JPH112134A - Intake device for internal combustion engine - Google Patents

Intake device for internal combustion engine

Info

Publication number
JPH112134A
JPH112134A JP9155408A JP15540897A JPH112134A JP H112134 A JPH112134 A JP H112134A JP 9155408 A JP9155408 A JP 9155408A JP 15540897 A JP15540897 A JP 15540897A JP H112134 A JPH112134 A JP H112134A
Authority
JP
Japan
Prior art keywords
fuel
intake
intake port
intake air
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9155408A
Other languages
Japanese (ja)
Inventor
Motomasa Iizuka
基正 飯塚
Kenji Kanehara
賢治 金原
Tokio Kohama
時男 小浜
Hitoshi Hayama
均 端山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP9155408A priority Critical patent/JPH112134A/en
Publication of JPH112134A publication Critical patent/JPH112134A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To reduce HC discharge quantity by reducing fuel close to a cylinder wall surface of a combustion chamber in an internal combustion engine in which swirl combustion can be performed to achieve favorable fuel consumption. SOLUTION: A swirl control valve 6 which is closed in low load operation is provided on a first intake port 3, as in an ordinary internal combustion engine in which swirl combustion is performed, and a protrusion 13 to convert a direction of intake air to be introduced in the tangential direction relative to a cylinder wall surface 5a of a combistion chamber 5 is provided on a second intake port 4. The protrusion 13 has a through hole 16 to be directed to a spark plug 14, so part of fuel mist injected from a fuel injection valve 9 is directly introduced toward the spark plug 14 nearby. Otherwise, a step 17 may be formed to positively introduce intake air or fuel mist to an inlet of the through hole 16. Fuel around the spark plug 14 is thus increased, and ignition performance and combustion conditions are improved, thereby fuel around the cylinder wall surface 5a is reduced to decrease HC discharge quantity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の吸気装置
に係り、特に燃焼室内に吸気と燃料の混合気のスワール
流を発生させる吸気ポートの形状、構造に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake device for an internal combustion engine, and more particularly to a shape and structure of an intake port for generating a swirl flow of a mixture of intake air and fuel in a combustion chamber.

【0002】[0002]

【従来の技術】例えば特開平3−237216号公報に
記載されているように、1つの気筒に2つの吸気ポート
を形成し、一方の吸気ポートにスワール制御弁(SC
V)を設けると共に、他方の吸気ポートにスワール生成
用の突起を設けた内燃機関においては、スワール制御弁
を閉じることによって前記一方の吸気ポートにおける吸
気の流れを止めることにより、突起を有する前記他方の
吸気ポートから吸気を燃焼室内に流入させて、燃焼室内
にスワール流を発生させることにより混合気の燃焼速度
を高め、理論空燃比よりも希薄な空燃比による燃焼を実
現している。
2. Description of the Related Art As described in, for example, Japanese Patent Application Laid-Open No. 3-237216, two intake ports are formed in one cylinder, and a swirl control valve (SC) is provided in one intake port.
V), and in the internal combustion engine provided with a swirl-producing projection at the other intake port, the swirl control valve is closed to stop the flow of intake air at the one intake port, thereby providing the other port having the projection. The intake air flows into the combustion chamber from an intake port of the fuel cell to generate a swirl flow in the combustion chamber, thereby increasing the combustion speed of the air-fuel mixture and realizing combustion with an air-fuel ratio leaner than the stoichiometric air-fuel ratio.

