す横断面図である。外径0.12mmの銀めっ
き銅線の中心導体2の外周に、未焼結の多孔質PTFE
樹脂をペースト押出被覆して気孔率50%の未焼結多孔
質PTFE層を形成し、これを320°Cのサンドバス
槽で3秒間焼結し表面焼結層3aと多孔質層3bを有す
る被覆厚さ0.18mm、平均気孔率25%の多孔質4
ふっ化エチレン樹脂絶縁層3が形成され、外径0.48
mmの絶縁体コア4を得る。得られた絶縁体コア4はそ
の外周に外部導体層5が設けられ、細径同軸ケーブル1
が形成される。外部導体層5としては、例えば金属めっ
き導体層がある。金属めっきによる外部導体層5の形成
手段を略記すると、先ず絶縁体コア4は液温10°Cの
金属ナトリウム−ナフタレン錯体溶液中で0.26秒間
活性化処理され、この後、絶縁体コア4外周に無電解め
っきにより1μm厚さのNi−Pアンカー金属層5aが
施され、更にアンカー金属層5a上に電気めっきにより
60μm厚さの銅めっき金属層5bが施され、合計厚さ
61μmの外部導体層5を形成する。この場合の得られ
た細径同軸ケーブル1の外径は0.602mmであっ
た。外部導体層5としては、前述したように上記金属め
っき外部導体層のほかに、金属テープを重ね巻きして形
成したもの、或いは導線を横巻きして形成したもの、或
いは銅パイプを被せて形成したもの等がある。本発明の
実施例では金属めっき外部導体層を例示したが、いずれ
の外部導体層であっても差し支えないことは勿論であ
る。また、多孔質PTFE樹脂絶縁層3も、実施例の未
焼結の多孔質PTFE樹脂をペースト押出成形したもの
の他、未焼結の多孔質PTFE樹脂テープを重ね巻き
し、この多孔質PTFE樹脂テープの重ね巻き体を表面
焼結して形成してもよい。なお、図1では多孔質PTF
E樹脂絶縁層3は、内層から表面に向かって気孔率が順
次減少して形成された例を示している。
FIG. 1 is a cross-sectional view showing one embodiment of the small diameter coaxial cable of the present invention. Unsintered porous PTFE is applied to the outer periphery of the center conductor 2 of a silver-plated copper wire having an outer diameter of 0.12 mm.
The resin is subjected to paste extrusion coating to form an unsintered porous PTFE layer having a porosity of 50%, which is sintered in a sand bath at 320 ° C. for 3 seconds to have a surface sintered layer 3a and a porous layer 3b. Porous 4 having a coating thickness of 0.18 mm and an average porosity of 25%
The insulating layer 3 having an outer diameter of 0.48 is formed.
The insulator core 4 of mm is obtained. An outer conductor layer 5 is provided on the outer periphery of the obtained insulator core 4, and the small-diameter coaxial cable 1
Is formed. As the external conductor layer 5, for example, there is a metal plating conductor layer. The means for forming the outer conductor layer 5 by metal plating is briefly described. First, the insulator core 4 is activated in a metal sodium-naphthalene complex solution at a liquid temperature of 10 ° C. for 0.26 seconds. A 1 μm-thick Ni—P anchor metal layer 5 a is applied to the outer periphery by electroless plating, and a 60 μm-thick copper-plated metal layer 5 b is applied to the anchor metal layer 5 a by electroplating. The conductor layer 5 is formed. The outer diameter of the obtained small diameter coaxial cable 1 in this case was 0.602 mm. As the outer conductor layer 5, in addition to the above-mentioned metal-plated outer conductor layer, as described above, a layer formed by overlapping and winding a metal tape, a layer formed by winding a conductor horizontally, or a copper pipe is formed. And others. Although the metal-plated outer conductor layer has been exemplified in the embodiment of the present invention, it is needless to say that any outer conductor layer may be used. Also, the porous PTFE resin insulating layer 3 is obtained by pasting and extruding the unsintered porous PTFE resin of the example, and also wrapping and winding an unsintered porous PTFE resin tape. May be formed by surface sintering. In FIG. 1, the porous PTF is used.
The E resin insulating layer 3 shows an example in which the porosity is gradually reduced from the inner layer toward the surface.

