JPH11211925A - Optical waveguide - Google Patents

Optical waveguide

Info

Publication number
JPH11211925A
JPH11211925A JP1376798A JP1376798A JPH11211925A JP H11211925 A JPH11211925 A JP H11211925A JP 1376798 A JP1376798 A JP 1376798A JP 1376798 A JP1376798 A JP 1376798A JP H11211925 A JPH11211925 A JP H11211925A
Authority
JP
Japan
Prior art keywords
core
refractive index
optical waveguide
clad
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1376798A
Other languages
Japanese (ja)
Inventor
Ryoji Kako
良二 加来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP1376798A priority Critical patent/JPH11211925A/en
Publication of JPH11211925A publication Critical patent/JPH11211925A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To execute passive alignment with a laser chip by constituting an under clad which reduces not only a refractive index but also thickness rather than an over clad. SOLUTION: As an under clad 2, an SiO2 thin film is formed on the surface of a silicon substrate 1, for example, by thermal diffusion. The refractive index of the SiO2 thin film is about 1.46, for example, and since the difference of the refractive index from a core 3 is remarkable, it sufficiently plays the role of barrier. The core 3 is formed by applying polymer materials onto the surface of the under clad 2 with a spinner, and the core is worked into square cross section by performing photolithography or etching working. The refractive index of the polymer core 3 is about 1.54, for example, and this refractive index can be exactly controlled and regulated by adding a fluorine or benzene ring. An over clad 4 is similarly formed by applying polymer materials onto the surface of the under clad 2 and core 3 by the spinner as well. The refractive index of the over clad 4 is about 1.535 as Δ=0.3% from the core.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、光導波路に関
し、特に、ポリマ光導波路と半導体レーザをシリコン基
板表面に集積した光モジュールにおいて光軸の高さ方向
のずれを小さくした光導波路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide, and more particularly to an optical waveguide in which a polymer optical waveguide and a semiconductor laser are integrated on the surface of a silicon substrate, in which the deviation of the optical axis in the height direction is reduced.

【0002】[0002]

【従来の技術】従来例を図3を参照して説明する。図3
に示される従来例はポリマ光導波路である。このポリマ
光導波路は、シリコン基板1表面に20μm程度の厚さ
のアンダークラッド2を形成することを必要とされる
が、その厚さをサブミクロンの単位の膜厚制御を実施す
ることは困難であった。3は光を導波するコアである。
4はコア3より屈折率が僅かに低く光を閉じ込めるのに
十分な厚さのオーバークラッドである。なお、一般に、
コア3の屈折率は高く構成され、オーバークラッド4の
屈折率はコア3の屈折率より僅かに低く、アンダークラ
ッド2の屈折率はオーバークラッド4の屈折率より更に
低い。
2. Description of the Related Art A conventional example will be described with reference to FIG. FIG.
Is a polymer optical waveguide. In this polymer optical waveguide, it is necessary to form an under clad 2 having a thickness of about 20 μm on the surface of the silicon substrate 1, but it is difficult to control the thickness of the under clad 2 in submicron units. there were. Reference numeral 3 denotes a core for guiding light.
Reference numeral 4 denotes an over clad having a slightly lower refractive index than the core 3 and having a thickness sufficient to confine light. In general,
The refractive index of the core 3 is configured to be high, the refractive index of the over cladding 4 is slightly lower than the refractive index of the core 3, and the refractive index of the under cladding 2 is further lower than the refractive index of the over cladding 4.

【0003】[0003]

【発明が解決しようとする課題】このアンダークラッド
2を、例えば、スピンコートにより形成する場合、20
μmという厚塗りにおいてはウェハ面内均一性、ウェハ
間均一性に関してサブミクロンの単位の膜厚制御を実施
することは極めて困難である。一方、シリコン基板1に
レーザチップ5をフリップチップボンディングし、高さ
制御を導波路に対してパッシブアライメントしようとす
る場合は、シングルモード導波路についてはサブミクロ
ンの高さ精度を確保することは必須のことである。以上
のことから、導波路とレーザチップ5のパッシブアライ
メントは極めて困難であるということになる。この発明
は、上述の問題を解消した光導波路を提供するものであ
る。
When the under clad 2 is formed by, for example, spin coating, the under clad 2 is formed as follows.
In the case of coating with a thickness of μm, it is extremely difficult to control the film thickness on a submicron basis with respect to the uniformity within a wafer surface and the uniformity between wafers. On the other hand, when the laser chip 5 is flip-chip bonded to the silicon substrate 1 and the height control is to be performed for the passive alignment with respect to the waveguide, it is essential to ensure the submicron height accuracy for the single mode waveguide. That is. From the above, it can be said that passive alignment between the waveguide and the laser chip 5 is extremely difficult. The present invention provides an optical waveguide that solves the above-mentioned problem.

