JPH11212034A - Optical element and light control method therefor - Google Patents

Optical element and light control method therefor

Info

Publication number
JPH11212034A
JPH11212034A JP10030625A JP3062598A JPH11212034A JP H11212034 A JPH11212034 A JP H11212034A JP 10030625 A JP10030625 A JP 10030625A JP 3062598 A JP3062598 A JP 3062598A JP H11212034 A JPH11212034 A JP H11212034A
Authority
JP
Japan
Prior art keywords
light
optical element
wavelength
change
organic dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10030625A
Other languages
Japanese (ja)
Inventor
Tsutomu Sato
勉 佐藤
Tatsuya Tomura
辰也 戸村
Noboru Sasa
登 笹
Yasunobu Ueno
泰伸 植野
Yasuhiro Azuma
康弘 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP10030625A priority Critical patent/JPH11212034A/en
Publication of JPH11212034A publication Critical patent/JPH11212034A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Filters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical element showing a high light response (transmission factor change, reflection factor change or light direction change) with low density power by laminating an organic pigment layer, which senses the light of a specified wavelength and reversibly changes a refraction factor for the light of different wavelengths, and a reflection layer. SOLUTION: This element is constituted by laminating the organic pigment layer, which senses the light of the specified wavelength and reversibly changes the refraction factor for the light of different wavelengths, and the reflection layer. Concerning the optical element showing the light response of the reflection factor change, in this case, the thickness of respective films is set from the optical constants of the organic pigment layer, reflection layer and substrate so that the high reflection factor of signal light can be provided when control light is not radiated yet. Then, a reflected light intensity change occurs because of the refraction factor change with the radiation of control light and a change in the absorption spectrum of the organic pigment film. When the control light is not radiated yet, it is preferable for such an optical element to provide the high reflection factor concerning signal light and to reduce the exhaustion coefficient of the organic pigment film with respect to a signal light wavelength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信、光情報処
理などのエレクトロニクスおよび光フォトニクスの分野
において有用な光学素子および光制御方法に関するもの
である。
The present invention relates to an optical element and a light control method useful in the fields of electronics and optical photonics such as optical communication and optical information processing.

【0002】[0002]

【従来の技術】超高速情報伝達、処理を目的として、光
エレクトロニクスおよび光フォトニクスの分野におい
て、光学材料または光学組成物を加工して作成した光学
素子に光を照射することで引き起こされる透過率変化や
屈折率変化を利用して、電子回路技術を用いずに、光の
強度や波長を変調しようとする光・光制御方法(光によ
る光の制御方法)の研究開発が盛んに進められている。
光・光制御方法への応用が期待されている現象としては
過飽和吸収、非線形屈折、フォトリフラクティブ効果、
誘導吸収などの現象が注目されている。
2. Description of the Related Art In the field of optoelectronics and photonics for the purpose of transmitting and processing information at an ultra-high speed, a change in transmittance caused by irradiating an optical element formed by processing an optical material or an optical composition with light. Research and development of light and light control methods (light control methods using light) that attempt to modulate light intensity and wavelength without using electronic circuit technology by using the refractive index or refractive index change are being actively pursued. .
Phenomena expected to be applied to light / light control methods include saturable absorption, nonlinear refraction, photorefractive effects,
Phenomena such as induced absorption are attracting attention.

【0003】これまでに提案されている光学材料、光制
御方法は多くあるが、その幾つかを挙げれば下記のとお
りである。(1)特開昭53−137884号:ポルフ
ィリン誘導体と電子受容体の混合系に、波長の異なる少
なくとも2種類の光を照射し、一方の波長の光が有する
情報を他方の光に光変換する。(2)特開昭55−10
0503号:ポルフィリン誘導体等の基底状態と励起状
態との間の分光スペクトル差を利用し、励起光の特間的
変化に対応して伝搬光を選択するような機能性液体コア
型光ファイバー。(3)特開昭63−89805号:光
によって励起された三重項状態から更に上の三重項状態
への遷移に対応する吸収を有するポルフィリン誘導体等
をコア中に含有している光ファイバー。(4)特開昭6
3−236013号:シアニン色素に、波長の異なる2
種類の光を照射し、第一の波長の波長の光による光励起
状態によって第二の波長の波長の光の透過または反射を
スイッチングする。(5)特開昭64−73326号:
光誘起電子移動物質をマトリックス中に分散した光変調
媒体に、第一及び第二の波長の光を照射し、基底状態と
励起状態との間の吸収スペクトル差で光変調する。
(6)特開平8−320536号:ポリメチレン色素
に、第一及び第二の波長の光を照射し、基底状態と励起
状態との間の吸収スペクトル差で光変調する。
There are many optical materials and light control methods that have been proposed so far. Some of them are as follows. (1) JP-A-53-137883: A mixed system of a porphyrin derivative and an electron acceptor is irradiated with at least two types of light having different wavelengths, and light information of one wavelength is converted into the other light. . (2) JP-A-55-10
No. 0503: A functional liquid core type optical fiber that utilizes a spectral difference between a ground state and an excited state of a porphyrin derivative or the like and selects propagating light in response to a special change in the excitation light. (3) JP-A-63-89805: An optical fiber containing a porphyrin derivative or the like having an absorption corresponding to a transition from a triplet state excited by light to a higher triplet state in a core. (4) JP 6
No. 3-236013: Cyanine dyes having different wavelengths 2
The light of the first wavelength is irradiated, and the transmission or reflection of the light of the second wavelength is switched according to the state of light excitation by the light of the first wavelength. (5) JP-A-64-73326:
A light modulation medium in which a photoinduced electron transfer material is dispersed in a matrix is irradiated with light of first and second wavelengths, and light is modulated by an absorption spectrum difference between a ground state and an excited state.
(6) JP-A-8-320536: A polymethylene dye is irradiated with light having first and second wavelengths, and light is modulated by a difference in absorption spectrum between a ground state and an excited state.

【0004】ところが、これら提案されている従来技術
は、実用に足りる大きさの透過率変化や屈折率変化を引
き起こすためには非常に高密度な光パワーを必要とした
り、光照射に対する応答が遅かったりするため、実用化
されていないというのが現状である。
However, these proposed prior arts require a very high-density optical power to cause a practically large change in transmittance or refractive index, or have a slow response to light irradiation. At present, it has not been put to practical use.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、上記
従来技術の欠点を解消し、低密度光パワーで、大きな光
応答(透過率変化、反射率変化、光方向変化)を示す光
学素子、およびその光学素子の光制御方法を提供するこ
とである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned disadvantages of the prior art and to provide an optical element which exhibits a large optical response (change in transmittance, change in reflectance, change in light direction) with low density optical power. And a light control method for the optical element.

【0006】[0006]

【課題を解決するための手段】本発明者らは光学素子、
光制御方法について検討を行ってきた結果、有機色素層
と反射層または誘電体層との積層光学素子に、有機色素
に吸収される波長の光を制御光とし、また有機色素の最
大屈折率を与える吸収長波長端波長近傍の光を信号光と
し、制御光の照射による吸光度変化に伴う屈折率変化を
屈折率変化を反射率及び透過率変化として検出すること
により、低密度光パワーで大きな光応答(透過率変化、
反射率変化、光方向変化)を示す光学素子およびこれの
光制御方法が可能なことを見出し本発明に至った。
Means for Solving the Problems The present inventors have proposed an optical element,
As a result of studying the light control method, the laminated optical element consisting of the organic dye layer and the reflective layer or the dielectric layer was used as the control light with light of the wavelength absorbed by the organic dye, and the maximum refractive index of the organic dye was adjusted. The light near the absorption long wavelength end wavelength is given as the signal light, and the change in the refractive index due to the change in the absorbance due to the irradiation of the control light is detected as the change in the refractive index as the change in the reflectance and the transmittance. Response (transmittance change,
The present invention has been found that an optical element exhibiting a change in reflectance and a change in light direction) and a light control method therefor are possible.