【0011】[0011]

【発明の効果】本発明の細径同軸ケーブルでは、低誘電
率絶縁層が表面焼結した多孔質PTFE絶縁層にて形成
されるので、多孔質PTFE絶縁体の優れた高周波電気
特性や耐熱性が付与され、しかも多孔質PTFE絶縁体
の欠点である剛性が高められている。多孔質PTFE絶
縁層表面の剛性を高めたことにより、端末加工処理の際
に、剥離工具によって多孔質PTFE絶縁層が押し潰さ
れたり無理に引き伸ばされたりすることがなくなり、中
心導体に損傷を与えることなく多孔質PTFE絶縁層を
中心導体から確実、容易に輪切り剥離することが可能と
なる。また、中心導体と接する多孔質PTFE樹脂絶縁
層の内層側は多孔質体で形成されるので、中心導体と多
孔質PTFE樹脂絶縁層との密着性が過度になることは
ない。
According to the small diameter coaxial cable of the present invention, since the low dielectric constant insulating layer is formed of the porous PTFE insulating layer whose surface is sintered, the porous PTFE insulator has excellent high-frequency electrical characteristics and heat resistance. And the rigidity, which is a disadvantage of the porous PTFE insulator, is increased. By increasing the rigidity of the surface of the porous PTFE insulating layer, the peeling tool prevents the porous PTFE insulating layer from being crushed or forcibly stretched during the terminal processing, and damages the center conductor. The porous PTFE insulating layer can be reliably and easily stripped off from the center conductor without any trouble. Further, since the inner layer side of the porous PTFE resin insulating layer in contact with the center conductor is formed of a porous body, the adhesion between the center conductor and the porous PTFE resin insulating layer does not become excessive.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例の細径同軸ケーブルの横断面
図を示す。
FIG. 1 is a cross-sectional view of a small-diameter coaxial cable according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 細径同軸ケーブル 2 中心導体 3 多孔質PTFE樹脂絶縁層 3a 焼結層 3b 多孔質層 4 絶縁体コア 5 外部導体層 5a 無電解めっきアンカー金属層 5b 電気めっき金属層 Reference Signs List 1 small diameter coaxial cable 2 center conductor 3 porous PTFE resin insulation layer 3a sintered layer 3b porous layer 4 insulator core 5 outer conductor layer 5a electroless plating anchor metal layer 5b electroplating metal layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 中心導体の外周に低誘電率樹脂絶縁層と
外部金属導体層を順次設けてなる細径同軸ケーブルにお
いて、前記低誘電率樹脂絶縁層を表面が焼結された多孔
質4ふっ化エチレン樹脂絶縁層で形成したことを特徴と
する細径同軸ケーブル。
1. A small-diameter coaxial cable in which a low dielectric constant resin insulating layer and an external metal conductor layer are sequentially provided on the outer periphery of a center conductor, wherein the low dielectric constant resin insulating layer is formed of a porous 4-fiber having a sintered surface. A small-diameter coaxial cable characterized by being formed of an insulating layer of ethylene resin.
【請求項2】 前記表面焼結した多孔質4ふっ化エチレ
ン樹脂絶縁層は、気孔率が該絶縁層の内層から表面に向
かって順次減少して形成されていることを特徴とする請
求項1記載の細径同軸ケーブル。
2. The surface-sintered porous tetrafluoroethylene resin insulating layer is formed such that the porosity decreases gradually from the inner layer to the surface of the insulating layer. The described small diameter coaxial cable.
【請求項3】 前記多孔質4ふっ化エチレン樹脂絶縁層
は、ペースト押出成形した未焼結の多孔質4ふっ化エチ
レン樹脂絶縁体表面を焼結してなることを特徴とする請
求項1または請求項2記載の細径同軸ケーブル。
3. The porous tetrafluoroethylene resin insulating layer is obtained by sintering the surface of a paste-extruded unsintered porous tetrafluoroethylene resin insulator. The small-diameter coaxial cable according to claim 2.
【請求項4】 前記多孔質4ふっ化エチレン樹脂絶縁層
は、重ね巻きした未焼結の多孔質4ふっ化エチレン樹脂
テープ絶縁体の表面を焼結してなることを特徴とする請
求項1または請求項2記載の細径同軸ケーブル。
4. The porous tetrafluoroethylene resin insulating layer is formed by sintering the surface of an unsintered porous tetrafluoroethylene resin tape insulator wound in an overlapped manner. Or the small diameter coaxial cable according to claim 2.
JP10034310A 1998-01-29 1998-01-29 Thin coaxial cable Pending JPH11213776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10034310A JPH11213776A (en) 1998-01-29 1998-01-29 Thin coaxial cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10034310A JPH11213776A (en) 1998-01-29 1998-01-29 Thin coaxial cable