【0003】上記内燃機関の混合気は、吸気ポート内の
突起によってシリンダ壁面に対して接線方向に導かれ、
燃焼室内にスワール流を形成する。このスワール流によ
り、燃焼室内にはシリンダ壁面に沿う混合気の流れが発
生するため、主として燃料噴霧に作用する遠心力によ
り、燃焼室の中心の点火プラグの近傍の混合気の空燃比
が大きく(薄く)なる。その結果、スワール流によって
点火プラグ近傍の混合気の燃焼速度が高くなる反面、シ
リンダ壁面の近傍に存在する燃料噴霧が多くなるため
に、燃焼しないで燃焼室から排出される燃料が増えて、
大気を汚染するHC排出量が増大するという問題があ
る。
[0003] The air-fuel mixture of the internal combustion engine is guided tangentially to the cylinder wall surface by a projection in the intake port.
A swirl flow is formed in the combustion chamber. Since the swirl flow generates a flow of the air-fuel mixture along the cylinder wall surface in the combustion chamber, the air-fuel ratio of the air-fuel mixture in the vicinity of the spark plug at the center of the combustion chamber is increased mainly by centrifugal force acting on the fuel spray ( Become thin. As a result, the swirl flow increases the combustion rate of the air-fuel mixture near the spark plug, but increases the amount of fuel spray present near the cylinder wall, increasing the amount of fuel discharged from the combustion chamber without burning.
There is a problem that the emission of HC that pollutes the atmosphere increases.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来技術に
おける前述のような問題に対処して、スワール流による
高い燃焼速度がもたらす燃費の低い良好な燃焼状態と、
シリンダ壁面近傍の燃料を減少させて点火プラグ近傍の
燃料を増加させることによる着火性が良好でHC排出量
の少ない燃焼状態という、従来技術によっては同時に実
現することができなかった理想的な燃焼状態を簡単な手
段によって両立させて、従来技術の問題を解消すること
を目的としている。
SUMMARY OF THE INVENTION The present invention addresses the above-mentioned problems in the prior art and provides a good fuel economy with low fuel consumption resulting from a high combustion velocity due to swirl flow;
An ideal combustion state that could not be realized at the same time by the conventional technology, that is, a combustion state with good ignitability and low HC emission by reducing the fuel near the cylinder wall and increasing the fuel near the spark plug Are intended to be compatible with each other by simple means, and to solve the problems of the prior art.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに、特許請求の範囲の各請求項に記載された手段を採
用することができる。これらの手段によると、第2の吸
気ポート内に設けた突起によって吸気のスワール流を発
生させると共に、突起に形成された貫通孔から燃料噴霧
を直接に点火プラグ近傍へ流入させることが可能になる
ために、スワール流による良好な燃焼状態によって得ら
れる燃費の低減と、シリンダ壁面近傍の燃料の減少、従
って点火プラグ近傍の燃料の増加によるHC排出量の低
減を両立させることができる。
Means for Solving the Problems In order to solve the above problems, means described in each claim can be adopted. According to these means, it is possible to generate a swirl flow of the intake air by the projection provided in the second intake port, and to allow the fuel spray to flow directly into the vicinity of the ignition plug from the through hole formed in the projection. Therefore, it is possible to achieve both a reduction in fuel consumption obtained in a favorable combustion state by the swirl flow and a reduction in fuel near the cylinder wall surface, and thus a reduction in HC emission due to an increase in fuel near the spark plug.

【0006】更に、突起に設けられた貫通孔の付近に段
差を形成することにより、吸気及び燃料噴霧の流れの一
部を貫通孔の入口へ導くように構成すれば、第2の吸気
ポートを流れる吸気の流速が高いときだけ、吸気と燃料
噴霧の流れを段差によって転向させて貫通孔へ入口へ流
入させ、効率よく点火プラグの周辺へ導くことが可能に
なる。
Further, by forming a step near the through hole provided in the projection to guide a part of the flow of the intake air and the fuel spray to the inlet of the through hole, the second intake port can be formed. Only when the flow velocity of the flowing intake air is high, the flow of the intake air and the fuel spray is turned by the step to flow into the through hole into the inlet, and can be efficiently guided to the vicinity of the ignition plug.

【0007】[0007]

【発明の実施の形態】本発明の一実施形態を図面に基づ
いて説明する。図1は本発明の吸気装置を具えた内燃機
関のシステム構成図であって、多気筒の内燃機関の1つ
の気筒について示したものである。図1のシステムにお
いては、吸入空気はスロットル弁1を通ってサージタン
ク2に流入する。そして吸入空気は、サージタンク2か
ら各気筒毎に設けられた第1の吸気ポート3と第2の吸
気ポート4に分流し、それぞれの吸気ポートに設けられ
た吸気弁8(8a,8b)の開口部から燃焼室5内へ流
入する。
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a system configuration diagram of an internal combustion engine provided with an intake device of the present invention, showing one cylinder of a multi-cylinder internal combustion engine. In the system of FIG. 1, the intake air flows into the surge tank 2 through the throttle valve 1. Then, the intake air is diverted from the surge tank 2 to the first intake port 3 and the second intake port 4 provided for each cylinder, and the intake air is supplied to the intake valves 8 (8a, 8b) provided for the respective intake ports. It flows into the combustion chamber 5 from the opening.