【0007】本発明によれば、第一に、特定の波長の光
に感応し異なる波長の光での屈折率を可逆的に変化させ
る有機色素層と、反射層とを積層してなることを特徴と
する光学素子が提供される。第二に、上記第一の光学素
子において、有機色素層の膜厚を信号光の波長において
最大反射率条件となるよう設定したことを特徴とする光
学素子が提供される。
According to the present invention, first, an organic dye layer which is sensitive to light of a specific wavelength and reversibly changes the refractive index with light of a different wavelength and a reflective layer are laminated. An optical element is provided. Secondly, there is provided an optical element according to the first optical element, wherein the thickness of the organic dye layer is set so as to satisfy the maximum reflectance condition at the wavelength of the signal light.

【0008】第三に、上記第一又は第二の光学素子が感
応する波長の光を制御光とし、異なる波長の光を信号光
として、該制御光を該光学素子に照射し該信号光の反射
率を可逆的に変化させることを特徴とする光学素子の光
制御方法が提供される。第四に、上記第三の光制御方法
において、光学素子が感応する制御光の波長を有機色素
層の最大吸収波長とし、信号光の波長を有機色素層の吸
収スペクトル長波長端部で有機色素層の最大屈折率を与
える波長近傍とすることを特徴とする光学素子光制御方
法が提供される。
Third, light having a wavelength sensitive to the first or second optical element is used as control light, and light having a different wavelength is used as signal light. There is provided a light control method for an optical element, wherein a reflectance is reversibly changed. Fourth, in the third light control method, the wavelength of the control light sensitive to the optical element is the maximum absorption wavelength of the organic dye layer, and the wavelength of the signal light is the organic dye at the long wavelength end of the absorption spectrum of the organic dye layer. There is provided an optical element light control method, which is near the wavelength giving the maximum refractive index of the layer.

【0009】第五に、特定の波長の光に感応し異なる波
長の光での屈折率を可逆的に変化させる有機色素層と、
誘電体層とを積層してなることを特徴とする光学素子が
提供される。第六に、上記第五の光学素子において、有
機色素層の膜厚を信号光の波長において最大透過率条件
となるように設定したことを特徴とする光学素子が提供
される。
Fifth, an organic dye layer that is sensitive to light of a specific wavelength and reversibly changes the refractive index at light of a different wavelength;
An optical element characterized by being laminated with a dielectric layer is provided. Sixth, there is provided an optical element according to the above-mentioned fifth optical element, wherein the thickness of the organic dye layer is set so as to satisfy the maximum transmittance condition at the wavelength of the signal light.

【0010】第七に、上記第五又は第六の光学素子が感
応する波長の光を制御光とし、異なる波長の光を信号光
として、該制御光を該光学素子に照射し該信号光の透過
率を可逆的に変化させることを特徴とする光学素子の光
制御方法が提供される。 第八に、上記第七の光制御方
法において、光学素子が感応する制御光の波長を有機色
素層の最大吸収波長とし、信号光の波長を有機色素層の
吸収スペクトル長波長端部で有機色素層の最大屈折率を
与える波長近傍とすることを特徴とする光学素子の光制
御方法が提供される。
Seventh, light having a wavelength sensitive to the fifth or sixth optical element is used as control light, and light having a different wavelength is used as signal light. There is provided a light control method for an optical element, wherein a transmittance is reversibly changed. Eighth, in the seventh light control method, the wavelength of the control light sensitive to the optical element is the maximum absorption wavelength of the organic dye layer, and the wavelength of the signal light is the organic dye at the long wavelength end of the absorption spectrum of the organic dye layer. There is provided a light control method for an optical element, wherein the wavelength is around a wavelength giving a maximum refractive index of a layer.

【0011】第九に、上記第一、第二、第五又は第六の
光学素子において、有機色素層がサーモクロミズム材料
からなり、その吸光度変化を利用することを特徴とする
光学素子が提供される。第十に、上記第一、第二、第五
又は第六の光学素子において、有機色素層がフォトクロ
ミズム材料からなり、その吸光度変化を利用することを
特徴とする光学素子が提供される。第十一に、上記第
一、第二、第五又は第六の光学素子において、有機色素
層が会合性色素からなり、その会合状態変化による吸光
度変化を利用することを特徴とする光学素子が提供され
る。第十二に、上記第一、第二、第五又は第六の光学素
子において、有機色素層が色素と高分子材料からなり、
その分散状態変化による吸光度変化を利用することを特
徴とする光学素子が提供される。
Ninth, in the first, second, fifth or sixth optical element, there is provided an optical element characterized in that the organic dye layer is made of a thermochromic material and a change in absorbance is used. You. Tenthly, in the first, second, fifth or sixth optical element, there is provided an optical element characterized in that the organic dye layer is made of a photochromic material and the change in absorbance is used. Eleventh, the first, second, fifth or sixth optical element, wherein the organic dye layer is made of an associative dye, an optical element characterized by utilizing a change in absorbance due to a change in the association state Provided. Twelfth, in the first, second, fifth or sixth optical element, the organic dye layer comprises a dye and a polymer material,
An optical element characterized by utilizing a change in absorbance due to a change in the dispersion state is provided.

【0012】第十三に、上記第三、第四、第七又は第八
の光制御方法において、有機色素層に制御光と異なる光
照射条件で光照射することにより光学素子を初期状態に
もどすことを特徴とする光学素子の光制御方法が提供さ
れる。第十四に、上記第三、第四、第七又は第八の光制
御方法において、有機色素層に制御光と異なる加熱条件
で加熱処理することにより光学素子を初期状態にもどす
ことを特徴とする光学素子の光制御方法が提供される。
Thirteenth, in the third, fourth, seventh or eighth light control method, the optical element is returned to the initial state by irradiating the organic dye layer with light under different light irradiation conditions than the control light. A light control method for an optical element is provided. Fourteenth, in the third, fourth, seventh or eighth light control method, the optical element is returned to the initial state by performing a heat treatment on the organic dye layer under heating conditions different from the control light. A light control method for an optical element is provided.

【0013】本発明によれば、低密度光パワーで大きな
光応答(透過率変化、反射率変化、光方向変化)を示す
光学素子および光制御方法を提供することができる。こ
の大きな光応答の最大の要因は光学定数を変化させる材
料として有機色素を用いたこと、さらには信号光として
有機色素の吸収スペクトル長波長端を用いたことに起因
し、その結果、従来にない大きな屈折率変化を生じせし
めたことにある。
According to the present invention, it is possible to provide an optical element and a light control method which exhibit a large optical response (change in transmittance, change in reflectance, change in light direction) with low-density optical power. The biggest factor of this large optical response is that the organic dye is used as a material to change the optical constant, and furthermore, the long wavelength end of the absorption spectrum of the organic dye is used as the signal light. It has caused a large change in the refractive index.

【0014】[0014]

【発明の実施の形態】以下本発明をさらに詳細に説明す
る。図1は反射率変化の光応答を示す光学素子構造であ
って、図1(A)は有機色素層側から光照射を行なうタ
イプのもの、図1(B)は基板側から光照射を行なうタ
イプのものである。また、図2は透過率変化、光方向変
化の光応答を示す光学素子構造であって、図2(A)は
有機色素層及び基板側から光照射を行なうタイプのも
の、図2(B)は基板側から光照射を行なうタイプのも
のである。これら図面において、1は基板、2は有機色
素層、3は反射層、4は誘導体層である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. 1A and 1B show an optical element structure showing a light response of a change in reflectance. FIG. 1A shows a structure in which light irradiation is performed from the organic dye layer side, and FIG. 1B shows a structure in which light irradiation is performed from the substrate side. Type. FIG. 2 shows an optical element structure showing a light response of a change in transmittance and a change in light direction. FIG. 2 (A) shows a structure in which light is irradiated from the organic dye layer and the substrate side, and FIG. Is of a type that irradiates light from the substrate side. In these drawings, 1 is a substrate, 2 is an organic dye layer, 3 is a reflective layer, and 4 is a derivative layer.

