JPH11212083A - Liquid crystal device and electronic equipment - Google Patents

Liquid crystal device and electronic equipment

Info

Publication number
JPH11212083A
JPH11212083A JP10009864A JP986498A JPH11212083A JP H11212083 A JPH11212083 A JP H11212083A JP 10009864 A JP10009864 A JP 10009864A JP 986498 A JP986498 A JP 986498A JP H11212083 A JPH11212083 A JP H11212083A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal panel
refractive index
reflection
polarizing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10009864A
Other languages
Japanese (ja)
Other versions
JP4032478B2 (en
Inventor
Osamu Okumura
治 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP00986498A priority Critical patent/JP4032478B2/en
Publication of JPH11212083A publication Critical patent/JPH11212083A/en
Application granted granted Critical
Publication of JP4032478B2 publication Critical patent/JP4032478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133545Dielectric stack polarisers

Abstract

PROBLEM TO BE SOLVED: To provide the reflection or semi-transmissible reflection liquid crystal device with more lightness and higher contrast by arranging the reflection axis of a reflection polarizer almost parallel to the longitudinal direction of a display screen of the liquid crystal device. SOLUTION: This liquid crystal device is provided with a liquid crystal panel holding liquid crystal between a pair of substrates and a polarizing board arranged on one side of the liquid crystal panel. Besides, this device is provided with the reflection polarizer arranged on the opposite side of the polarizing board to the liquid crystal panel and constituted by alternately laminating many first layers 101 having refraction factor anisotropy in a plane and second layers 102 having no refraction factor anisotropy in the plane and a light absorbing layer arranged on the opposite side of the liquid crystal panel to the reflection polarizer. Then, a reflection axis 103 of the reflection polarizer is arranged almost parallel to the longitudinal direction of the display screen of the liquid crystal device. Thus, by devising the arrangement of the reflection axis while utilizing the reflection polarizer, lightness and contrast ratio can be more improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液晶装置、特に反射
型と半透過反射型の液晶装置に関し、さらにこの液晶装
置を搭載した電子機器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal device, and more particularly, to a reflection type and a transflective type liquid crystal device, and further to an electronic apparatus equipped with the liquid crystal device.

【0002】[0002]

【従来の技術】PDA等の情報ツールや携帯電話、ウォ
ッチ等の携帯型電子機器用途には、消費電力が小さい反
射型液晶装置や半透過反射型液晶装置が適している。し
かしながら、従来の反射型液晶装置や半透過型液晶装置
には、表示が暗いという課題があった。
2. Description of the Related Art Reflective liquid crystal devices and transflective liquid crystal devices with low power consumption are suitable for use in information tools such as PDAs and portable electronic devices such as mobile phones and watches. However, conventional reflective liquid crystal devices and transflective liquid crystal devices have a problem that the display is dark.

【0003】このような課題を解決する一手段として、
複屈折性の誘電体多層膜からなる反射偏光子を利用する
方法が、特表平9−506985号公報や、国際公開さ
れた国際出願WO97/01788、Conference Recor
d of the 1997 International Display Research Confe
rence,M-98,1997等に開示されている。
[0003] As one means for solving such a problem,
A method using a reflective polarizer comprising a birefringent dielectric multilayer film is disclosed in Japanese Patent Application Laid-Open No. 9-506985, International Publication WO97 / 01788, Conference Recor.
d of the 1997 International Display Research Confe
rence, M-98, 1997 and the like.

【0004】この複屈折性の誘電体多層膜は、所定の直
線偏光成分を反射し、それ以外の偏光成分を透過する機
能を有する。このような反射偏光子を反射型液晶装置や
半透過反射型液晶装置に利用すると、従来から広く利用
されている金属反射板と異なり所定の偏光成分の光を全
反射する上、吸収型の偏光板のように光を吸収しないた
めに、大変明るい表示が得られるという特徴を有する。
The birefringent dielectric multilayer film has a function of reflecting a predetermined linearly polarized light component and transmitting other polarized light components. When such a reflective polarizer is used in a reflective liquid crystal device or a semi-transmissive reflective liquid crystal device, unlike a metal reflector that has been widely used in the past, it totally reflects light of a predetermined polarization component and absorbs light of an absorption type. Since it does not absorb light like a plate, it has a feature that a very bright display can be obtained.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、こうし
た従来の複屈折性の誘電体多層膜を利用した反射偏光子
を用いると、表示コントラストが低下するという課題が
あった。このような課題が生じる原因は、斜め方向から
入射した光に対する反射偏光子の偏光度が低いためであ
る。
However, when such a conventional reflective polarizer using a birefringent dielectric multilayer film is used, there is a problem that the display contrast is reduced. The reason that such a problem occurs is that the degree of polarization of the reflective polarizer with respect to light incident obliquely is low.

【0006】そこで本発明は、反射偏光子の反射軸の配
置を工夫することによって、明るくコントラストの高い
反射型あるいは半透過反射型の液晶装置を提供すること
を目的とする。
Accordingly, an object of the present invention is to provide a reflective or transflective liquid crystal device which is bright and has high contrast by devising the arrangement of the reflective axes of the reflective polarizer.

【0007】[0007]

【課題を解決するための手段】本発明の液晶装置は、一
対の基板間に液晶が挟持された液晶パネルと、前記液晶
パネルの一方の側に配置された偏光板と、前記液晶パネ
ルに対して前記偏光板とは反対の側に配置され、面内に
屈折率異方性を有する第一の層と面内に屈折率異方性を
有しない第二の層を交互に多数積層して構成された反射
偏光子と、前記反射偏光子に対して前記液晶パネルと反
対の側に配置された光吸収層とを備える液晶装置であっ
て、前記液晶装置における表示画面の縦方向と、前記反
射偏光子の反射軸とがほぼ平行に配置されていることを
特徴とする。
A liquid crystal device according to the present invention comprises: a liquid crystal panel having liquid crystal sandwiched between a pair of substrates; a polarizing plate disposed on one side of the liquid crystal panel; The polarizing plate is disposed on the opposite side, a first layer having an in-plane refractive index anisotropy and a second layer having no in-plane refractive index anisotropy are alternately laminated in large numbers. A liquid crystal device comprising a configured reflective polarizer and a light absorbing layer disposed on a side opposite to the liquid crystal panel with respect to the reflective polarizer, wherein a vertical direction of a display screen in the liquid crystal device, It is characterized in that the reflection axis of the reflection polarizer is arranged substantially in parallel.

【0008】また、一対の基板間に液晶が挟持された液
晶パネルと、前記液晶パネルの一方の側に配置された偏
光板と、前記液晶パネルに対して前記偏光板とは反対の
側に配置され、面内に屈折率異方性を有する第一の層と
面内に屈折率異方性を有しない第二の層を交互に多数積
層して構成された反射偏光子と、前記反射偏光子に対し
て前記液晶パネルと反対の側に配置された照明装置とを
備える液晶装置であって、前記液晶装置における表示画
面の縦方向と、前記反射偏光子の反射軸とがほぼ平行に
配置されていることを特徴とする。
A liquid crystal panel having liquid crystal interposed between a pair of substrates; a polarizing plate disposed on one side of the liquid crystal panel; and a polarizing plate disposed on a side of the liquid crystal panel opposite to the polarizing plate. The reflective polarizer, which is formed by alternately stacking a large number of first layers having in-plane refractive index anisotropy and second layers having no in-plane refractive index anisotropy, A lighting device disposed on a side opposite to the liquid crystal panel with respect to the liquid crystal device, wherein a vertical direction of a display screen of the liquid crystal device and a reflection axis of the reflective polarizer are substantially parallel to each other. It is characterized by having been done.