【0004】[0004]

【課題を解決するための手段】請求項1:屈折率の高い
コア3と、コア3と比較して屈折率が僅かに低く光を閉
じ込めるに充分な厚さのオーバークラッド4と、基板1
表面に形成されオーバークラッド4と比較して更に屈折
率が低く厚さも薄いアンダークラッド2とにより構成さ
れる光導波路を構成した。
A core having a high refractive index, an over cladding having a refractive index slightly lower than the core and having a thickness sufficient to confine light, and a substrate.
An optical waveguide constituted by the under clad 2 formed on the surface and having a lower refractive index and a smaller thickness than the over clad 4 was formed.

【0005】そして、請求項2:請求項1に記載される
光導波路において、コア3はポリマ材料より成る光導波
路を構成した。また、請求項3:請求項1および請求項
2の内の何れかに記載される光導波路において、オーバ
ークラッド4はポリマより成る光導波路を構成した。更
に、請求項4:請求項1ないし請求項3の内の何れかに
記載される光導波路において、アンダークラッド2は基
板1をシリコンにより形成してその表面に形成されたS
iO2 薄膜より成る光導波路を構成した。
[0005] Claim 2: In the optical waveguide according to claim 1, the core 3 constitutes an optical waveguide made of a polymer material. Claim 3: In the optical waveguide according to any one of claims 1 and 2, the over cladding 4 constitutes an optical waveguide made of a polymer. Claim 4: In the optical waveguide according to any one of claims 1 to 3, the under clad 2 is formed by forming the substrate 1 from silicon and forming the under clad 2 on the surface thereof.
An optical waveguide composed of an iO 2 thin film was formed.

【0006】[0006]

【発明の実施の形態】以下、この発明の実施の形態を図
を参照して説明する。図1はこの発明の光導波路の断面
を示す図である。この発明の光導波路の製造方法を図1
を参照して説明する。 (工程1)先ず、アンダークラッド2として、シリコン
基板1表面に熱拡散によりSiO 2 薄膜を形成する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
This will be described with reference to FIG. FIG. 1 is a sectional view of an optical waveguide according to the present invention.
FIG. FIG. 1 shows a method of manufacturing an optical waveguide according to the present invention.
This will be described with reference to FIG. (Step 1) First, as the under cladding 2, silicon
SiO on the surface of substrate 1 by thermal diffusion TwoForm a thin film.

【0007】このSiO2 薄膜の熱拡散技術はこなれた
技術であり、1〜2μm程度の膜厚の形成においては±
0. 1μm程度の精度の膜厚制御は容易に達成すること
ができる。SiO2 薄膜の屈折率はn=1. 46程度で
あり、コア3との間の屈折率差が大きいので充分な障壁
の役割を果たす。
[0007] The thermal diffusion technique of this SiO 2 thin film is a skillful technique, and is not applicable to the formation of a film having a thickness of about 1 to 2 µm.
Thickness control with an accuracy of about 0.1 μm can be easily achieved. The refractive index of the SiO 2 thin film is about n = 1.46. Since the refractive index difference between the SiO 2 thin film and the core 3 is large, it plays a sufficient role as a barrier.

【0008】(工程2)SiO2 薄膜より成るアンダー
クラッド2表面にポリマ材料、例えばポリイミドをスピ
ナにより塗布することによりコア3を形成する。次い
で、フォトリソグラフィ、エッチング加工を施してコア
3を7×7μm程度の正方形断面に加工する。
(Step 2) A core material 3 is formed by applying a polymer material, for example, polyimide to the surface of the under clad 2 made of a SiO 2 thin film by using a spinner. Next, the core 3 is processed into a square cross section of about 7 × 7 μm by performing photolithography and etching.