【0015】光学素子の光制御方法を図3で説明する。
なお、図3は図1(B)の構造を用いているが、図1
(A)の場合は有機色素層側から制御光の照射、信号光
の検出を行えば同様である。図3(A)は制御光を基板
から照射し、信号光の反射率変化として検出する基本概
念図である。多造構造膜の反射率R、透過率T、吸収率
AはF.W.Spongによると、次のようにして求め
ることができる。なお、記録膜に入射する光エネルギー
を1とすると、その収支はT+A+R=1で与えられ
る。すなわち、反射、吸収、透過を計算するためのモデ
ル(図7)と表1に記載した数式が与えられる。
The light control method of the optical element will be described with reference to FIG.
Although FIG. 3 uses the structure of FIG. 1B, FIG.
In the case of (A), the same applies if control light irradiation and signal light detection are performed from the organic dye layer side. FIG. 3A is a basic conceptual diagram in which control light is emitted from a substrate and detected as a change in the reflectance of signal light. The reflectivity R, transmittance T, and absorptance A of the multi-layer structure film are shown in F. W. According to Spong, it can be obtained as follows. When the light energy incident on the recording film is 1, the balance is given by T + A + R = 1. That is, a model (FIG. 7) for calculating the reflection, absorption, and transmission and the mathematical expressions shown in Table 1 are given.

【0016】[0016]

【表1】 [Table 1]

【0017】本発明の反射率変化の光応答を示す光学素
子は有機色素層と反射層の積層からなり、制御光が未照
射時に信号光が高反射率が得られるように有機色素層、
反射層、基板の光学定数から上記計算を用い各膜厚を設
定する(図3(B))。その光制御方法は、制御光を照
射し有機色素膜の吸収スペクトルを変化させることに伴
う屈折率変化で反射光強度変化を生じさせること(図3
(C))を特徴とする。この構成の光学素子では制御光
が未照射の時、信号光に対し高い反射率を得ることが好
ましく、有機色素膜の信号光波長に対する消衰係数が小
さいこと(多重反射条件)が好ましい。また、大きな反
射率変化を得るためには、制御光により吸収スペクトル
が変化し、それに伴う屈折率変化が大きいことが好まし
い。有機色素はその光吸収に伴う大きな電子分極が生じ
高い屈折率を得ることができる。特徴的なことはその波
長依存性にあり、Kramers−Kronigの関係
式から吸収スペクトルの長波長端で最大の屈折率とな
る。このことは上記光学素子にとって好ましい特性とな
っている。
The optical element according to the present invention, which exhibits a light response of a change in reflectance, comprises a laminate of an organic dye layer and a reflective layer, and has an organic dye layer so that signal light has a high reflectance when control light is not irradiated.
Each film thickness is set using the above calculation from the optical constants of the reflective layer and the substrate (FIG. 3B). In the light control method, a reflected light intensity change is caused by a change in refractive index accompanying irradiation of control light to change an absorption spectrum of the organic dye film (FIG. 3).
(C)). In the optical element having this configuration, when the control light is not irradiated, it is preferable to obtain a high reflectance for the signal light, and it is preferable that the extinction coefficient of the organic dye film with respect to the signal light wavelength is small (multiple reflection condition). In order to obtain a large change in reflectance, it is preferable that the absorption spectrum is changed by the control light and the change in refractive index accompanying the change is large. Organic dyes generate large electron polarization due to their light absorption, and can obtain a high refractive index. What is characteristic is its wavelength dependence, and the maximum refractive index at the long wavelength end of the absorption spectrum is obtained from the Kramers-Kronig relational expression. This is a favorable characteristic for the optical element.

【0018】つまり、信号光の波長をこの吸収スペクト
ルの長波長端に設定することにより、消衰係数が小さく
高い反射率(多重反射条件)が得られ、高い屈折率初期
状態のため制御光の照射による吸収スペクトル変化に伴
い大きな屈折率変化を得ることが可能となる(図5に有
機色素の吸収スペクトルと制御光と信号光の波長の関係
を示す。)。
That is, by setting the wavelength of the signal light at the long wavelength end of the absorption spectrum, a high extinction coefficient and a high reflectance (multiple reflection condition) are obtained. A large change in the refractive index can be obtained with a change in the absorption spectrum due to irradiation (FIG. 5 shows the relationship between the absorption spectrum of the organic dye and the wavelengths of the control light and the signal light).

【0019】図6は有機色素としてスピロピラン誘導体
(膜厚900Å)を用い、制御光として640nm波長
光の照射前後の吸収スペクトル変化及びその屈折率変化
を示す。ここで、実線は吸光度、破線は屈折率を表わし
ている。制御光未照射時に信号光波長で高い屈折率が得
られ、制御光照射後に屈折率が低下することが示されて
いる。この有機色素膜を基板(例えば石英板)と反射層
(例えば金属)中に介在させることにより、信号光とし
て780nmの波長光でこの屈折率差が上記計算に従い
信号光の反射率変化として検出される。制御光は、原理
的には有機色素が吸収スペクトル変化を起こす波長域で
あれば使用することが可能であるが最大吸収波長域が最
も好ましい。この吸収スペクトル変化は制御光とは異な
る光照射条件(波長、照射徐冷条件等)又は加熱条件に
より元に戻すことができ、可逆の光制御が可能となる。
FIG. 6 shows a change in the absorption spectrum and a change in the refractive index thereof before and after irradiation with light having a wavelength of 640 nm as control light using a spiropyran derivative (film thickness 900 °) as an organic dye. Here, the solid line represents the absorbance, and the dashed line represents the refractive index. It shows that a high refractive index is obtained at the signal light wavelength when the control light is not irradiated, and the refractive index decreases after the control light is irradiated. By interposing this organic dye film between a substrate (for example, a quartz plate) and a reflective layer (for example, a metal), this refractive index difference is detected as a change in the reflectance of the signal light in accordance with the above calculation with the light having a wavelength of 780 nm as the signal light. You. The control light can be used in principle in a wavelength range where the organic dye causes an absorption spectrum change, but the maximum absorption wavelength range is most preferable. This change in the absorption spectrum can be restored under light irradiation conditions (wavelength, irradiation slow cooling conditions, etc.) or heating conditions different from the control light, and reversible light control becomes possible.

【0020】また、本発明の透過率変化、光方向変化の
光応答を示す光学素子の光制御方法を図4で説明する。
ここで、図4は図2(A)の構造を用いているが、図2
(B)の場合も全く同様である。図4(A)は制御光を
基板から照射し、信号光の透過率変化及び光方向変化と
して検出する基本概念図である。本発明のこのタイプの
光学素子は有機色素層と誘電層の積層からなり、制御光
が未照射時に信号光が低透過率が得られるように有機色
素層、反射層、基板の光学定数から上記計算を用い各膜
厚を設定する(図4(B))。その光制御方法は、制御
光を照射し有機色素膜の吸収スペクトルを変化させるこ
とに伴う屈折率変化で透過光強度変化を生じさせること
(図4(C))、または全反射条件とし光方向変化を生
じさせること(図4(D))を特徴とする。この構成の
光学素子では制御光が未照射の時、信号光に対し高い反
射率を得ることが好ましく、有機色素膜の信号光波長に
対する消衰係数が小さいことが好ましい。
FIG. 4 shows a light control method for an optical element showing the optical response of a change in transmittance and a change in light direction according to the present invention.
Here, FIG. 4 uses the structure of FIG.
The case of (B) is completely the same. FIG. 4A is a basic conceptual diagram in which the control light is emitted from the substrate and detected as a change in the transmittance of the signal light and a change in the light direction. The optical element of this type of the present invention is composed of a laminate of an organic dye layer and a dielectric layer, and the organic dye layer, the reflective layer, and the optical constant of the substrate are adjusted so that the signal light has a low transmittance when the control light is not irradiated. Each film thickness is set using the calculation (FIG. 4B). The light control method involves irradiating control light to change the absorption spectrum of the organic dye film to cause a change in the transmitted light intensity due to a change in the refractive index (FIG. 4C), or a total reflection condition and a light direction. It is characterized by causing a change (FIG. 4D). In the optical element having this configuration, when the control light is not irradiated, it is preferable to obtain a high reflectance with respect to the signal light, and it is preferable that the organic dye film has a small extinction coefficient with respect to the signal light wavelength.