【0009】ここで偏光板は所定の直線偏光成分を吸収
し残りの偏光成分を透過する機能を有し、反射偏光子は
所定の直線偏光成分を反射し残りの偏光成分を透過する
機能を有する。
Here, the polarizing plate has a function of absorbing a predetermined linearly polarized light component and transmitting the remaining polarized light component, and the reflective polarizer has a function of reflecting the predetermined linearly polarized light component and transmitting the remaining polarized light component. .

【0010】尚、ほぼ平行であるとは、概ね縦方向±3
0度の範囲を指すが、より望ましくは±15度の範囲を
指す。この範囲を逸脱すると、通常の照明環境下で高い
コントラストが得られない。何故ならば、一般に反射偏
光子は、その反射軸を含む面内で振動する光に対して高
い偏光度を示すからである。
It is to be noted that the term "substantially parallel" means that the vertical direction is approximately ± 3
It refers to a range of 0 degrees, but more preferably refers to a range of ± 15 degrees. Outside of this range, high contrast cannot be obtained under a normal lighting environment. This is because, in general, a reflective polarizer exhibits a high degree of polarization with respect to light oscillating in a plane including its reflection axis.

【0011】また、前記反射偏光子の第一の層及び第二
の層の3つの主屈折率nx、ny、nzの内、膜厚方向
の屈折率nzと面内で延伸方向に直角な方向の屈折率n
yの比が、前記両層で互いに異なることを特徴とする。
Also, of the three main refractive indices nx, ny, and nz of the first and second layers of the reflective polarizer, a direction perpendicular to the stretching direction in the plane with the refractive index nz in the film thickness direction. Refractive index n
The ratio of y is different between the two layers.

【0012】面内の主屈折率にはnxとnyが存在する
が、この反射偏光子は延伸により作成されるものである
ことから、主たる延伸方向と平行な方向の屈折率をn
x、直角な方向の屈折率をnyと区別することにする。
多くの物質は光学的に正であるからnx>nyである
が、ポリスチレンのように光学的に負の物質ではnx<
nyとなる。請求項2は第一の層のnz/nyと第二の
層のnz/nyが異なることを指す。このように構成し
たため、請求項2記載の反射偏光子は、特にy−z平面
で斜めから入射する光に対する偏光度が悪くなるが、x
−z平面(即ち反射軸を含む平面)で斜めから入射する
光に対しては高い偏光度を維持する。この効果は斜めか
ら入射する光に対する両層の屈折率のマッチングによっ
て説明できる。
Although nx and ny exist in the in-plane principal refractive index, since this reflective polarizer is formed by stretching, the refractive index in the direction parallel to the principal stretching direction is represented by n.
x, the refractive index in the direction perpendicular to x is distinguished from ny.
Many substances are optically positive and therefore nx> ny, but optically negative substances such as polystyrene have nx <ny.
ny. Claim 2 indicates that nz / ny of the first layer is different from nz / ny of the second layer. With such a configuration, the reflection polarizer according to claim 2 has a poor polarization degree with respect to light obliquely incident particularly on the yz plane.
A high degree of polarization is maintained for light incident obliquely in the -z plane (that is, a plane including the reflection axis). This effect can be explained by matching the refractive indices of the two layers with respect to light incident obliquely.

【0013】また、本発明の電子機器は、一対の基板間
に液晶が挟持された液晶パネルと、前記液晶パネルの一
方の側に配置された偏光板と、前記液晶パネルに対して
前記偏光板とは反対の側に配置され、面内に屈折率異方
性を有する第一の層と面内に屈折率異方性を有しない第
二の層を交互に多数積層して構成された反射偏光子と、
前記反射偏光子に対して前記液晶パネルと反対の側に配
置された光吸収層とを備える液晶装置を表示部として備
える電子機器であって、前記液晶装置における表示画面
の縦方向と、前記反射偏光子の反射軸とがほぼ平行に配
置されていることを特徴とする。
[0013] Also, the electronic apparatus of the present invention is a liquid crystal panel having a liquid crystal sandwiched between a pair of substrates, a polarizing plate disposed on one side of the liquid crystal panel, and a polarizing plate with respect to the liquid crystal panel. A reflection layer which is disposed on the opposite side to the first layer having an in-plane refractive index anisotropy and the second layer having no in-plane refractive index anisotropy is alternately stacked. A polarizer,
An electronic apparatus including, as a display unit, a liquid crystal device including a light absorbing layer disposed on a side opposite to the liquid crystal panel with respect to the reflective polarizer, wherein a vertical direction of a display screen in the liquid crystal device, The reflection axis of the polarizer is arranged substantially in parallel.

【0014】また、一対の基板間に液晶が挟持された液
晶パネルと、前記液晶パネルの一方の側に配置された偏
光板と、前記液晶パネルに対して前記偏光板とは反対の
側に配置され、面内に屈折率異方性を有する第一の層と
面内に屈折率異方性を有しない第二の層を交互に多数積
層して構成された反射偏光子と、前記反射偏光子に対し
て前記液晶パネルと反対の側に配置された照明装置とを
備える液晶装置を表示部として備えた電子機器であっ
て、前記液晶装置における表示画面の縦方向と、前記反
射偏光子の反射軸とがほぼ平行に配置されていることを
特徴とする。
A liquid crystal panel having liquid crystal sandwiched between a pair of substrates; a polarizing plate disposed on one side of the liquid crystal panel; and a polarizing plate disposed on a side of the liquid crystal panel opposite to the polarizing plate. The reflective polarizer, which is formed by alternately stacking a large number of first layers having in-plane refractive index anisotropy and second layers having no in-plane refractive index anisotropy, An electronic apparatus comprising, as a display unit, a liquid crystal device including a lighting device disposed on a side opposite to the liquid crystal panel with respect to the liquid crystal panel, wherein a vertical direction of a display screen of the liquid crystal device and a reflection polarizer are provided. It is characterized in that the reflection axis and the reflection axis are arranged substantially in parallel.

【0015】このように構成したため、本発明の電子機
器は、小さい消費電力で高画質な表示を得ることが出来
る。
[0015] With this configuration, the electronic apparatus of the present invention can obtain high-quality display with low power consumption.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0017】(実施例1)図1は、本発明の請求項1ま
たは請求項2記載の発明に係る液晶装置において利用し
た反射偏光子の構造の要部を示す図である。反射偏光子
は、基本的に複屈折性の誘電体多層膜であって、二種類
の高分子層101と102を交互に積層して成る。二種
類の高分子は、一つは光弾性率が大きい材料から、もう
一つは光弾性率が小さい材料から選ばれるが、その際に
両者の常光線の屈折率が概ね等しくなるよう留意する。
例えば、光弾性率の大きい材料としてPEN(2,6−
ポリエチレン・ナフタレート)を、小さい材料としてc
oPEN(70−ナフタレート/30−テレフタレート
・コポリエステル)を選ぶ。両フィルムを交互に積層
し、図1の直交座標系103のx軸方向に約5倍延伸し
たところ、x軸方向の屈折率がPEN層において約1.
88、coPEN層において約1.64となった。また
y軸方向の屈折率はPEN層でもcoPEN層でも約
1.64であった。この積層フィルムに法線方向から光
が入射すると、y軸方向に振動する光の成分はそのまま
フィルムを透過する。これが透過軸である。一方x軸方
向に振動する光の成分は、PEN層とcoPEN層が、
ある一定の条件を満たす場合に限って、反射される。こ
れが反射軸である。その条件とは、PEN層の光路長
(屈折率と膜厚の積)と、coPEN層の光路長(屈折
率と膜厚の積)の和が光の波長の2分の1に等しいこと
である。このようなPEN層とcoPEN層を各々数十
層以上、出来れば百層以上、厚みにして30μmほど積
層させると、x軸方向に振動する光の成分のほぼ全てを
反射させることが出来る。
(Embodiment 1) FIG. 1 is a view showing a main part of the structure of a reflective polarizer used in a liquid crystal device according to the first or second aspect of the present invention. The reflective polarizer is basically a birefringent dielectric multilayer film, and is formed by alternately stacking two types of polymer layers 101 and 102. The two types of polymers are selected from a material with a high photoelastic modulus and a material with a low photoelastic modulus, while taking care that the refractive indices of the ordinary rays of both are approximately equal. .
For example, PEN (2,6-
Polyethylene naphthalate) as a small material
Select oPEN (70-naphthalate / 30-terephthalate copolyester). When both films are alternately laminated and stretched about 5 times in the x-axis direction of the orthogonal coordinate system 103 in FIG. 1, the refractive index in the x-axis direction is about 1.
88, about 1.64 for the coPEN layer. The refractive index in the y-axis direction was about 1.64 in both the PEN layer and the coPEN layer. When light is incident on the laminated film from the normal direction, the light component vibrating in the y-axis direction passes through the film as it is. This is the transmission axis. On the other hand, the component of light that vibrates in the x-axis direction is that the PEN layer and the coPEN layer
Reflection occurs only when certain conditions are satisfied. This is the reflection axis. The condition is that the sum of the optical path length of the PEN layer (the product of the refractive index and the film thickness) and the optical path length of the coPEN layer (the product of the refractive index and the film thickness) is equal to one half of the light wavelength. is there. If such PEN layers and coPEN layers are laminated in several tens or more layers, preferably in more than one hundred layers, and in a thickness of about 30 μm, almost all of the components of light vibrating in the x-axis direction can be reflected.