【0009】この形状寸法のコア3は1. 3μmおよび
1. 55μmの光波長帯に対してシングルモードの光導
波路となり、光ファイバとの間の結合効率も高い。この
ポリマコア3の屈折率はn=1. 54程度であり、この
屈折率はフッ素或いはベンゼン環を添加することにより
正確に制御調整することができる。 (工程3)オーバークラッド4も、同様に、アンダーク
ラッド2およびコア3表面にポリマ材料、例えばポリイ
ミドをスピナ塗布して形成される。この場合、格別にそ
の厚さ制御に気を使う必要はない。
The core 3 having such a shape and size becomes a single-mode optical waveguide for the optical wavelength bands of 1.3 μm and 1.55 μm, and has a high coupling efficiency with the optical fiber. The refractive index of the polymer core 3 is about n = 1.54, and the refractive index can be accurately controlled and adjusted by adding a fluorine or benzene ring. (Step 3) Similarly, the over cladding 4 is formed by spinning a polymer material, for example, polyimide on the surfaces of the under cladding 2 and the core 3. In this case, it is not necessary to pay particular attention to the thickness control.

【0010】オーバークラッド4の屈折率はコアとの間
のΔ=0.3%とし、n=1.535とする。以上の光導
波路の製造方法により、1〜2μm程度の膜厚の形成に
おいては±0. 1μm程度の精度の膜厚制御は容易に達
成することができ、従ってシリコン基板1表面からコア
3中心までの高さを従来例と比較して格段に精密に制御
されたシングルモード光導波路を構成することができ
る。
The refractive index of the over cladding 4 is set to Δ = 0.3% with respect to the core, and n is set to 1.535. By the above-described method of manufacturing an optical waveguide, it is possible to easily achieve a film thickness control with an accuracy of about ± 0.1 μm in forming a film thickness of about 1 to 2 μm, and therefore, from the silicon substrate 1 surface to the center of the core 3. The height of the single mode optical waveguide can be configured to be much more precisely controlled as compared with the conventional example.

【0011】図2はこの発明の光導波路の実施例をレー
ザチップ5に適用したところを示す斜視図である。な
お、図2において、51はボンディングパッドである。
この光導波路のコア3とレーザチップ5とは適正に対応
している。図2は光導波路をレーザチップ5に適用した
適用例であるが、これは一般に光ファイバに適用しても
適正に対応して設定結合される。
FIG. 2 is a perspective view showing an embodiment of the optical waveguide of the present invention applied to a laser chip 5. As shown in FIG. In FIG. 2, reference numeral 51 denotes a bonding pad.
The core 3 of the optical waveguide and the laser chip 5 correspond appropriately. FIG. 2 shows an application example in which the optical waveguide is applied to the laser chip 5, and this is generally set and coupled appropriately even when applied to an optical fiber.

【0012】[0012]

【発明の効果】以上の通りであって、この発明によれ
ば、アンダークラッドを1〜2μmのSiO2 薄膜によ
り構成することにより、アンダークラッドの膜厚制御性
は飛躍的に向上して±0.1μm程度の公差を確保する
ことができ、レーザチップ5との間のパッシブアライメ
ントを実施することができる。
Be as evident from the foregoing description, according to the present invention, by forming the undercladding by SiO 2 thin film of 1 to 2 [mu] m, the film thickness controllability of the under-cladding was remarkably improved ± 0 A tolerance of about 1 μm can be ensured, and passive alignment with the laser chip 5 can be performed.

【0013】そして、SiO2 薄膜はこの発明の光導波
路が適用されるレーザチップ5電極の絶縁膜として使用
されるので必ず必要なものであり、導波路のアンダーク
ラッドと共用することにより製造工程を1工程省略する
ことになり、その分コストダウン、歩留り向上につなが
る。また、SiO2 薄膜の1〜2μm程度の膜厚の形成
においては±0. 1μm程度の精度の膜厚制御は容易に
達成することができ、従ってシリコン基板1表面からコ
ア3中心までの高さを従来例と比較して格段に精密に制
御されたシングルモード光導波路を構成することができ
る。
Since the SiO 2 thin film is used as an insulating film of the electrode of the laser chip 5 to which the optical waveguide of the present invention is applied, it is always necessary. One step is omitted, which leads to cost reduction and yield improvement. Further, in the case of forming a SiO 2 thin film having a thickness of about 1 to 2 μm, it is possible to easily control the film thickness with an accuracy of about ± 0.1 μm. Can be configured as a single mode optical waveguide with much more precise control as compared with the conventional example.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例を説明する図。FIG. 1 illustrates an embodiment.

【図2】この発明の実施例の適用例を示す斜視図。FIG. 2 is a perspective view showing an application example of the embodiment of the present invention.