【0021】また、大きな透過率変化及び全反射条件を
得るためには、1)同様な制御光により吸収スペクトル
が変化し、それに伴う屈折率変化が大きいことが好まし
い。従って同様な吸収スペクトルと制御光、信号光の関
係となる。基板(例えば石英板)上に設けられた誘導体
層(例えばポリカーボネート樹脂)の上に更に図6の有
機色素膜を設けることにより、制御光として640n
m、信号光として780nmとしてその屈折率差が上記
計算に従い信号光の屈折率変化及び光方向変化(全反射
条件)として検出される。全反射条件として光方向を変
化させる光制御法においては、制御光が照射後に信号光
が全反射条件となるように有機色素層、反射層、基板の
光学定数から上記計算を用い各膜厚を設定するのが好ま
しい。
In order to obtain a large change in transmittance and a condition of total reflection, it is preferable that 1) the absorption spectrum is changed by the same control light, and the change in refractive index accompanying the change is large. Accordingly, a similar relationship between the absorption spectrum, the control light, and the signal light is obtained. By further providing the organic dye film of FIG. 6 on a derivative layer (for example, a polycarbonate resin) provided on a substrate (for example, a quartz plate), 640 n of control light is provided.
Assuming that m is 780 nm as the signal light, the refractive index difference is detected as a change in the refractive index and a change in the light direction (total reflection condition) of the signal light according to the above calculation. In the light control method in which the light direction is changed as the total reflection condition, each film thickness is calculated from the optical constants of the organic dye layer, the reflection layer, and the substrate so that the signal light becomes the total reflection condition after irradiation with the control light. It is preferable to set.

【0022】本発明の光学素子の構成としては、既述の
とおり、図1に示す反射率変化の光応答を得る構造及び
図2に示す屈折率変化、光方向変化の光応答を得る構造
としても良い。必要に応じ保護層、補強層を設けても良
い。
As described above, the structure of the optical element of the present invention includes a structure for obtaining an optical response of a change in reflectance shown in FIG. 1 and a structure for obtaining an optical response of a change in refractive index and light direction shown in FIG. Is also good. If necessary, a protective layer and a reinforcing layer may be provided.

【0023】基板としては基板側より制御光照射、信号
工検出を行なう場合のみ制御光、信号光に対して透明で
なければならず、基板と相対する方向から制御光照射、
信号工検出を行なう場合基板は透明である必要はない。
基板材料としては例えば、ポリエステル、アクリル樹
脂、ポリアミド、ポリカーボネート樹脂、ポリオレフィ
ン樹脂、フェノール樹脂、エポキシ樹脂、ポリイミドな
どのプラスチック、又は、ガラス、セラミックあるい
は、金属などを用いることができる。
The substrate must be transparent to control light and signal light only when control light irradiation and signal processing detection are performed from the substrate side.
The substrate need not be transparent when performing signal detection.
As the substrate material, for example, plastic such as polyester, acrylic resin, polyamide, polycarbonate resin, polyolefin resin, phenol resin, epoxy resin, and polyimide, glass, ceramic, or metal can be used.

【0024】有機色素層(記録層)に必要な特性として
は、信号光波長の分光特性が制御光の照射による影響
(光、熱)により変化すること、更には屈折率が変化す
ることが必要である。更に可逆的な光応答を得る光制御
方法では、他の光照射条件または加熱条件により初期状
態(分光特性、屈折率)へ戻ることが必要である。それ
に適した材料系として以下のものが挙げられる。 (1)フォトクロミズム材料:光による光学特性変化を
利用するもの。 (2)サーモクロミズム材料:熱による光学特性変化を
利用するもの。 (3)会合性色素:色素の会合状態変化による光学特性
変化を利用するもの。 (4)色素/高分子複合材料:色素の分散状態変化によ
る光学特性変化を利用するもの。
The characteristics required for the organic dye layer (recording layer) include that the spectral characteristics of the signal light wavelength change due to the influence (light and heat) of the control light irradiation, and that the refractive index also changes. It is. In the light control method for obtaining a more reversible light response, it is necessary to return to the initial state (spectral characteristics, refractive index) under other light irradiation conditions or heating conditions. The following are suitable material systems. (1) Photochromic material: A material that utilizes a change in optical characteristics due to light. (2) Thermochromic material: A material that utilizes a change in optical properties due to heat. (3) Associative dye: A dye that utilizes a change in optical properties due to a change in the association state of the dye. (4) Dye / polymer composite material: A material utilizing a change in optical properties due to a change in the dispersion state of the dye.

【0025】これらの材料の具体例には、前記(1)と
しては光異性化反応、光開還又は閉還反応、光解離反
応、光酸化還元反応を利用したフォトクロミズム材料、
例えばスピロピラン誘導体、アゾベンゼン誘導体、フル
ギド誘導体、ジアリルエテン誘導体、スピロオキサジン
誘導体等が利用でき、前記(2)としては液晶、導電性
高分子、酸化還元反応を利用したサーモクロミズム材
料、例えば示温性インキ等が利用でき、前記(3)とし
てはアザアヌレン色素、シアニン色素、ペリレン色素、
フェナジン色素、フェノチアジン色素等が利用でき、前
記(4)としては色素と高分子材料との相溶性が熱又は
光により変化する複合系、例えば前記(3)の色素とア
クリル樹脂等の高分子材料が利用できる。
Specific examples of these materials include (1) photochromic materials utilizing photoisomerization reaction, photoreduction or closure reaction, photodissociation reaction, photooxidation-reduction reaction,
For example, spiropyran derivatives, azobenzene derivatives, fulgide derivatives, diallylethene derivatives, spirooxazine derivatives and the like can be used. As the above (2), liquid crystals, conductive polymers, thermochromic materials utilizing a redox reaction, such as thermochromic inks, etc. As the above (3), azaannulene dye, cyanine dye, perylene dye,
Phenazine dyes, phenothiazine dyes, and the like can be used. As (4), a complex system in which the compatibility between the dye and the polymer material is changed by heat or light, for example, the dye material of (3) and a polymer material such as an acrylic resin Is available.

【0026】高分子材料としては、例えばアクリル樹
脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリエ
ーテル樹脂、スチレン樹脂、ブチラール樹脂、ポリエー
テルサルフォン樹脂、ウレタン樹脂、ポリサルフォン樹
脂、ブタジエン樹脂、ポリアセタール樹脂、アイオノマ
ー樹脂、ポリアミド樹脂、ビニル系樹脂、天然高分子、
シリコーン、液状ゴム等の重合体及び共重合体が挙げら
れる。
Examples of the polymer material include acrylic resin, polycarbonate resin, polyester resin, polyether resin, styrene resin, butyral resin, polyether sulfone resin, urethane resin, polysulfone resin, butadiene resin, polyacetal resin, ionomer resin, Polyamide resin, vinyl resin, natural polymer,
Examples include polymers and copolymers such as silicone and liquid rubber.

【0027】記録層には光学特性、記録感度、信号特性
などの向上の目的で他の有機色素及び金属、金属化合物
と混合又は積層化して用いても良い。有機色素として
は、ポリメチレン色素、ナフタロシアニン系、フタロシ
アニン系、スクアリリウム系、クロコニウム系、ピリリ
ウム系、ナフトキノン系、アントラキノン系(インダン
スレン系)、キサンテン系、トリフェニルメタン系、ア
ズレン系、テトラヒドロコリン系、フェナンスレン系、
トリフェノチアジン系染料、及び金属錯体化合物などが
挙げられる。
The recording layer may be mixed or laminated with other organic dyes, metals and metal compounds for the purpose of improving optical characteristics, recording sensitivity, signal characteristics and the like. Organic dyes include polymethylene dyes, naphthalocyanine, phthalocyanine, squarylium, croconium, pyrylium, naphthoquinone, anthraquinone (indanthrene), xanthene, triphenylmethane, azulene, and tetrahydrocholine. , Phenanthrene,
Examples include a triphenothiazine dye and a metal complex compound.