【0018】このようにして作成された理想的な反射偏
光子は、設計された単一の波長の光でしか偏光能を生じ
ない。もちろん実際には、PEN層とcoPEN層の厚
みにばらつきが生じるため、ある程度の波長幅で偏光能
が生じるが、それでも数十nmの幅である。そこで、可
視光の広い波長領域にわたって偏光能を持たせるために
は、偏光反射波長範囲が異なる複数の反射偏光子を、軸
を揃えて積層する。このように構成した反射偏光子は、
可視光のほぼ全域にわたって90%以上の高い偏光度を
示した。
The ideal reflection polarizer produced in this way produces a polarization ability only with light of a single designed wavelength. Of course, in practice, the thicknesses of the PEN layer and the coPEN layer vary, so that the polarization ability is generated with a certain wavelength width, but the width is still several tens of nm. Therefore, in order to provide a polarizing capability over a wide wavelength range of visible light, a plurality of reflective polarizers having different polarization reflection wavelength ranges are stacked with their axes aligned. The reflective polarizer thus configured is
It exhibited a high degree of polarization of 90% or more over almost the entire visible light range.

【0019】以上は法線方向から反射偏光子に入射する
光の挙動に対する説明であった。本発明の主眼は斜め方
向から入射する光の挙動にある。図2は、本発明の反射
偏光子を構成する2種類の層101と102の屈折率特
性を示す図である。201は光弾性率が大きい材料を延
伸した第一の層101の屈折率楕円体を、202は光弾
性率が小さい材料を延伸した第二の層102の屈折率楕
円体を示す。各々の楕円体の3つの主屈折率をnx、n
y、nzとする。但し、層の面(x−y平面231)内
で主たる延伸方向と平行な方向の屈折率211と221
をnx、層の面内で主たる延伸方向と直角な方向の屈折
率212と222をny、膜厚方向の屈折率213と2
23をnzとする。但し主たる延伸方向とは、先ほどの
説明では図1のx軸方向に相当し、二軸延伸した場合に
はより延伸率の大きい方向を指す。
The above is a description of the behavior of light incident on the reflective polarizer from the normal direction. The main feature of the present invention lies in the behavior of light entering obliquely. FIG. 2 is a diagram showing the refractive index characteristics of two types of layers 101 and 102 constituting the reflective polarizer of the present invention. Reference numeral 201 denotes a refractive index ellipsoid of the first layer 101 formed by stretching a material having a large photoelastic coefficient, and reference numeral 202 denotes a refractive index ellipsoid of the second layer 102 formed by stretching a material having a small photoelastic coefficient. Let the three principal indices of each ellipsoid be nx, n
y and nz. However, the refractive indices 211 and 221 in a direction parallel to the main stretching direction in the plane of the layer (xy plane 231).
Is nx, the refractive indices 212 and 222 in the direction perpendicular to the main stretching direction in the plane of the layer are ny, and the refractive indices 213 and 2 in the film thickness direction are
23 is nz. However, the main stretching direction corresponds to the x-axis direction in FIG. 1 in the above description, and indicates a direction in which the stretching ratio is larger when biaxial stretching is performed.

【0020】さて、実施例1の反射偏光子の各層の屈折
率を精密に測定した結果、層101については、 nx
=1.877、ny=1.641、nz=1.533で
あった。また層102については、 nx=1.64
2、ny=1.640、nz=1.616であり、ほと
んど等方的であった。但しこの測定は層101と層10
2を別々に作成して同様に延伸したフィルムを測定した
値である。
Now, as a result of precisely measuring the refractive index of each layer of the reflective polarizer of Example 1, as for the layer 101, nx
= 1.877, ny = 1.641, and nz = 1.533. For the layer 102, nx = 1.64
2, ny = 1.640 and nz = 1.616, which were almost isotropic. However, this measurement was performed for layers 101 and 10
2 is a value obtained by measuring a film separately prepared and stretched similarly.

【0021】このように、層101は面内に屈折率異方
性(nx−ny=0.235)を有し、層102は面内
に屈折率異方性(nx−ny=0.002)をほとんど
有しない。しかも層101におけるnzとnyの比nz
/ny=0.9242は、層102におけるnzとny
の比nz/ny=0.9854よりもかなり小さい。
As described above, the layer 101 has in-plane refractive index anisotropy (nx-ny = 0.235), and the layer 102 has in-plane refractive index anisotropy (nx-ny = 0.002). ). Moreover, the ratio nz between nz and ny in the layer 101
/Ny=0.9242 means that nz and ny in the layer 102
Is significantly smaller than the ratio nz / ny = 0.9854.

【0022】このように、第一の層におけるnz/ny
と、第二の層におけるnz/nyが大きく異なるように
構成することによって、y−z平面内で斜めから入射し
た光242の内、y−z平面内で振動する光に対する屈
折率は、第一の層と第二の層とで食い違ってくる。従っ
て反射軸であるx軸方向に振動する光には影響がない
が、これに直角な方向に振動する光は入射角度が大きく
なるほど反射される光が増え、偏光度が劣化する。一
方、x−z平面内で斜めから入射した光241は、透過
軸であるy軸方向に振動する光に対して、第一の層と第
二の層の屈折率が一致しているため、偏光度の劣化が小
さい。
Thus, nz / ny in the first layer
And nz / ny in the second layer are configured to be significantly different from each other, so that of the light 242 incident obliquely in the yz plane, the refractive index for the light oscillating in the yz plane is There is a gap between the first layer and the second layer. Therefore, there is no effect on the light oscillating in the x-axis direction, which is the reflection axis. However, as for the light oscillating in a direction perpendicular thereto, the reflected light increases as the incident angle increases, and the degree of polarization deteriorates. On the other hand, the light 241 obliquely incident on the xz plane has the same refractive index of the first layer and the second layer with respect to light vibrating in the y-axis direction, which is the transmission axis. The degree of polarization is small.

【0023】図3は、偏光度の入射光角度依存性を示す
図である。(a)がx−z平面内における入射光角度依
存性、(b)がy−z平面内における入射光角度依存性
である。それぞれ301と311の曲線が実施例1で用
いた反射偏光子の特性である。(a)よりも(b)の方
が入射角依存性が大きく偏光度が劣化しやすいが、これ
は本来透過されるべき偏光が反射されるからである。
FIG. 3 is a diagram showing the dependence of the degree of polarization on the angle of incident light. (A) is the incident light angle dependence in the xz plane, and (b) is the incident light angle dependence in the yz plane. Curves 301 and 311 are the characteristics of the reflective polarizer used in Example 1. (B) is more dependent on the incident angle than (a), and the degree of polarization is more likely to be degraded, because the polarized light that should be transmitted is reflected.