【0008】第1吸気ポート3と第2吸気ポート4をそ
れぞれ通過する空気量は機関の運転状態に応じて変化
し、無負荷から軽負荷の運転状態では、第1吸気ポート
3に設けられたスワール制御弁6が電子式制御装置(E
CU)から出力される信号によりアクチュエータ7が作
動して閉弁するので、殆ど全ての吸入空気は第2吸気ポ
ート4から燃焼室5内に流入する。このとき、吸入空気
は第2吸気ポート4内に設けられた突起13によって流
れの方向を変えられて、燃焼室5を形成するシリンダ壁
面5aに対して接線方向に流入するために、燃焼室5内
にはスワール流が形成される。
The amount of air passing through each of the first intake port 3 and the second intake port 4 changes according to the operating state of the engine, and is provided in the first intake port 3 in the operating state from no load to light load. The swirl control valve 6 is an electronic control device (E
Since the actuator 7 operates and closes the valve according to the signal output from the CU), almost all the intake air flows into the combustion chamber 5 from the second intake port 4. At this time, the flow of the intake air is changed by the projection 13 provided in the second intake port 4 and flows tangentially to the cylinder wall surface 5 a forming the combustion chamber 5. A swirl flow is formed therein.

【0009】中程度の負荷から高負荷の運転状態では、
ECUからの信号がアクチュエータ7に入力されないの
で、スワール制御弁6が開弁していることにより、負荷
の大きさに応じた大量の吸入空気が第1吸気ポート3と
第2吸気ポート4の双方から燃焼室5内へ流入する。
In moderate to high load operating conditions,
Since a signal from the ECU is not input to the actuator 7, the swirl control valve 6 is opened, so that a large amount of intake air according to the magnitude of the load is supplied to both the first intake port 3 and the second intake port 4. From the combustion chamber 5.

【0010】燃料は、燃料噴射弁9から第1吸気ポート
3及び第2吸気ポート4内へ噴射され、吸入空気と共に
吸気弁8の開口部より燃焼室5内へ流入する。供給され
る燃料の量は、吸入空気量を検出するためにサージタン
ク2に設けられた圧力センサ15の信号と、点火プラグ
14の放電により燃焼室5内で着火して燃焼し排気弁1
0を通って排気ポート11へ排出されたガスの空燃比を
測定する空燃比センサ12の信号とから、機関の運転状
態に応じてECUにより決定される。決定された燃料量
は、燃料噴射弁9を開弁させるためにECUから出力さ
れるパルス信号の幅(信号の継続時間)として制御され
る。
The fuel is injected from the fuel injection valve 9 into the first intake port 3 and the second intake port 4, and flows into the combustion chamber 5 through the opening of the intake valve 8 together with the intake air. The amount of the supplied fuel is ignited in the combustion chamber 5 by the discharge of the spark plug 14 and the signal of the pressure sensor 15 provided in the surge tank 2 for detecting the intake air amount, and the fuel is burned.
It is determined by the ECU according to the operating state of the engine from the signal of the air-fuel ratio sensor 12 that measures the air-fuel ratio of the gas discharged to the exhaust port 11 through 0. The determined fuel amount is controlled as the width of a pulse signal (duration of the signal) output from the ECU to open the fuel injection valve 9.

【0011】次に、本発明の特徴に対応する突起13の
形状、構造について説明する。図2は吸気ポート3及び
4の部分の詳細図であって、図2の(a)は図1の一部
を拡大した断面の平面図であり、図2の(b)は第2吸
気ポート4の断面を横方向から見た側面図である。突起
13は第2吸気ポート4から点火プラグ14の方向へ貫
通する貫通孔16を形成されており、更に、貫通孔16
の入口部の吸気弁8b側に、壁面を突出させた段差17
を具えている。
Next, the shape and structure of the projection 13 corresponding to the features of the present invention will be described. FIG. 2 is a detailed view of a portion of the intake ports 3 and 4, FIG. 2 (a) is a plan view of an enlarged cross section of a part of FIG. 1, and FIG. 2 (b) is a second intake port. FIG. 4 is a side view of the cross section of FIG. The protrusion 13 is formed with a through hole 16 penetrating from the second intake port 4 toward the spark plug 14.
Step 17 having a wall surface protruding toward the intake valve 8b at the inlet of
It has.