【0028】また記録層には、更には特性改良の目的で
この技術分野で通常用いられる安定剤(例えば遷移金属
錯体)、分散剤、難燃剤、滑剤、帯電防止剤、界面活性
剤、可塑剤などを一緒に用いることができる。
The recording layer may further contain a stabilizer (eg, a transition metal complex), a dispersant, a flame retardant, a lubricant, an antistatic agent, a surfactant, a plasticizer which are commonly used in this technical field for the purpose of improving properties. Etc. can be used together.

【0029】記録層の形成方法としては蒸着、スパッタ
リング、CVDまたは溶剤塗布などの通常の手段によっ
て行うことができる。塗布法を用いる場合には上記染料
などを有機溶剤に溶解して、スプレー、ローラーコーテ
ィング、ディビング、スピンコーティングなどの慣用の
コーティング法によって行うことができる。用いられる
有機溶媒としては一般にメタノール、エタノール、イソ
プロパノール類等のアルコール類、アセトン、メチルエ
チルケトン、シクロヘキサノン等のケトン類、N,N−
ジメチルホルムアミド、N,N−ジメチルアセトアミド
等のアミド類、ジメチルスルホキシド等のスルホキシド
類、テトラヒドロフラン、ジオキサン、ジエチルエーテ
ル、エチレングリコールモノメチルエーテル等のエーテ
ル類、酢酸メチル、酢酸エチル等のエステル類、クロロ
ホルム、塩化メチレン、ジクロロエタン、四塩化炭素、
トリクロロエタン等の脂肪族ハロゲン化炭化水素類、ベ
ンゼン、キシレン、モノクロロベンゼン、ジクロロベン
ゼン等の芳香族類、メトキシエタノール、エトキシエタ
ノール等のセロソルブ類、ヘキサン、ペンタン、シクロ
ヘキサン、メチルシクロヘキサン等の炭化水素類等が挙
げられる。記録層の膜厚は100Å〜1μm、好ましく
は200Å〜2000Åが適当である。
The recording layer can be formed by ordinary means such as vapor deposition, sputtering, CVD or solvent coating. When the coating method is used, the above-mentioned dye or the like can be dissolved in an organic solvent, and the coating can be performed by a conventional coating method such as spraying, roller coating, diving, and spin coating. As the organic solvent to be used, generally, alcohols such as methanol, ethanol and isopropanol, ketones such as acetone, methyl ethyl ketone and cyclohexanone, and N, N-
Amides such as dimethylformamide and N, N-dimethylacetamide; sulfoxides such as dimethylsulfoxide; ethers such as tetrahydrofuran, dioxane, diethyl ether and ethylene glycol monomethyl ether; esters such as methyl acetate and ethyl acetate; chloroform; Methylene, dichloroethane, carbon tetrachloride,
Aliphatic halogenated hydrocarbons such as trichloroethane, aromatics such as benzene, xylene, monochlorobenzene and dichlorobenzene, cellosolves such as methoxyethanol and ethoxyethanol, and hydrocarbons such as hexane, pentane, cyclohexane, methylcyclohexane, etc. Is mentioned. The film thickness of the recording layer is 100 to 1 μm, preferably 200 to 2000 °.

【0030】反射層材料としては、高反射率が得られる
腐食されにくい金属、半金属、有機色素等が挙げられ、
金属材料例としてはAu、Ag、Cr、Ni、Al、F
e、Sn等が挙げられるが、反射率、生産性の点からA
u、Ag、Alが最も好ましく、これらの金属、半金属
は単独で使用しても良く、2種の合金としても良い。膜
形成法としては蒸着、スパッタリングなどが挙げられ、
膜厚としては50〜5000Å、好ましくは100〜3
000Åである。色素例として有機色素層の材料例に示
された材料が使用でき、膜形成法及び膜厚も同様であ
る。
Examples of the material for the reflective layer include metals, semimetals, organic dyes, etc., which are hardly corroded and provide high reflectivity.
Examples of metal materials include Au, Ag, Cr, Ni, Al, and F.
e, Sn and the like.
u, Ag, and Al are most preferred. These metals and metalloids may be used alone or as two kinds of alloys. Examples of the film forming method include vapor deposition and sputtering.
The film thickness is 50-5000 °, preferably 100-3.
000. As the dye, the materials described in the material examples of the organic dye layer can be used, and the film forming method and the film thickness are also the same.

【0031】誘電体材料としては、制御光、信号光に対
して透明であればよく、有機材料及び無機材料が使用で
きる。有機材料例としては、前記高分子材料等が挙げら
れ、更には光学定数を制御するため低分子有機材料を混
合分散させてもよく、無機材料例としては、フッ化マグ
ネシウム、フッ化カルシウム等のハロゲン化アルカリ土
類化合物、ハロゲン化アルカリ金属化合物、一酸化珪
素、二酸化珪素等の半金属、金属酸化物等が挙げられ
る。
As the dielectric material, any material may be used as long as it is transparent to control light and signal light, and organic materials and inorganic materials can be used. Examples of the organic material include the above-mentioned polymer materials, and further, a low-molecular-weight organic material may be mixed and dispersed in order to control the optical constant, and examples of the inorganic material include magnesium fluoride and calcium fluoride. Examples thereof include alkali earth halide compounds, alkali metal halide compounds, semimetals such as silicon monoxide and silicon dioxide, and metal oxides.

【0032】保護層及び基板面ハードコート層は記録
層(反射吸収層)を傷、ホコリ、汚れ等から保護する、
記録層(反射吸収層)の保存安定性の向上、反射率
の向上、等を目的として使用される。これらの目的に対
しては、下記の下引き層に示した材料を用いることがで
きる。下引き層には無機又は有機材料が使用できる。無
機材料としては、一酸化珪素、二酸化珪素等も用いるこ
とができ、有機材料としてポリメチルアクリレート樹
脂、ポリカーボネート樹脂、エポキシ樹脂、ポリスチレ
ン樹脂、ポリエステル樹脂、ビニル樹脂、セルロース、
脂肪族炭化水素樹脂、天然ゴム、スチレンブタジエン樹
脂、クロロプレンゴム、ワックス、アルキッド樹脂、乾
性油、ロジン等の熱軟化性、熱溶融性樹脂も用いること
ができる。上記材料のうち最も好ましい例としては生産
性に優れた紫外線硬化樹脂である。保護層又は基板面ハ
ードコート層の膜厚は0.01〜30μm、好ましくは
0.05〜10μmが適当である。本発明において、前
記下引き層、保護層、及び、基板面ハードコート層には
記録層の場合と同様に、安定剤、分散剤、難燃剤、滑
剤、帯電防止剤、界面活性剤、可塑剤等を含有させるこ
とができる。
The protective layer and the hard coat layer on the substrate surface protect the recording layer (reflection / absorption layer) from scratches, dust, dirt, etc.
It is used for the purpose of improving the storage stability of the recording layer (reflection / absorption layer), improving the reflectance, and the like. For these purposes, the following materials for the undercoat layer can be used. An inorganic or organic material can be used for the undercoat layer. As the inorganic material, silicon monoxide, silicon dioxide and the like can also be used, and as the organic material, polymethyl acrylate resin, polycarbonate resin, epoxy resin, polystyrene resin, polyester resin, vinyl resin, cellulose,
Thermosoftening and heat melting resins such as aliphatic hydrocarbon resins, natural rubber, styrene butadiene resin, chloroprene rubber, wax, alkyd resin, drying oil, and rosin can also be used. The most preferable example of the above materials is an ultraviolet curable resin having excellent productivity. The thickness of the protective layer or the hard coat layer on the substrate surface is suitably 0.01 to 30 μm, preferably 0.05 to 10 μm. In the present invention, the undercoat layer, the protective layer, and the substrate-side hard coat layer have a stabilizer, a dispersant, a flame retardant, a lubricant, an antistatic agent, a surfactant, and a plasticizer as in the case of the recording layer. Etc. can be contained.