【0024】比較のため、第一の層と第二の層のnz/
nyがほぼ等しくなるように、注意深く延伸した反射偏
光子の特性を302と312に示す。この反射偏光子の
屈折率は、層101についてnx=1.874、ny=
1.644、nz=1.621、層102について n
x=1.642、ny=1.640、nz=1.616
であった。このような反射偏光子を作成することは技術
的困難を伴うが、それでもやはり(a)よりも(b)の
方が入射角依存性が大きい傾向にある。従って本発明の
効果はこのような反射偏光子を用いた液晶装置でも得ら
れる。
For comparison, the first layer and the second layer have nz /
The properties of the carefully stretched reflective polarizer are shown at 302 and 312 so that ny is approximately equal. The refractive index of this reflective polarizer is nx = 1.874 and ny =
1.644, nz = 1.621, n for layer 102
x = 1.642, ny = 1.640, nz = 1.616
Met. Although it is technically difficult to produce such a reflective polarizer, the incident angle dependency tends to be larger in (b) than in (a). Therefore, the effect of the present invention can be obtained even in a liquid crystal device using such a reflective polarizer.

【0025】図4は本発明の請求項1または請求項2記
載の発明に係る液晶装置の構造の要部を示す図である。
まず構成を説明する。図4において、401は偏光板、
402は位相差フィルム、403は上側ガラス基板、4
04は液晶層、405は下側ガラス基板、406は光散
乱体、407は反射偏光子、408は光吸収体、409
はITOからなる走査電極、410はITOからなる信
号電極である。401と402、402と403、40
5と406、406と407、407と408は、それ
ぞれ互いに糊で接着している。また縦の基板間は広く離
して描いてあるが、これは図を明解にするためであっ
て、実際には数μmから十数μmの狭いギャップを保っ
て対向している。なお図示した構成要素以外にも、液晶
配向膜や絶縁膜、スペーサー・ボール、ドライバーI
C、駆動回路等の要素も不可欠であるが、これらは本発
明を説明する上で特に必要が無く、却って図を複雑にし
理解し難くする恐れがあるため、省略した。
FIG. 4 is a diagram showing a main part of the structure of a liquid crystal device according to the first or second aspect of the present invention.
First, the configuration will be described. In FIG. 4, reference numeral 401 denotes a polarizing plate;
402 is a retardation film, 403 is an upper glass substrate, 4
04 is a liquid crystal layer, 405 is a lower glass substrate, 406 is a light scatterer, 407 is a reflective polarizer, 408 is a light absorber, 409
Is a scanning electrode made of ITO, and 410 is a signal electrode made of ITO. 401 and 402, 402 and 403, 40
5 and 406, 406 and 407, and 407 and 408 are bonded to each other with glue. Although the vertical substrates are drawn widely apart, this is for the sake of clarity of the drawing. In addition to the components shown in the figure, a liquid crystal alignment film, an insulating film, spacer balls, a driver I
Although elements such as C and a drive circuit are also indispensable, they are not particularly necessary for describing the present invention, and are omitted because they may rather complicate the drawing and make it difficult to understand.

【0026】次に各構成要素について順に説明する。偏
光板401は所定の直線偏光成分を吸収し、それ以外の
偏光成分を透過する機能を有している。これは現在最も
一般に利用されているタイプの偏光板であって、ヨウ素
等のハロゲン物質や二色性染料をポリ・ビニル・プチラ
ール等の高分子フィルムに吸着させて作製する。
Next, each component will be described in order. The polarizing plate 401 has a function of absorbing a predetermined linearly polarized light component and transmitting other polarized light components. This is the most commonly used type of polarizing plate at present, and is produced by adsorbing a halogen substance such as iodine or a dichroic dye onto a polymer film such as polyvinyl butyral.

【0027】位相差フィルム402は、例えばポリ・カ
ーボネート樹脂の一軸延伸フィルムであって、STN型
液晶装置の表示の着色を補償するために利用される。T
N型液晶装置の場合には省略されることが多い。
The retardation film 402 is, for example, a uniaxially stretched film of a polycarbonate resin, and is used for compensating the coloring of the display of the STN type liquid crystal device. T
In the case of an N-type liquid crystal device, it is often omitted.

【0028】液晶層404は180度から270度ねじ
れたSTNネマチック液晶組成物から成る。表示容量が
小さい場合には90°ねじれたTN液晶組成物を用いて
も良い。ねじれ角は縦ガラス基板表面における配向処理
の方向と、液晶に添加するカイラル剤の分量で決定す
る。
The liquid crystal layer 404 is composed of a STN nematic liquid crystal composition twisted from 180 degrees to 270 degrees. When the display capacity is small, a TN liquid crystal composition twisted by 90 ° may be used. The twist angle is determined by the direction of the alignment treatment on the surface of the vertical glass substrate and the amount of the chiral agent added to the liquid crystal.

【0029】光散乱体406には、透明ビーズを分散し
たプラスチックフィルムが利用できる。接着剤中にビー
ズを混入して光散乱体の代用とし、405を直接407
に接着しても良い。また特定の角度から入射した光のみ
を散乱する光制御板を利用してもよい。このような光制
御板は住友化学工業株式会社からルミスティ(商品名)
として発売されている。なおここで言う光散乱とは、偏
光を乱さない程度の弱い散乱を指す。光散乱板は、鏡面
に近い反射偏光子の反射光を適度に拡散させる目的で配
置する。
As the light scatterer 406, a plastic film in which transparent beads are dispersed can be used. Beads are mixed in the adhesive to substitute for the light scatterer, and 405 is directly converted to 407
May be adhered to. Alternatively, a light control plate that scatters only light incident from a specific angle may be used. Such a light control board is available from Sumitomo Chemical Co., Ltd.
It has been released as. Note that the light scattering here refers to weak scattering that does not disturb the polarization. The light scattering plate is arranged for appropriately diffusing the reflected light of the reflective polarizer close to the mirror surface.

【0030】反射偏光子407については、既に詳しく
説明した。
The reflective polarizer 407 has already been described in detail.

【0031】光吸収板408には、黒色ビニールシート
や黒紙を接着するか、黒色塗料を直接塗布して利用す
る。なお、黒色以外にも比較的暗い色ならば、青色や茶
色、灰色など好みによって利用できる。この光吸収板は
不要な偏光を吸収する目的で配置するが、半透過反射型
液晶装置等で、この偏光を利用しようとする場合には、
半透明な光吸収板や偏光板を利用すれば良い。
The light absorbing plate 408 is used by adhering a black vinyl sheet or black paper or by directly applying a black paint. In addition, if it is a relatively dark color other than black, it can be used depending on preference, such as blue, brown, and gray. This light absorbing plate is arranged for the purpose of absorbing unnecessary polarized light, but when this polarized light is used in a transflective liquid crystal device or the like,
A translucent light absorbing plate or polarizing plate may be used.