【0012】このような構成により、実施形態の内燃機
関においては、スワール制御弁6が閉弁していて、吸入
空気が実質的に第2吸気ポート4のみから流入している
状態において、吸入空気が第2吸気ポート4内の突起1
3の壁面によって転向され、シリンダ壁面5aに対して
接線方向に燃焼室5へ流入することにより発生するスワ
ール流を維持しながら、併せて、突起13に設けられた
貫通孔16を通って直接に点火プラグ14の周辺に向か
う吸入空気と燃料噴霧の一部の流れを形成することによ
って、スワール流による速い燃焼を維持しながらも、点
火プラグ14の近傍の混合気の濃度を高めることがで
き、シリンダ壁面5a付近の燃料噴霧の量を減少させる
ことができる。それによって着火性の向上及び火焔伝播
範囲の拡大が達成される。従って、燃費とHC排出量の
低減を両立させることが可能になる。
With such a configuration, in the internal combustion engine of the embodiment, when the swirl control valve 6 is closed and the intake air is flowing substantially only from the second intake port 4, the intake air Is the projection 1 in the second intake port 4
3, while maintaining the swirl flow generated by flowing into the combustion chamber 5 tangentially to the cylinder wall surface 5a while flowing through the through-hole 16 provided in the projection 13. By forming a part of the flow of the intake air and the fuel spray toward the periphery of the spark plug 14, the concentration of the air-fuel mixture in the vicinity of the spark plug 14 can be increased while maintaining the rapid combustion by the swirl flow, The amount of fuel spray near the cylinder wall surface 5a can be reduced. Thereby, an improvement in ignitability and an expansion of the flame propagation range are achieved. Therefore, it is possible to achieve both fuel efficiency and reduction of HC emission.

【0013】更に、突起13に設けられた段差17の形
状を変更することによって、貫通孔16を介して点火プ
ラグ14の近傍へ直接に流入する燃料の量を第2吸気ポ
ート4の吸入空気量に応じて制御することができる。
Further, by changing the shape of the step 17 provided on the projection 13, the amount of fuel directly flowing into the vicinity of the ignition plug 14 through the through hole 16 can be reduced by the amount of intake air of the second intake port 4. Can be controlled in accordance with

【0014】この作動の詳細を、図3によって更に具体
的に説明する。図3の(a)は第2吸気ポート4を流れ
る吸気の流速が高い(速い)場合を示しており、(b)
は同じく吸気の流速が低い(遅い)場合を示している。
図3(a)のように吸気の流速が高く、スワール流が強
くなって、点火プラグ14近傍の混合気濃度が低くなる
(薄くなる)という状態では、燃料噴射弁9から噴射さ
れた燃料噴霧の流れが吸気の流れと共に突起13によっ
て転向される際に、かなり多くの部分が貫通孔16内へ
流入する。また、第2吸気ポート4を流れる吸気の流れ
が強いために、段差17に衝突して貫通孔16に流入す
る空気量が増大するという作用によっても貫通孔16を
通過する燃料噴霧の量が増大するので、貫通孔16の出
口付近から点火プラグ14にかけての部位では、その他
の部位に比べて燃料噴霧の量が増加する。
The details of this operation will be described more specifically with reference to FIG. 3A shows a case where the flow rate of the intake air flowing through the second intake port 4 is high (fast), and FIG.
Indicates a case where the flow rate of the intake air is low (slow).
As shown in FIG. 3A, when the flow rate of the intake air is high, the swirl flow is strong, and the mixture concentration near the spark plug 14 is low (thin), the fuel spray injected from the fuel injection valve 9 is When the flow is turned by the protrusion 13 together with the flow of the intake air, a considerable portion flows into the through-hole 16. Further, since the flow of the intake air flowing through the second intake port 4 is strong, the amount of the fuel spray passing through the through hole 16 increases due to the effect that the amount of air flowing into the through hole 16 by colliding with the step 17 increases. Therefore, the amount of fuel spray increases in a portion from the vicinity of the outlet of the through hole 16 to the spark plug 14 as compared with other portions.