【0033】[0033]

【実施例】次に実施例を挙げて本発明をより具体的に説
明する。
Next, the present invention will be described more specifically with reference to examples.

【0034】実施例1 厚さ1.0mmの石英板上に、下記構造式(I)のベン
ゾピラン化合物のクロロホルム溶液をスピンナー塗布し
膜厚1500Åの有機色素層を形成し、次いで、スパッ
タ法により金1500Åの反射層を設け、更にその上に
アクリル系フォトポリマーにて5μmの保護層を設け、
光学素子とした。波長780nmにおけるその垂直方向
の反射率は71%であった。この光学素子に波長620
nmの光をその吸収スペクトルが充分変化する程照射
し、その後同様に波長780nmにおけるその垂直方向
の反射率を測定したところ49%であった。更にこの光
学素子を波長330nmの光の照射、又は120℃の加
熱の後、再度波長780nmにおけるその垂直方向の反
射率を測定したところ69%であった。このことによ
り、制御光として波長620nm(信号の入力)、波長
330nm(信号の消去)を、信号光として780(信
号の入力)を用いることにより大きな光応答(反射率変
化)が得られるフォトクロミイズム有機色素層を用いた
光学素子及びその光制御法であることが確認できた。
Example 1 A chloroform solution of a benzopyran compound of the following structural formula (I) was spin-coated on a 1.0 mm-thick quartz plate to form an organic dye layer having a thickness of 1500 °, and then formed by sputtering. A reflective layer of 1500 ° is provided, and a protective layer of 5 μm is further provided thereon with an acrylic photopolymer,
It was an optical element. Its vertical reflectance at a wavelength of 780 nm was 71%. This optical element has a wavelength of 620
Irradiation was performed so that the absorption spectrum was sufficiently changed, and then the reflectance in the vertical direction at a wavelength of 780 nm was measured in the same manner to be 49%. Further, after this optical element was irradiated with light having a wavelength of 330 nm or heated at 120 ° C., the reflectance in the vertical direction at a wavelength of 780 nm was measured again and found to be 69%. As a result, by using a wavelength of 620 nm (input of a signal) and a wavelength of 330 nm (input of a signal) as control light and a wavelength of 780 (input of a signal) as signal light, a large optical response (change in reflectance) can be obtained. It was confirmed that the method was an optical element using an organic dye layer and a light control method thereof.

【化1】 Embedded image

【0035】実施例2 厚さ1.0mmの石英板上に、下記構造式(II)のフタ
ロシアニン化合物とPoly(Sodium4−sty
rensulfonate)(重量比1/1)の混合物
のクロロホルム溶液をスピンナー塗布し膜厚1400Å
の有機色素層を形成し、次いで、スパッタ法により金1
500Åの反射層を設け、更にその上にアクリル系フォ
トポリマーにて5μmの保護層を設け、光学素子とし
た。波長790nmにおけるその垂直方向の反射率は6
8%であった。この光学素子に波長680nmの光をそ
の吸収スペクトルが充分変化する程照射し、その後同様
に波長790nmにおけるその垂直方向の反射率を測定
したところ50%であった。更にこの光学素子を波長7
70nmの光の照射、又は150℃の加熱の後、再度波
長790nmにおけるその垂直方向の反射率を測定した
ところ67%であった。このことにより制御光として波
長680nm(信号の入力)、波長740nm(信号の
消去)を、信号光として790(信号の入力)を用いる
ことにより大きな光応答(反射率変化)が得られる色素
と高分子材料からなり、その分散状態変化による吸光度
変化を利用する有機色素層を用いた光学素子及びその光
制御法であることが確認できた。
Example 2 A phthalocyanine compound of the following structural formula (II) and Poly (Sodium 4-sty) were placed on a quartz plate having a thickness of 1.0 mm.
A chloroform solution of a mixture of rensulfonate (weight ratio 1/1) was applied by spinner coating to a film thickness of 1400Å.
Is formed, and then gold 1 is formed by sputtering.
An optical element was formed by providing a reflective layer having a thickness of 500 ° and further providing a protective layer of 5 μm using an acrylic photopolymer thereon. Its vertical reflectance at a wavelength of 790 nm is 6
8%. The optical element was irradiated with light having a wavelength of 680 nm so that its absorption spectrum was sufficiently changed, and then the reflectance in the vertical direction at a wavelength of 790 nm was measured. Further, this optical element is set to a wavelength of 7
After irradiation with light of 70 nm or heating at 150 ° C., the reflectance in the vertical direction at a wavelength of 790 nm was measured again and found to be 67%. Accordingly, a dye having a large optical response (change in reflectance) can be obtained by using a wavelength of 680 nm (signal input) and a wavelength of 740 nm (signal erase) as control light and a wavelength of 790 (signal input) as signal light. It was confirmed that the optical element was made of a molecular material and used an organic dye layer utilizing the change in absorbance due to the change in the dispersion state, and the light control method thereof.

【化2】 Embedded image

【0036】実施例3 厚さ1.0mmの石英板上に、ポリカーボネート樹脂の
クロロホルム溶液をスピンナー塗布し膜厚1μmの誘電
体層を設け、更にその上に下記構造式(III)のベンゾ
チオピラン化合物の1,1,2−トリフルオロアルコー
ル溶液をスピンナー塗布し膜厚900Åの有機色素層を
形成し、光学素子とした。波長830nmにおけるその
垂直方向の透過率は55%であった。この光学素子に波
長680nmの光をその吸収スペクトルが充分変化する
程照射し、その後同様に波長830nmにおけるその垂
直方向の反射率を測定したところ87%であった。更に
この光学素子を波長420nmの光の照射、又は120
℃の加熱の後、再度波長830nmにおけるその垂直方
向の反射率を測定したところ58%であった。このこと
により、制御光として波長680nm(信号の入力)、
波長420nm(信号の消去)を、信号光として830
(信号の入力)を用いることにより大きな光応答(反射
率変化)が得られる色素と高分子材料からなり、その分
散状態変化による吸光度変化を利用する有機色素層を用
いた光学素子及びその光制御法であることが確認でき
た。
Example 3 A 1 μm-thick dielectric layer was formed by spin-coating a chloroform solution of a polycarbonate resin on a 1.0 mm-thick quartz plate, and a benzothiopyran compound of the following structural formula (III) was further formed thereon. A 1,1,2-trifluoro alcohol solution was applied by spinner to form an organic dye layer having a thickness of 900 °, thereby obtaining an optical element. Its vertical transmittance at a wavelength of 830 nm was 55%. The optical element was irradiated with light having a wavelength of 680 nm so that its absorption spectrum was sufficiently changed, and then the reflectance in the vertical direction at a wavelength of 830 nm was measured to be 87%. Further, the optical element is irradiated with light having a wavelength of 420 nm, or
After heating at ° C., the reflectance in the vertical direction at a wavelength of 830 nm was measured again and found to be 58%. Thus, the wavelength of the control light is 680 nm (signal input),
A wavelength of 420 nm (signal erasure) is set to 830 as signal light.
An optical element using an organic dye layer made of a dye and a polymer material that can provide a large optical response (change in reflectance) by using (signal input) and utilizing the change in absorbance due to the change in the dispersion state, and its light control It was confirmed that it was a law.