【0032】次に具体的な液晶パネルの条件を紹介す
る。まず図4における液晶層404のリターデーション
(複屈折率と層厚の積)を1.00μm、位相差フィル
ム402のリターデーションを0.65μmに設定し
た。図5は各軸の関係を示す図であり、501は偏光板
101の偏光軸(透過軸)、502は位相差フィルムの
遅相軸(延伸軸)、503は上側ガラス基板のラビング
軸、504は下側ガラス基板のラビング軸、505は反
射偏光子の反射軸である。また510は液晶パネルの縦
方向を示す。ここで、501が502と成す角度511
を右32度に、502が503と成す角度512を左7
7度に、504が503となす角度、即ち液晶のねじれ
角513を左240度に、505が504となす角度5
14を左46度に設定した。2本のラビング軸503と
504は左右対称であるから、反射偏光子の偏光軸50
5が、液晶パネルの左右方向510となす角度515は
右14度になり、ほぼ縦方向に平行であると言って良
い。
Next, specific conditions of the liquid crystal panel will be introduced. First, the retardation (product of birefringence and layer thickness) of the liquid crystal layer 404 in FIG. 4 was set to 1.00 μm, and the retardation of the retardation film 402 was set to 0.65 μm. FIG. 5 is a diagram showing the relationship between the axes, 501 is the polarization axis (transmission axis) of the polarizing plate 101, 502 is the slow axis (stretching axis) of the retardation film, 503 is the rubbing axis of the upper glass substrate, 504 Is the rubbing axis of the lower glass substrate, and 505 is the reflection axis of the reflective polarizer. Reference numeral 510 indicates the vertical direction of the liquid crystal panel. Here, an angle 511 between 501 and 502 is formed.
To the right 32 degrees, and the angle 512 between 502 and 503
At 7 degrees, the angle 504 forms an angle 503 with 503, that is, the twist angle 513 of the liquid crystal is set at 240 degrees to the left, and the angle
14 was set to 46 degrees to the left. Since the two rubbing axes 503 and 504 are bilaterally symmetric, the polarization axis 50 of the reflective polarizer is
The angle 515 between the liquid crystal panel 5 and the left-right direction 510 of the liquid crystal panel is 14 degrees to the right, which can be said to be substantially parallel to the vertical direction.

【0033】このようにして作製した液晶装置は、通常
の偏光板を2枚利用した液晶装置と比較して、30%以
上明るいという特徴を有している。その理由は二つあ
る。一つは金属アルミニウムの反射率が90%弱しかな
いのに対し、本発明の反射偏光子は反射軸に平行な光の
ほぼ100%を反射するからである。もう一つの理由
は、通常の吸収型偏光板がヨウ素等のハロゲン物質や染
料等の二色性物質を利用しており、その二色比が必ずし
も高くないために、およそ20%の光を無駄にしている
ことである。
The liquid crystal device thus manufactured has a feature that it is 30% or more brighter than a liquid crystal device using two ordinary polarizing plates. There are two reasons. One is that while the reflectivity of metallic aluminum is only less than 90%, the reflective polarizer of the present invention reflects almost 100% of light parallel to the reflection axis. Another reason is that ordinary absorption-type polarizers use dichroic substances such as halogen substances such as iodine and dyes, and the dichroic ratio is not necessarily high, so that about 20% of light is wasted. That is what we do.

【0034】またこの液晶装置は、特に上方向(12時
方向)から光が入射した際に、表示コントラストが高い
という特徴がある。これは、上方向から光が入射したと
きに、反射偏光子407の偏光度が高いためである。一
般に反射型液晶装置では、観察者がパネル正面あるいは
下方向(6時方向)に位置するから、上方向から入射し
た光が最も観察者に届きやすい。従って、上方向から入
射した光に対するコントラストが高いことは、大変好ま
しいことである。
Further, this liquid crystal device has a feature that the display contrast is high particularly when light is incident from above (12 o'clock direction). This is because the degree of polarization of the reflective polarizer 407 is high when light is incident from above. Generally, in a reflection type liquid crystal device, since an observer is located in front of the panel or in a downward direction (6 o'clock direction), light incident from above is most likely to reach the observer. Therefore, it is very preferable that the contrast with respect to light incident from above is high.

【0035】また反射偏光子の反射軸方向が液晶パネル
の縦方向にほぼ平行であることは、高価な反射偏光子が
その原反から効率よく取れることを意味し、コスト的に
も有利である。
The fact that the direction of the reflection axis of the reflective polarizer is substantially parallel to the longitudinal direction of the liquid crystal panel means that an expensive reflective polarizer can be efficiently obtained from its raw material, which is advantageous in terms of cost. .

【0036】(実施例2)本発明の請求項1または請求
項2記載の発明に係るもう一つの液晶装置の例を示す。
図6はその構造の要部を示す図である。まず構成を説明
する。図6において、601は偏光板、602は対向基
板、603は液晶組成物、604は素子基板、605は
光散乱板、606は反射偏光子、607は光吸収板、6
08はバックライトの導光板、609は光反射板、61
0はバックライトの光源であり、対向基板602上には
カラーフィルタ611と、対向電極(走査線)612を
設け、素子基板604上には信号線613、画素電極6
14、MIM素子615を設けた。ここで601と60
2、604と605、605と606、606と607
は、互いに離して描いてあるが、これは図を明解にする
ためであって、実際には糊で接着している。また対向基
板602と素子基板604の間も広く離して描いてある
が、これも同様の理由からであって実際には数μmから
十数μm程度のギャップしかない。また、図6は液晶装
置の一部を示しているため、3本の走査線612と3本
の信号線616が交差して出来る3×3のマトリクス、
即ち9ドット分しか図示していないが、実際にはさらに
多くのドットを有する。
(Embodiment 2) An example of another liquid crystal device according to the first or second aspect of the present invention will be described.
FIG. 6 is a diagram showing a main part of the structure. First, the configuration will be described. 6, 601 is a polarizing plate, 602 is a counter substrate, 603 is a liquid crystal composition, 604 is an element substrate, 605 is a light scattering plate, 606 is a reflective polarizer, 607 is a light absorbing plate, 6
08 is a light guide plate of a backlight, 609 is a light reflection plate, 61
Reference numeral 0 denotes a backlight light source, on which a color filter 611 and a counter electrode (scanning line) 612 are provided on a counter substrate 602, and a signal line 613 and a pixel electrode 6 are provided on an element substrate 604.
14. An MIM element 615 was provided. Where 601 and 60
2, 604 and 605, 605 and 606, 606 and 607
Are drawn apart from each other for the sake of clarity of the figure, and are actually glued together. Further, the space between the opposing substrate 602 and the element substrate 604 is drawn widely apart, but for the same reason, there is actually only a gap of about several μm to about several tens μm. FIG. 6 shows a part of the liquid crystal device, so that a 3 × 3 matrix formed by three scanning lines 612 and three signal lines 616 intersect with each other.
That is, although only nine dots are shown, actually, it has more dots.

【0037】対向電極612と画素電極614は透明な
ITOで形成した。信号線613は金属Taで形成し
た。MIM素子は絶縁膜Ta2O5を金属Taと金属C
rで挟んだ構造である。液晶組成物603は90度ねじ
れたネマチック液晶である。611は加法混色の三原色
である赤色(図中「R」で示した)と緑色(図中「G」
で示した)と青色(図中「B」で示した)の3色から成
り、モザイク状に配列した。
The counter electrode 612 and the pixel electrode 614 were formed of transparent ITO. The signal line 613 was formed of metal Ta. In the MIM element, the insulating film Ta2O5 is made of metal Ta and metal C.
r. The liquid crystal composition 603 is a nematic liquid crystal twisted by 90 degrees. Reference numeral 611 denotes red (indicated by "R" in the figure) and green ("G" in the figure) which are three primary colors of additive color mixture.
) And blue (indicated by “B” in the figure) and arranged in a mosaic pattern.

【0038】なお、ここではMIMアクティブマトリク
ス方式の液晶装置を例として挙げたが、単純マトリクス
方式の液晶装置を採用しても、本発明の効果に変わりは
ない。その場合は、信号線を対向電極同様の短冊状IT
Oで形成して、MIM素子と画素電極を設けない。また
TNモードの代わりに、実施例1と同様なSTNモード
を採用する。
Although the MIM active matrix type liquid crystal device has been described as an example here, the effect of the present invention is not changed even if a simple matrix type liquid crystal device is adopted. In such a case, connect the signal line to a rectangular IT
O is formed, and the MIM element and the pixel electrode are not provided. Also, instead of the TN mode, an STN mode similar to that of the first embodiment is employed.