Publications (1)

Publication Number Publication Date
JPH11213776A true JPH11213776A (en) 1999-08-06

Family

ID=12410600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10034310A Pending JPH11213776A (en) 1998-01-29 1998-01-29 Thin coaxial cable

Country Status (1)

Country Link
JP (1) JPH11213776A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100419919C (en) * 2003-03-24 2008-09-17 株式会社克拉比 Dielectric, insulated wire, coaxial cable, and dielectric production method
JP2008293729A (en) * 2007-05-23 2008-12-04 Kurabe Ind Co Ltd Coaxial cable
CN106299562A (en) * 2015-05-27 2017-01-04 凯镭思通讯设备(上海)有限公司 A kind of capacitive coupling structure for metallic cavity wave filter product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100419919C (en) * 2003-03-24 2008-09-17 株式会社克拉比 Dielectric, insulated wire, coaxial cable, and dielectric production method
JP2008293729A (en) * 2007-05-23 2008-12-04 Kurabe Ind Co Ltd Coaxial cable
CN106299562A (en) * 2015-05-27 2017-01-04 凯镭思通讯设备(上海)有限公司 A kind of capacitive coupling structure for metallic cavity wave filter product

Similar Documents

Publication Publication Date Title
TW201140953A (en) Coaxial cable compression connectors
TW201212439A (en) Passive intermodulation and impedance management in coaxial cable terminations
JP7148011B2 (en) Coaxial cable and cable assembly
JP2006294551A (en) Coaxial cable
JP2003249129A (en) Small diameter coaxial cable and its manufacturing method
JP2929161B2 (en) Semi-rigid coaxial cable with easy termination and method of manufacturing the same
JP3010336B2 (en) Coaxial cable and method of manufacturing the same
JPH11213776A (en) Thin coaxial cable
JP2008293729A (en) Coaxial cable
JP3537288B2 (en) Semi-rigid coaxial cable and method of manufacturing the same
JP3592083B2 (en) Fine coaxial cable with good terminal workability and method of manufacturing the same
JP6937208B2 (en) Coaxial flat cable
JP6937207B2 (en) Coaxial flat cable
JP3635560B2 (en) Semi-rigid coaxial cable and manufacturing method thereof
JP3599308B2 (en) Semi-rigid coaxial cable and method of manufacturing the same
JP3625369B2 (en) Semi-rigid coaxial cable and manufacturing method thereof
JP3618809B2 (en) Shielded thin-diameter insulating tube and manufacturing method thereof
JP3596726B2 (en) Coaxial cable with easy terminal processing
US11328840B2 (en) High frequency signal transmission cable and producing method therefor
JP4136097B2 (en) Low noise coaxial cable and manufacturing method thereof
JPH10188688A (en) Semi-rigid coaxial cable
JP3639133B2 (en) High-speed thin wire coaxial cable and high-speed thin wire flat coaxial cable
JP2022138873A (en) signal transmission cable
JPH0877843A (en) High frequency insulated cable
JP2023025651A (en) Connection structure between high-frequency coaxial cable and coaxial connector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050209