【化3】 Embedded image

【0037】実施例4 厚さ1.0mmの石英板上に、実施例3と同じ構造式
(IV)のベンゾチオピラン化合物の1,1,2−トリフ
ルオロアルコール溶液をスピンナー塗布し膜厚900Å
の有機色素層を形成し、更にその上に石油樹脂のヘキサ
ン溶液をスピンナー塗布し膜厚1μmの誘電体層を設
け、光学素子とした。波長830nmにおける入射角4
0度方向の反射率は6%、透過率は90%以上であっ
た。波長680nmの光をその吸収スペクトルが充分変
化する程照射後、同様に波長830nmにおける入射角
40度方向に反射率を測定したところ80%以上で、全
反射条件となり光方向を変化させることができた。同様
に波長420nmの光の照射、又は120℃の加熱の
後、再度波長830nmにおけるその斜め45度方向の
反射を測定したところ13%であった。このことによ
り、制御光として波長680nm(信号の入力)、波長
420nm(信号の消去)を、信号光として830nm
(信号の入力)を用いることにより大きな光応答(光方
向変化)が得られるフォトクロミイズム有機色素層を用
いた光学素子及びその光制御法であることが確認でき
た。
Example 4 A 1,1,2-trifluoroalcohol solution of a benzothiopyran compound of the same structural formula (IV) as in Example 3 was spin-coated on a 1.0 mm-thick quartz plate by spinner coating.
An organic dye layer was formed, and a hexane solution of a petroleum resin was spin-coated thereon to form a 1 μm-thick dielectric layer, thereby forming an optical element. Incident angle 4 at wavelength 830 nm
The reflectance in the 0-degree direction was 6%, and the transmittance was 90% or more. After irradiating light having a wavelength of 680 nm to such an extent that its absorption spectrum is sufficiently changed, the reflectivity was similarly measured in the direction of an incident angle of 40 degrees at a wavelength of 830 nm. Was. Similarly, after irradiation with light having a wavelength of 420 nm or heating at 120 ° C., the reflection in the oblique 45 ° direction at a wavelength of 830 nm was measured again and found to be 13%. As a result, a wavelength of 680 nm (input of a signal) and a wavelength of 420 nm (erasing of a signal) are used as control light and 830 nm as a signal light.
It was confirmed that an optical element using a photochromic organic dye layer capable of obtaining a large optical response (light direction change) by using (signal input) and a light control method thereof.

【0038】[0038]

【発明の効果】請求項1の発明によれば、大きな光応答
(反射率変化)を示す光学素子としての基本構造及び材
料構成が提供できる。請求項2の発明によれば、最も大
きな光応答を得る光学素子の最適構成条件が提供でき
る。請求項3の発明によれば、上記光学素子を用い、大
きな光応答を得る光制御方法が得られる。請求項4の発
明によれば、最も大きな光応答を得る光制御方法の最適
構成/制御方法が可能となる。請求項5の発明によれ
ば、他の大きな光応答(透過率変化、光方向変化)を示
す光学素子としての基本構造及び材料構成が提供でき
る。請求項6の発明によれば、最も大きな光応答を得る
光学素子の最適構成条件が提供できる。請求項7の発明
によれば、この光学素子を用い、大きな光応答を得る光
制御方法が提供できる。請求項8の発明によれば、最も
大きな光応答を得る光制御方法の最適構成/制御方法が
可能である。請求項9、10、11、12の発明によれ
ば、光学素子としての最適構成材料で、より大きな光応
答を示す光学素子が提供できる。請求項13、14の発
明によれば、可逆的な光応答が可能である。
According to the first aspect of the present invention, it is possible to provide a basic structure and a material configuration as an optical element exhibiting a large optical response (change in reflectance). According to the second aspect of the present invention, it is possible to provide the optimum configuration condition of the optical element that obtains the largest optical response. According to the third aspect of the present invention, a light control method that obtains a large light response by using the optical element can be obtained. According to the fourth aspect of the present invention, an optimal configuration / control method of a light control method for obtaining the largest light response is possible. According to the fifth aspect of the present invention, it is possible to provide a basic structure and a material configuration as an optical element exhibiting another large optical response (change in transmittance, change in light direction). According to the sixth aspect of the present invention, it is possible to provide the optimum configuration condition of the optical element that obtains the largest optical response. According to the seventh aspect of the present invention, it is possible to provide a light control method for obtaining a large light response by using this optical element. According to the invention of claim 8, an optimal configuration / control method of the light control method for obtaining the largest light response is possible. According to the ninth, tenth, eleventh, and twelfth aspects of the present invention, it is possible to provide an optical element exhibiting a larger optical response with an optimum constituent material for the optical element. According to the invention of claims 13 and 14, reversible optical response is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(A)は反射率変化の光応答を示す光学素
子構造を表わした図、図1(B)は反射率変化の光応答
を示す他の光学素子構造を表わした図。
FIG. 1A is a diagram showing an optical element structure showing an optical response of a change in reflectance, and FIG. 1B is a diagram showing another optical element structure showing an optical response of a change in reflectance.

【図2】図2(A)は透過率変化、光方向変化の光応答
を示す光学素子構造を表わした図、図2(B)は透過率
変化、光方向変化の光応答を示す他の光学素子構造を表
わした図。
FIG. 2A is a diagram showing an optical element structure showing a light response of a change in transmittance and light direction, and FIG. 2B is another diagram showing an optical response of a change in light transmittance and light direction. The figure showing the optical element structure.

【図3】図3(A)は反射率変化の光応答を示す光学素
子を用いた光制御方法を表わした図、図3(B)は制御
光を照射前の光学素子の信号光(反射率)強度を表わし
た図、図3(C)は制御光を照射後の光学素子の信号光
(反射率)強度を表わした図。
3A is a diagram showing a light control method using an optical element showing an optical response of a change in reflectance, and FIG. 3B is a diagram showing signal light (reflection) of an optical element before irradiation with control light; FIG. 3C is a diagram showing signal light (reflectance) intensity of the optical element after irradiation with control light.

【図4】図4(A)は透過率変化、光方向変化の光応答
を示す光学素子を用いた光制御方法を表わした図、図4
(B)は制御光を照射前の光学素子の信号光(透過率、
反射率)強度を表わした図、図4(C)は制御光を照射
後の光学素子の信号光(透過率、反射率)強度を表わし
た図、図4(D)は制御光を照射後の光学素子の信号光
(反射率)強度/光方向変化を表わした図。
FIG. 4A is a diagram showing a light control method using an optical element showing a light response of a change in transmittance and a change in a light direction;
(B) shows signal light (transmittance, optical signal) of the optical element before irradiation with control light.
FIG. 4C is a diagram showing signal light (transmittance, reflectance) intensity of the optical element after irradiation with control light, and FIG. 4D is a diagram showing intensity after control light irradiation. FIG. 5 is a diagram showing signal light (reflectance) intensity / light direction change of the optical element of FIG.

【図5】図5は有機色素の吸収スペクトルと制御光と信
号光と波長の関係を表わした図。
FIG. 5 is a diagram showing the relationship between the absorption spectrum of an organic dye, control light, signal light, and wavelength.

【図6】図6は制御光による有機色素の吸収スペクトル
変化及びその光学定数変化を表わした図。
FIG. 6 is a diagram showing a change in an absorption spectrum of an organic dye and a change in an optical constant thereof caused by control light.

【図7】図7は多層構造膜の反射率、透過率、吸収率を
計算するためのモデル図。
FIG. 7 is a model diagram for calculating the reflectance, the transmittance, and the absorptance of the multilayer structure film.

【符号の説明】[Explanation of symbols]

11 基板 22 有機色素層 33 反射層 44 誘電体層 11 Substrate 22 Organic dye layer 33 Reflective layer 44 Dielectric layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植野 泰伸 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 東 康弘 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasunobu Ueno 1-3-6 Nakamagome, Ota-ku, Tokyo Stock inside Ricoh Company (72) Inventor Yasuhiro Higashi 1-3-6 Nakamagome, Ota-ku, Tokyo Stock Inside the company Ricoh