【0039】偏光板601、反射偏光子606には、実
施例1と同様のものを利用した。
As the polarizing plate 601 and the reflective polarizer 606, the same ones as in the first embodiment were used.

【0040】半光吸収板607としては、灰色の半透明
フィルムが利用できる。灰色の半透明フィルムとして
は、可視光の全波長範囲の光に対して10%以上80%
以下、より好ましくは50%以上70%以下の透過率を
有する散乱性のフィルムが適している。このようなフィ
ルムは、例えば(株)辻本電機製作所から光拡散フィル
ムD202(商品名)という名称で発売されている。ま
た部分的に透明な光吸収フィルム、つまり肉眼では観察
できない直径数μmの微細な穴を多数設けた黒色フィル
ム等も利用できる。また吸収型の偏光板を反射偏光子6
06と軸をずらして配置しても良い。
As the semi-light absorbing plate 607, a gray translucent film can be used. As a gray translucent film, 10% or more and 80% with respect to light in the entire wavelength range of visible light
A scattering film having a transmittance of 50% or more and 70% or less is suitable. Such a film is marketed, for example, by Tsujimoto Electric Manufacturing Co., Ltd. under the name of light diffusion film D202 (trade name). Further, a partially transparent light absorbing film, that is, a black film having a large number of fine holes having a diameter of several μm, which cannot be observed with the naked eye, can also be used. In addition, the absorption type polarizing plate is replaced with a reflective polarizer 6.
06 and the axis may be shifted.

【0041】バックライトの導光体608には透明性の
良いアクリル樹脂の平板を用い、その表面に白色塗料を
印刷した。導光体の背面には白色の光反射板609を配
置して後方に漏れる光を前方に戻す。
As the light guide 608 of the backlight, a flat plate of acrylic resin having good transparency was used, and a white paint was printed on the surface thereof. A white light reflecting plate 609 is disposed on the back of the light guide to return light leaking backward to the front.

【0042】次に具体的な液晶パネルの条件を紹介す
る。まず図6における液晶層603のリターデーション
(複屈折率と層厚の積)を0.42μmに設定した。図
7は各軸の関係を示す図であり、701は偏光板601
の偏光軸(透過軸)、702は上側ガラス基板のラビン
グ軸、703は下側ガラス基板のラビング軸、704は
反射偏光子606の反射軸である。また710は液晶パ
ネルの縦方向(水平方向)を示す。ここで、701と7
03、702と704はそれぞれ平行であって、両者が
互いに成す角度711を90度に設定した。このとき、
反射偏光子606の反射軸704が、液晶パネルの縦方
向710となす角度は、0度になる。
Next, specific conditions of the liquid crystal panel will be introduced. First, the retardation (the product of the birefringence and the layer thickness) of the liquid crystal layer 603 in FIG. 6 was set to 0.42 μm. FIG. 7 is a diagram showing the relationship between the respective axes.
702 is a rubbing axis of the upper glass substrate, 703 is a rubbing axis of the lower glass substrate, and 704 is a reflection axis of the reflective polarizer 606. Reference numeral 710 denotes the vertical direction (horizontal direction) of the liquid crystal panel. Here, 701 and 7
03, 702 and 704 are parallel to each other, and the angle 711 formed between them is set to 90 degrees. At this time,
The angle between the reflection axis 704 of the reflection polarizer 606 and the vertical direction 710 of the liquid crystal panel is 0 degree.

【0043】反射軸が液晶パネルの縦方向となす角度が
0度からはずれると、特性がどのように変化するかを次
のようにして確かめた。まず光源を12時方向、法線方
向からの傾き角45度に固定する。そして液晶パネルを
その法線方向を軸に左右90度まで回転し、コントラス
ト比を測定した。即ち、図7において、710を固定
し、701、702、703、704を同時に左右90
度まで回転し、コントラスト比を測定した。その結果を
図8に示す。横軸は液晶パネルの回転角度であるが、こ
れは反射軸が液晶パネルの縦方向となす角度と等しい。
この角度が0度のとき、コントラスト比は最大値6.2
を取る。±15度まではほぼ同じコントラストを維持す
るが、±30度を超えるとコントラスト比は急激に低下
している。従って、反射偏光子の反射軸は、液晶パネル
の縦方向と平行な方向±30度の範囲、より望ましくは
±15度の範囲にあることが好ましい。この範囲を逸脱
すると、一般的な照明環境下で高いコントラストが維持
できなくなる。この範囲内で、他の様々な要因、例えば
液晶の明視方向等を勘案しつつ、反射軸方向を決定すれ
ばよい。
When the angle formed by the reflection axis and the vertical direction of the liquid crystal panel deviated from 0 °, how the characteristics changed was confirmed as follows. First, the light source is fixed at a tilt angle of 45 degrees from the 12 o'clock direction and the normal direction. Then, the liquid crystal panel was rotated right and left by 90 degrees around the normal line direction, and the contrast ratio was measured. That is, in FIG. 7, 710 is fixed, and 701, 702, 703,
And the contrast ratio was measured. FIG. 8 shows the result. The horizontal axis is the rotation angle of the liquid crystal panel, which is equal to the angle that the reflection axis makes with the vertical direction of the liquid crystal panel.
When this angle is 0 degree, the contrast ratio has a maximum value of 6.2.
I take the. Up to ± 15 degrees, almost the same contrast is maintained, but beyond ± 30 degrees, the contrast ratio sharply decreases. Therefore, the reflection axis of the reflective polarizer is preferably in the range of ± 30 degrees in the direction parallel to the longitudinal direction of the liquid crystal panel, and more preferably in the range of ± 15 degrees. Outside of this range, high contrast cannot be maintained under a general lighting environment. Within this range, the reflection axis direction may be determined in consideration of other various factors, for example, the clear viewing direction of the liquid crystal.

【0044】このようにして作製した液晶装置は、通常
の偏光板を2枚利用した液晶装置と比較して、30%以
上明るい。また、特に上方向(12時方向)から光が入
射した際に、表示コントラストが高いという特徴があ
る。また反射偏光子の反射軸方向が液晶パネルの縦方向
にほぼ平行であることは、高価な反射偏光子がその原反
から効率よく取れることを意味し、コスト的にも有利で
ある。
The liquid crystal device thus manufactured is 30% or more brighter than a liquid crystal device using two ordinary polarizing plates. In addition, there is a feature that display contrast is high particularly when light is incident from above (12 o'clock direction). Further, the fact that the direction of the reflection axis of the reflective polarizer is substantially parallel to the longitudinal direction of the liquid crystal panel means that an expensive reflective polarizer can be efficiently obtained from its raw material, which is advantageous in cost.

【0045】(実施例3)本発明の請求項3記載の電子
機器の例を3つ示す。
(Embodiment 3) Three examples of the electronic apparatus according to the third aspect of the present invention will be described.

【0046】本発明の液晶装置は、様々な環境下で用い
られ、しかも低消費電力が必要とされる携帯機器に適し
ている。
The liquid crystal device of the present invention is suitable for portable equipment used in various environments and requiring low power consumption.

【0047】図9(a)は携帯電話であり、本体901
の前面上方部に表示部902が設けられる。携帯電話
は、屋内屋外を問わずあらゆる環境で利用される。特に
自動車内で利用されることが多いが、夜間の車内は大変
暗い。従って携帯電話に利用される表示装置は、消費電
力が低い反射型表示をメインに、必要に応じて補助光を
利用した透過型表示ができる半透過反射型液晶装置が望
ましい。本発明の液晶装置は、反射型表示でも透過型表
示でも従来の液晶装置より明るく、コントラスト比が高
い。
FIG. 9A shows a mobile phone, and a main body 901 is shown.
A display unit 902 is provided at an upper part of the front surface of the display. Mobile phones are used in all environments, both indoors and outdoors. Especially, it is often used in cars, but the inside of cars at night is very dark. Therefore, it is desirable that the display device used in the mobile phone is a transflective liquid crystal device capable of performing transmissive display using auxiliary light as needed, mainly reflective display with low power consumption. The liquid crystal device of the present invention is brighter than conventional liquid crystal devices and has a higher contrast ratio in both reflective display and transmissive display.