【図3】従来例を説明する図。FIG. 3 illustrates a conventional example.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 アンダークラッド 3 コア 4 オーバークラッド 5 レーザチップ 51 ボンディングパッド DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 Under clad 3 Core 4 Over clad 5 Laser chip 51 Bonding pad

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 屈折率の高いコアと、コアと比較して屈
折率が僅かに低く光を閉じ込めるに充分な厚さのオーバ
ークラッドと、基板表面に形成されオーバークラッドと
比較して更に屈折率が低く厚さも薄いアンダークラッド
とにより構成されることを特徴とする光導波路。
1. A core having a high refractive index, an overcladding having a refractive index slightly lower than that of the core and having a thickness sufficient to confine light, and a refractive index higher than that of the overcladding formed on the substrate surface. An optical waveguide comprising an under cladding having a low thickness and a small thickness.
【請求項2】 請求項1に記載される光導波路におい
て、 コアはポリマ材料より成ることを特徴とする光導波路。
2. The optical waveguide according to claim 1, wherein the core is made of a polymer material.
【請求項3】 請求項1および請求項2の内の何れかに
記載される光導波路において、 オーバークラッドはポリマより成ることを特徴とする光
導波路。
3. The optical waveguide according to claim 1, wherein the over cladding is made of a polymer.
【請求項4】 請求項1ないし請求項3の内の何れかに
記載される光導波路において、 アンダークラッドは基板をシリコンにより形成してその
表面に形成されたSiO2 薄膜より成ることを特徴とす
る光導波路。
4. The optical waveguide according to claim 1, wherein the undercladding is formed of a silicon substrate, and the undercladding is formed of a SiO 2 thin film formed on the surface thereof. Optical waveguide.
JP1376798A 1998-01-27 1998-01-27 Optical waveguide Pending JPH11211925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1376798A JPH11211925A (en) 1998-01-27 1998-01-27 Optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1376798A JPH11211925A (en) 1998-01-27 1998-01-27 Optical waveguide

Publications (1)

Publication Number Publication Date
JPH11211925A true JPH11211925A (en) 1999-08-06

Family

ID=11842413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1376798A Pending JPH11211925A (en) 1998-01-27 1998-01-27 Optical waveguide

Country Status (1)

Country Link
JP (1) JPH11211925A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004109425A (en) * 2002-09-18 2004-04-08 Hitachi Chem Co Ltd Method for manufacturing optical waveguide device
WO2005045491A1 (en) * 2003-11-05 2005-05-19 Hitachi Chemical Company, Ltd. Optical waveguide and production method therefor
US20220107459A1 (en) * 2019-01-29 2022-04-07 Nippon Telegraph And Telephone Corporation Optical Circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004109425A (en) * 2002-09-18 2004-04-08 Hitachi Chem Co Ltd Method for manufacturing optical waveguide device
WO2005045491A1 (en) * 2003-11-05 2005-05-19 Hitachi Chemical Company, Ltd. Optical waveguide and production method therefor
US20220107459A1 (en) * 2019-01-29 2022-04-07 Nippon Telegraph And Telephone Corporation Optical Circuit

Similar Documents

Publication Publication Date Title
JP3302458B2 (en) Integrated optical device and manufacturing method
US8000565B2 (en) Buried dual taper waveguide for passive alignment and photonic integration
JP3436691B2 (en) Method of manufacturing tapered waveguide
WO2017137007A1 (en) Waveguide structure for oprical coupling
JP2004133446A (en) Optical module and its manufacturing method
CN103502853A (en) Lightwave circuit and method of manufacturing same
JP2823044B2 (en) Optical coupling circuit and method of manufacturing the same
US6913705B2 (en) Manufacturing method for optical integrated circuit having spatial reflection type structure
CN113534337B (en) Processing method and structure of silicon photonic chip optical coupling structure
CN210666088U (en) Silicon optical mode spot mode converter
JP2005115117A (en) Optical module and its manufacturing method
JPH053748B2 (en)
US7805037B1 (en) Multiplexer having improved efficiency
EP0851244A1 (en) Optical waveguide device and method of manufacturing same
JPH11211925A (en) Optical waveguide
JP2771167B2 (en) Optical integrated circuit mounting method
JPH07151940A (en) Optical coupling structure and its production
JP2013231753A (en) Spot size converter and manufacturing method thereof
JP3911271B2 (en) Optical waveguide and method for manufacturing the same
JP3204439B2 (en) Fabrication method of mounting substrate for hybrid optical integration
JP3204437B2 (en) Fabrication method of mounting substrate for hybrid optical integration
JPS58117510A (en) Optical waveguide and its manufacture
JP2666874B2 (en) Optical coupler and manufacturing method thereof
WO2023243014A1 (en) Optical waveguide connection structure
CN114924348B (en) Three-dimensional edge coupler based on silicon dioxide optical waveguide

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020723