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 特定の波長の光に感応し異なる波長の光
での屈折率を可逆的に変化させる有機色素層と、反射層
とを積層してなることを特徴とする光学素子。
1. An optical element comprising an organic dye layer which is sensitive to light of a specific wavelength and reversibly changes the refractive index of light of a different wavelength and a reflective layer.
【請求項2】 有機色素層の膜厚を信号光の波長におい
て最大反射率条件となるよう設定したことを特徴とする
請求項1記載の光学素子。
2. The optical element according to claim 1, wherein the thickness of the organic dye layer is set so as to satisfy the maximum reflectance condition at the wavelength of the signal light.
【請求項3】 請求項1又は2記載の光学素子が感応す
る波長の光を制御光とし、異なる波長の光を信号光とし
て、該制御光を該光学素子に照射し該信号光の反射率を
可逆的に変化させることを特徴とする光学素子の光制御
方法。
3. The reflectance of the signal light by irradiating the control light with light of a wavelength to which the optical element according to claim 1 is sensitive as control light and light of a different wavelength as signal light. A light control method for an optical element, characterized by reversibly changing.
【請求項4】 光学素子が感応する制御光の波長を有機
色素層の最大吸収波長とし、信号光の波長を有機色素層
の吸収スペクトル長波長端部で有機色素層の最大屈折率
を与える波長近傍とすることを特徴とする請求項3記載
の光学素子光制御方法。
4. The wavelength of the control light to which the optical element is sensitive is defined as the maximum absorption wavelength of the organic dye layer, and the wavelength of the signal light is the wavelength giving the maximum refractive index of the organic dye layer at the long wavelength end of the absorption spectrum of the organic dye layer. 4. The optical element light control method according to claim 3, wherein the optical element is located near the optical element.
【請求項5】 特定の波長の光に感応し異なる波長の光
での屈折率を可逆的に変化させる有機色素層と、誘電体
層とを積層してなることを特徴とする光学素子。
5. An optical element comprising an organic dye layer responsive to light of a specific wavelength and reversibly changing the refractive index of light of a different wavelength, and a dielectric layer.
【請求項6】 有機色素層の膜厚を信号光の波長におい
て最大透過率条件となるように設定したことを特徴とす
る請求項5記載の光学素子。
6. The optical element according to claim 5, wherein the thickness of the organic dye layer is set so as to satisfy a maximum transmittance condition at the wavelength of the signal light.
【請求項7】 請求項5又は6記載の光学素子が感応す
る波長の光を制御光とし、異なる波長の光を信号光とし
て、該制御光を該光学素子に照射し該信号光の透過率を
可逆的に変化させることを特徴とする光学素子の光制御
方法。
7. The optical element according to claim 5, wherein light having a wavelength sensitive to the optical element is used as control light, and light having a different wavelength is used as signal light, and the control light is irradiated on the optical element to transmit the signal light. A light control method for an optical element, characterized by reversibly changing.
【請求項8】 光学素子が感応する制御光の波長を有機
色素層の最大吸収波長とし、信号光の波長を有機色素層
の吸収スペクトル長波長端部で有機色素層の最大屈折率
を与える波長近傍とすることを特徴とする請求項7記載
の光学素子の光制御方法。
8. The wavelength of the control light to which the optical element is sensitive is defined as the maximum absorption wavelength of the organic dye layer, and the wavelength of the signal light is the wavelength that gives the maximum refractive index of the organic dye layer at the long wavelength end of the absorption spectrum of the organic dye layer. 8. The light control method for an optical element according to claim 7, wherein the distance is set near.
【請求項9】 請求項1、2、5又は6記載の光学素子
において、有機色素層がサーモクロミズム材料からな
り、その吸光度変化を利用することを特徴とする光学素
子。
9. The optical element according to claim 1, wherein the organic dye layer is made of a thermochromic material, and a change in absorbance is used.
【請求項10】 請求項1、2、5又は6記載の光学素
子において、有機色素層がフォトクロミズム材料からな
り、その吸光度変化を利用することを特徴とする光学素
子。
10. The optical element according to claim 1, wherein the organic dye layer is made of a photochromic material, and a change in absorbance is used.
【請求項11】 請求項1、2、5又は6記載の光学素
子において、有機色素層が会合性色素からなり、その会
合状態変化による吸光度変化を利用することを特徴とす
る光学素子。
11. The optical element according to claim 1, wherein the organic dye layer is made of an associative dye, and utilizes a change in absorbance due to a change in the association state.
【請求項12】 請求項1、2、5又は6記載の光学素
子において、有機色素層が色素と高分子材料からなり、
その分散状態変化による吸光度変化を利用することを特
徴とする光学素子。
12. The optical element according to claim 1, wherein the organic dye layer comprises a dye and a polymer material,
An optical element utilizing a change in absorbance due to a change in the dispersion state.
【請求項13】 請求項3、4、7又は8記載の光制御
方法において、有機色素層に制御光と異なる光照射条件
で光照射することにより光学素子を初期状態にもどすこ
とを特徴とする光学素子の光制御方法。
13. The light control method according to claim 3, wherein the optical element is returned to an initial state by irradiating the organic dye layer with light under different light irradiation conditions from the control light. Light control method for optical element.
【請求項14】 請求項3、4、7又は8記載の光制御
方法において、有機色素層に制御光と異なる加熱条件で
加熱処理することにより光学素子を初期状態にもどすこ
とを特徴とする光学素子の光制御方法。
14. The optical control method according to claim 3, wherein the optical element is returned to an initial state by subjecting the organic dye layer to a heat treatment under a heating condition different from that of the control light. Light control method of the element.
JP10030625A 1998-01-28 1998-01-28 Optical element and light control method therefor Pending JPH11212034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10030625A JPH11212034A (en) 1998-01-28 1998-01-28 Optical element and light control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10030625A JPH11212034A (en) 1998-01-28 1998-01-28 Optical element and light control method therefor

Publications (1)

Publication Number Publication Date
JPH11212034A true JPH11212034A (en) 1999-08-06

Family

ID=12309044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10030625A Pending JPH11212034A (en) 1998-01-28 1998-01-28 Optical element and light control method therefor

Country Status (1)

Country Link
JP (1) JPH11212034A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003817A (en) * 2004-06-21 2006-01-05 Ricoh Co Ltd Surface optical switch, and optical communication system using same
US7046320B2 (en) 2002-03-14 2006-05-16 Nitto Denko Corporation Optical element and surface light source device using the same, as well as liquid crystal display
JP2008076885A (en) * 2006-09-22 2008-04-03 National Institute For Materials Science Light transmission filter, image output device using the same and parallel analogue operational device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046320B2 (en) 2002-03-14 2006-05-16 Nitto Denko Corporation Optical element and surface light source device using the same, as well as liquid crystal display
JP2006003817A (en) * 2004-06-21 2006-01-05 Ricoh Co Ltd Surface optical switch, and optical communication system using same
JP4507715B2 (en) * 2004-06-21 2010-07-21 株式会社リコー Surface optical switch and optical communication system using the same
JP2008076885A (en) * 2006-09-22 2008-04-03 National Institute For Materials Science Light transmission filter, image output device using the same and parallel analogue operational device

Similar Documents

Publication Publication Date Title
CA1326710C (en) Optical information recording medium
Okamoto et al. All-optical spatial light modulator with surface plasmon resonance
JPH082107A (en) Optical recording medium
WO2002050210A1 (en) Light absorbing agent
Oba et al. Organic dye materials for optical recording media
US4696892A (en) Optical information recording medium
US7524589B2 (en) Holographic recording medium and recording method
US20060077870A1 (en) Optical recording medium
TW468180B (en) Optical recording medium
JPH11212034A (en) Optical element and light control method therefor
KR101080025B1 (en) Spatial optical modulation element and spatial optical modulation method
EP0868721B1 (en) Optical recording medium based on fabry-perot principle
Tomiyama et al. Rewritable optical-disk fabrication with an optical recording material made of naphthalocyanine and polythiophene
JP4024413B2 (en) Optical information recording medium
Tsujioka et al. Theoretical study of the recording density limit of a near-field photochromic memory
JP4065719B2 (en) Write-once optical recording medium and recording / reproducing method thereof
US20060077871A1 (en) Optical recording medium
JP2003050408A (en) Optical element and light control method
KR20000071791A (en) Cyanine Dyes
US5169744A (en) Infra-red laser beam sensitive recording material
US5215868A (en) Method for recording information via photo-recording medium
US20010008669A1 (en) Optical information recording medium
JPH05325265A (en) Optical information recording medium and its production
JPH11167744A (en) Optical information recording medium
Maruyama et al. Novel nondestructive readout methods for near-field optical recording with large refractive index modulation in amorphous diarylethene layer

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050225

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20050712