【0048】図9(b)はウォッチであり、本体903
の中央に表示部904が設けられる。ウォッチ用途にお
ける重要な観点は、高級感である。本発明の液晶装置
は、明るくコントラストが高いことはもちろん、光の波
長による特性変化が少ないために色づきも小さい。従っ
て、従来の液晶装置と比較して、大変に高級感ある表示
が得られる。
FIG. 9B shows a watch, which is a main body 903.
The display unit 904 is provided at the center of the display. An important aspect in watch applications is luxury. The liquid crystal device of the present invention is not only bright and has a high contrast, but also has a small coloring due to a small change in characteristics due to the wavelength of light. Therefore, a very high-quality display can be obtained as compared with the conventional liquid crystal device.

【0049】図9(c)は携帯情報機器であり、本体9
05の上側に表示部906、下側に入力部907が設け
られる。また表示部の前面にはタッチ・キーを設けるこ
とが多い。通常のタッチ・キーは表面反射が多いため、
表示が見づらい。従って、従来は携帯型と言えども透過
型液晶装置を利用することが多かった。ところが透過型
液晶装置は、常時バックライトを利用するため消費電力
が大きく、電池寿命が短かかった。このような場合にも
本発明の液晶装置は、反射型でも半透過反射型でも表示
が明るく鮮やかであるため、携帯情報機器に利用するこ
とが出来る。
FIG. 9C shows a portable information device.
A display unit 906 is provided on the upper side of the display unit 05, and an input unit 907 is provided on the lower side. In addition, touch keys are often provided on the front of the display unit. Normal touch keys have many surface reflections,
The display is hard to see. Therefore, conventionally, a transmissive liquid crystal device has often been used even though it is portable. However, since the transmissive liquid crystal device always uses the backlight, the power consumption is large and the battery life is short. Even in such a case, the liquid crystal device of the present invention can be used for a portable information device because the display is bright and vivid both in the reflective type and the transflective type.

【0050】[0050]

【発明の効果】以上述べたように、本発明によれば、反
射偏光子を利用し、その反射軸の配置を工夫することに
よって、明るくコントラストの高い反射型あるいは半透
過反射型の液晶装置を提供することが出来る。
As described above, according to the present invention, a reflective or transflective liquid crystal device having a bright and high contrast can be obtained by utilizing a reflective polarizer and devising the arrangement of the reflective axes. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における液晶装置で用いた反
射偏光子の、構造の要部を示す図である。
FIG. 1 is a diagram illustrating a main part of a structure of a reflective polarizer used in a liquid crystal device according to a first embodiment of the present invention.

【図2】本発明の実施例1における液晶装置で用いた反
射偏光子を構成する2種類の層の屈折率特性を示す図で
ある。
FIG. 2 is a diagram illustrating refractive index characteristics of two types of layers constituting a reflective polarizer used in the liquid crystal device according to the first embodiment of the present invention.

【図3】本発明の実施例1における液晶装置で用いた反
射偏光子の、偏光度の入射角依存性を示す図である。
FIG. 3 is a diagram showing the incident angle dependence of the degree of polarization of the reflective polarizer used in the liquid crystal device according to the first embodiment of the present invention.

【図4】本発明の実施例1における液晶装置の、構造の
要部を示す図である。
FIG. 4 is a diagram illustrating a main part of a structure of the liquid crystal device according to the first embodiment of the present invention.

【図5】本発明の実施例1における液晶装置の、各軸の
関係を示す図である。
FIG. 5 is a diagram illustrating a relationship between axes of the liquid crystal device according to the first embodiment of the present invention.

【図6】本発明の実施例2における液晶装置の、構造の
要部を示す図である。
FIG. 6 is a diagram illustrating a main part of a structure of a liquid crystal device according to a second embodiment of the present invention.

【図7】本発明の実施例2における液晶装置の、各軸の
関係を示す図である。
FIG. 7 is a diagram illustrating a relationship between axes of a liquid crystal device according to a second embodiment of the present invention.

【図8】本発明の実施例2における液晶装置において、
光源を12時方向の傾き角45度に固定し、液晶パネル
を回転したときのコントラスト比の変化を示す図であ
る。
FIG. 8 illustrates a liquid crystal device according to a second embodiment of the present invention.
FIG. 11 is a diagram illustrating a change in contrast ratio when the liquid crystal panel is rotated with the light source fixed at a tilt angle of 45 degrees in the 12 o'clock direction.

【図9】本発明の実施例3における電子機器の、外観を
示す図である。(a)携帯電話、(b)ウォッチ、
(c)携帯情報機器。
FIG. 9 is a diagram illustrating an appearance of an electronic device according to a third embodiment of the present invention. (A) mobile phone, (b) watch,
(C) portable information devices.

【符号の説明】[Explanation of symbols]

101 光弾性率が大きい材料を延伸した層 102 光弾性率が小さい材料を延伸した層 103 直交座標系、x軸方向が延伸方向であり反射軸 201 層101の屈折率楕円体 202 層102の屈折率楕円体 211 層101の面内で主たる延伸方向と平行な方向
の屈折率nx 212 層101の面内で主たる延伸方向と直角な方向
の屈折率ny 213 層101の膜厚方向の屈折率nz 221 層102の面内で主たる延伸方向と平行な方向
の屈折率nx 222 層102の面内で主たる延伸方向と直角な方向
の屈折率ny 223 層102の膜厚方向の屈折率nz 231 x−y平面(反射偏光子表面と平行な面) 232 x−z平面(反射偏光子の延伸方向と膜厚方向
を両方含む面) 233 y−z平面(反射偏光子の延伸方向と直角な方
向と膜厚方向を両方含む面) 241 x−z平面内で斜めから入射した光 242 y−z平面内で斜めから入射した光
Reference Signs List 101 Layer stretched with material having high photoelastic modulus 102 Layer stretched with material having low photoelasticity 103 Orthogonal coordinate system, x-axis direction is stretch direction, reflection axis 201 Index ellipsoid of layer 101 202 Refraction of layer 102 Index ellipsoid 211 Refractive index nx in a direction parallel to the main stretching direction in the plane of layer 101 nx 212 Refractive index ny 213 in a direction perpendicular to the main stretching direction in the plane of layer 101 Refractive index nz in the thickness direction of layer 101 221 Refractive index nx in the direction parallel to the main stretching direction in the plane of the layer 102 222 Refractive index ny 223 in the direction perpendicular to the main stretching direction in the plane of the layer 102 Refractive index nz 231 x− in the film thickness direction of the layer 102 y plane (plane parallel to the reflective polarizer surface) 232 xz plane (plane including both the extending direction and the thickness direction of the reflective polarizer) 233 yz plane (direction perpendicular to the extending direction of the reflective polarizer) Light incident from obliquely in the optical 242 y-z plane obliquely incident film thickness direction in both comprise plane) in 241 x-z plane