【0015】これに対して図3の(b)のように、吸気
の流速が低いためにスワール流が弱くなる結果、点火プ
ラグ14近傍の混合気濃度が低く(薄く)ならない状態
においては、吸気の流速が高い図3の(a)の状態に比
べて、燃料噴射弁9から噴射された燃料噴霧が吸気の流
れと共に突起13によって流れの方向が曲げられ難くな
るので、貫通孔16の入口付近を流れる燃料噴霧の量が
減少する。更にこの場合は、段差17に衝突して貫通孔
16へ流入する空気量も減少するので、このようにスワ
ール流が弱くて点火プラグ14近傍に比較的多くの燃料
噴霧が存在するという状態では、貫通孔16を通過する
混合気の量が減少した分だけ第2吸気ポート4側から燃
焼室5内へ流入する混合気量を増大させて、点火プラグ
14の近傍に過濃な混合気が形成されるのを避けること
ができる。
On the other hand, as shown in FIG. 3B, when the flow rate of the intake air is low, the swirl flow is weakened. As a result, when the mixture concentration near the spark plug 14 does not become low (thin), the intake 3A, the flow direction of the fuel spray injected from the fuel injection valve 9 is less likely to be bent by the projections 13 together with the flow of the intake air. The amount of fuel spray flowing through is reduced. Further, in this case, since the amount of air flowing into the through hole 16 by colliding with the step 17 is also reduced, in such a state that the swirl flow is weak and a relatively large amount of fuel spray exists near the ignition plug 14, The amount of the air-fuel mixture flowing into the combustion chamber 5 from the second intake port 4 side is increased by an amount corresponding to the reduction in the amount of the air-fuel mixture passing through the through hole 16, and an rich air-fuel mixture is formed near the ignition plug 14. Can be avoided.

【0016】以上のように、本発明の内燃機関の吸気装
置によれば、燃焼室5内にスワール流を発生させる運転
状態において、点火プラグ14の周囲に機関の吸気の流
速に応じた最適の濃度の混合気を形成することが可能に
なるので、燃費の向上とHC排出量の低減を同時に達成
することができる。
As described above, according to the intake system for an internal combustion engine of the present invention, in an operation state in which a swirl flow is generated in the combustion chamber 5, an optimum around the ignition plug 14 according to the flow rate of the intake air of the engine is provided. Since it becomes possible to form an air-fuel mixture of a concentration, it is possible to simultaneously improve fuel efficiency and reduce HC emissions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態としての吸気装置の断面の平
面図を中心としてシステム全体を概括的に示すシステム
構成図である。
FIG. 1 is a system configuration diagram schematically showing the entire system with a focus on a plan view of a cross section of an intake device as an embodiment of the present invention.

【図2】吸気ポートの部分の詳細図であって、(a)は
図1の一部を拡大した断面の平面図であり、(b)は第
2吸気ポートの断面の側面図である。
FIGS. 2A and 2B are detailed views of a portion of an intake port, wherein FIG. 2A is a plan view of a cross section in which a part of FIG. 1 is enlarged, and FIG. 2B is a side view of a cross section of a second intake port.

【図3】実施形態の吸気装置の作動状態を示す平面図で
あって、(a)は吸気の流速が高い場合、(b)は吸気
の流速が低い場合をそれぞれ示している。
3A and 3B are plan views illustrating an operation state of the intake device of the embodiment, in which FIG. 3A illustrates a case where the flow rate of intake air is high, and FIG. 3B illustrates a case where the flow rate of intake air is low.

【符号の説明】[Explanation of symbols]

3…第1吸気ポート 4…第2吸気ポート 5…燃焼室 5a…シリンダ壁面 6…スワール制御弁 8(8a,8b)…吸気弁 9…燃料噴射弁 13…突起 14…点火プラグ 16…貫通孔 17…段差 DESCRIPTION OF SYMBOLS 3 ... 1st intake port 4 ... 2nd intake port 5 ... Combustion chamber 5a ... Cylinder wall surface 6 ... Swirl control valve 8 (8a, 8b) ... Intake valve 9 ... Fuel injection valve 13 ... Projection 14 ... Spark plug 16 ... Through-hole 17 ... steps

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小浜 時男 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 端山 均 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tokio Obama 14 Iwatani, Shimowasumi-machi, Nishio-shi, Aichi Prefecture Inside the Japan Automobile Parts Research Institute Co., Ltd. Automobile Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 1つの気筒に設けられた第1の吸気ポー
ト及び第2の吸気ポートと、前記第1の吸気ポート内に
設けられて吸気の流れを実質的に遮断することができる
スワール制御弁と、前記第2の吸気ポート内に設けられ
て吸気の流れを転向させることにより燃焼室内に吸気の
スワール流を発生させることができる突起とを備えてい
る内燃機関において、前記突起に点火プラグに向かって
開口する貫通孔を設けることにより、前記突起の上流側
へ噴射された燃料噴霧の一部が前記貫通孔を通過して直
接に前記点火プラグの周辺へ供給され得るように構成し
たことを特徴とする内燃機関の吸気装置。
1. A first intake port and a second intake port provided in one cylinder, and a swirl control provided in the first intake port and capable of substantially blocking the flow of intake air. An internal combustion engine, comprising: a valve; and a projection provided in the second intake port and capable of generating a swirl flow of intake air in a combustion chamber by diverting the flow of intake air. By providing a through-hole opening toward the spark plug, a part of the fuel spray injected to the upstream side of the protrusion can be supplied directly to the periphery of the ignition plug through the through-hole. An intake device for an internal combustion engine, comprising:
【請求項2】 前記突起に設けられた貫通孔の入口付近
に段差を形成することにより、吸気及び燃料噴霧の流れ
の一部を前記貫通孔の入口へ導くように構成したことを
特徴とする請求項1に記載された内燃機関の吸気装置。
2. The method according to claim 1, wherein a step is formed near the entrance of the through hole provided in the projection to guide a part of the flow of the intake air and the fuel spray to the entrance of the through hole. An intake device for an internal combustion engine according to claim 1.
JP9155408A 1997-06-12 1997-06-12 Intake device for internal combustion engine Withdrawn JPH112134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9155408A JPH112134A (en) 1997-06-12 1997-06-12 Intake device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9155408A JPH112134A (en) 1997-06-12 1997-06-12 Intake device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH112134A true JPH112134A (en) 1999-01-06

Family

ID=15605338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9155408A Withdrawn JPH112134A (en) 1997-06-12 1997-06-12 Intake device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH112134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9651167B2 (en) 2010-10-08 2017-05-16 Harr Technologies, Inc. Trenchless drainage structure replacement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9651167B2 (en) 2010-10-08 2017-05-16 Harr Technologies, Inc. Trenchless drainage structure replacement

Similar Documents

Publication Publication Date Title
JPH0821342A (en) Fuel injection type engine
JP3422024B2 (en) Internal combustion engine control device and swirl generator
JPH06159079A (en) Intake device for engine
JP3275713B2 (en) Lean burn engine fuel injection system
JP3726901B2 (en) Internal combustion engine control device and swirl generator
JPH112134A (en) Intake device for internal combustion engine
JP3586963B2 (en) Engine intake system
JP3040596B2 (en) Engine fuel supply
JPH0315623A (en) Intake three-valve engine
JPS6223528A (en) Suction port device internal-combustion engine
JPS6364616B2 (en)
JPH07166926A (en) Air intake device of internal combustion engine
JPH07317546A (en) Suction device of internal combustion engine
KR100222848B1 (en) The structure for generating of intake swirl in an internal combustion engine
JP3475674B2 (en) Intake device for internal combustion engine
JPH044462B2 (en)
KR200157990Y1 (en) Intake structure for internal combustion engines
JP3060689B2 (en) Direct injection spark ignition engine
JP2004183593A (en) Air intake device for internal combustion engine
EP1167718B1 (en) Control device and device for generating swirls in internal combustion engine
JPH09222063A (en) Intake device for internal combustion engine
JPH02267317A (en) Combustion control device for diesel engine
JP2003254202A (en) Fuel supply system and fuel supply method for internal combustion engine
JPH08270452A (en) Intake device for internal combustion engine
JPH06341362A (en) Fuel injecting device of engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040907