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】一対の基板間に液晶が挟持された液晶パネ
ルと、 前記液晶パネルの一方の側に配置された偏光板と、 前記液晶パネルに対して前記偏光板とは反対の側に配置
され、面内に屈折率異方性を有する第一の層と面内に屈
折率異方性を有しない第二の層を交互に多数積層して構
成された反射偏光子と、 前記反射偏光子に対して前記液晶パネルと反対の側に配
置された光吸収層とを備える液晶装置であって、 前記液晶装置における表示画面の縦方向と、前記反射偏
光子の反射軸とがほぼ平行に配置されていることを特徴
とする液晶装置。
A liquid crystal panel having a liquid crystal sandwiched between a pair of substrates; a polarizing plate disposed on one side of the liquid crystal panel; and a polarizing plate disposed on a side of the liquid crystal panel opposite to the polarizing plate. A reflective polarizer configured by alternately laminating a large number of first layers having in-plane refractive index anisotropy and second layers having no in-plane refractive index anisotropy; A light absorbing layer disposed on the side opposite to the liquid crystal panel with respect to the element, wherein a vertical direction of a display screen in the liquid crystal device and a reflection axis of the reflective polarizer are substantially parallel to each other. A liquid crystal device, which is disposed.
【請求項2】一対の基板間に液晶が挟持された液晶パネ
ルと、 前記液晶パネルの一方の側に配置された偏光板と、 前記液晶パネルに対して前記偏光板とは反対の側に配置
され、面内に屈折率異方性を有する第一の層と面内に屈
折率異方性を有しない第二の層を交互に多数積層して構
成された反射偏光子と、 前記反射偏光子に対して前記液晶パネルと反対の側に配
置された照明装置とを備える液晶装置であって、 前記液晶装置における表示画面の縦方向と、前記反射偏
光子の反射軸とがほぼ平行に配置されていることを特徴
とする液晶装置。
2. A liquid crystal panel in which liquid crystal is sandwiched between a pair of substrates; a polarizing plate disposed on one side of the liquid crystal panel; and a polarizing plate disposed on a side of the liquid crystal panel opposite to the polarizing plate. A reflective polarizer configured by alternately laminating a large number of first layers having in-plane refractive index anisotropy and second layers having no in-plane refractive index anisotropy; A lighting device arranged on the side opposite to the liquid crystal panel with respect to the liquid crystal panel, wherein a vertical direction of a display screen in the liquid crystal device and a reflection axis of the reflective polarizer are substantially parallel to each other. A liquid crystal device characterized by being performed.
【請求項3】請求項1又は2に記載の液晶装置であっ
て、 前記反射偏光子の第一の層及び第二の層の3つの主屈折
率nx、ny、nzの内、膜厚方向の屈折率nzと面内
で延伸方向に直角な方向の屈折率nyの比が、前記両層
で互いに異なることを特徴とする液晶装置。
3. The liquid crystal device according to claim 1, wherein the three main refractive indices nx, ny, and nz of the first layer and the second layer of the reflective polarizer are in a thickness direction. Wherein the ratio of the refractive index nz to the refractive index ny in the direction perpendicular to the stretching direction in the plane is different between the two layers.
【請求項4】一対の基板間に液晶が挟持された液晶パネ
ルと、 前記液晶パネルの一方の側に配置された偏光板と、 前記液晶パネルに対して前記偏光板とは反対の側に配置
され、面内に屈折率異方性を有する第一の層と面内に屈
折率異方性を有しない第二の層を交互に多数積層して構
成された反射偏光子と、 前記反射偏光子に対して前記液晶パネルと反対の側に配
置された光吸収層とを備える液晶装置を表示部として備
える電子機器であって、 前記液晶装置における表示画面の縦方向と、前記反射偏
光子の反射軸とがほぼ平行に配置されていることを特徴
とする電子機器。
4. A liquid crystal panel having liquid crystal sandwiched between a pair of substrates; a polarizing plate disposed on one side of the liquid crystal panel; and a polarizing plate disposed on a side of the liquid crystal panel opposite to the polarizing plate. A reflective polarizer configured by alternately laminating a large number of first layers having in-plane refractive index anisotropy and second layers having no in-plane refractive index anisotropy; An electronic apparatus comprising, as a display unit, a liquid crystal device including a light absorbing layer disposed on a side opposite to the liquid crystal panel with respect to a liquid crystal panel, wherein a vertical direction of a display screen in the liquid crystal device and a reflection polarizer are provided. An electronic device, wherein a reflection axis and a reflection axis are arranged substantially in parallel.
【請求項5】一対の基板間に液晶が挟持された液晶パネ
ルと、 前記液晶パネルの一方の側に配置された偏光板と、 前記液晶パネルに対して前記偏光板とは反対の側に配置
され、面内に屈折率異方性を有する第一の層と面内に屈
折率異方性を有しない第二の層を交互に多数積層して構
成された反射偏光子と、 前記反射偏光子に対して前記液晶パネルと反対の側に配
置された照明装置とを備える液晶装置を表示部として備
えた電子機器であって、 前記液晶装置における表示画面の縦方向と、前記反射偏
光子の反射軸とがほぼ平行に配置されていることを特徴
とする電子機器。
5. A liquid crystal panel having liquid crystal sandwiched between a pair of substrates; a polarizing plate disposed on one side of the liquid crystal panel; and a polarizing plate disposed on a side of the liquid crystal panel opposite to the polarizing plate. A reflective polarizer configured by alternately laminating a large number of first layers having in-plane refractive index anisotropy and second layers having no in-plane refractive index anisotropy; An electronic apparatus comprising, as a display unit, a liquid crystal device including a lighting device disposed on a side opposite to the liquid crystal panel with respect to the liquid crystal panel, wherein a vertical direction of a display screen in the liquid crystal device and a reflection polarizer are provided. An electronic device, wherein a reflection axis and a reflection axis are arranged substantially in parallel.
JP00986498A 1998-01-21 1998-01-21 Liquid crystal device and electronic device Expired - Fee Related JP4032478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00986498A JP4032478B2 (en) 1998-01-21 1998-01-21 Liquid crystal device and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00986498A JP4032478B2 (en) 1998-01-21 1998-01-21 Liquid crystal device and electronic device

Publications (2)

Publication Number Publication Date
JPH11212083A true JPH11212083A (en) 1999-08-06
JP4032478B2 JP4032478B2 (en) 2008-01-16

Family

ID=11732016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00986498A Expired - Fee Related JP4032478B2 (en) 1998-01-21 1998-01-21 Liquid crystal device and electronic device

Country Status (1)

Country Link
JP (1) JP4032478B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020038520A (en) * 2000-11-16 2002-05-23 구사마 사부로 Liquid crystal display manufacturing method and liquid crystal display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020038520A (en) * 2000-11-16 2002-05-23 구사마 사부로 Liquid crystal display manufacturing method and liquid crystal display

Also Published As

Publication number Publication date
JP4032478B2 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
KR100433607B1 (en) Display device, electronic device and light giude
JP3337028B2 (en) Liquid crystal devices and electronic equipment
JP2009282424A (en) Liquid crystal display, electronic equipment, and polarizing body
JP3723984B2 (en) Liquid crystal device and electronic apparatus using the same
JP4271951B2 (en) Elliptical polarizing plate and liquid crystal display device
KR20030050303A (en) Transflective type liquid crystal display device
JP3480260B2 (en) Liquid crystal devices and electronic equipment
JP3345772B2 (en) Liquid crystal devices and electronic equipment
CN117280274A (en) Display panel and display device
JP2006501516A (en) Liquid crystal display
WO1999006878A1 (en) Liquid crystal display
JP4546730B2 (en) Transflective liquid crystal display device
JPH10260402A (en) Translucent reflection type liquid-crystal device and electronic equipment
JPH1164631A (en) Polarizing means, liquid crystal device and electronic equipment
JP3924874B2 (en) Liquid crystal device and electronic device
JP3999867B2 (en) Liquid crystal display
US6542208B1 (en) Liquid crystal display device
JPH11142646A (en) Reflecting polarizer, liquid crystal device, and electronic equipment
JP4032478B2 (en) Liquid crystal device and electronic device
JP3843580B2 (en) Liquid crystal device and electronic device
JP2005321830A (en) Liquid crystal apparatus and electronic apparatus
JP3337029B2 (en) Liquid crystal devices and electronic equipment
JP3389924B2 (en) Liquid crystal devices and electronic equipment
JP3603897B2 (en) Transflective liquid crystal device and electronic equipment
JP3027612B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees