JPH11211637A - Method for testing triaxial creep rupture - Google Patents

Method for testing triaxial creep rupture

Info

Publication number
JPH11211637A
JPH11211637A JP1411698A JP1411698A JPH11211637A JP H11211637 A JPH11211637 A JP H11211637A JP 1411698 A JP1411698 A JP 1411698A JP 1411698 A JP1411698 A JP 1411698A JP H11211637 A JPH11211637 A JP H11211637A
Authority
JP
Japan
Prior art keywords
test piece
creep
creep rupture
triaxial
smooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1411698A
Other languages
Japanese (ja)
Inventor
Masafumi Yamauchi
雅文 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1411698A priority Critical patent/JPH11211637A/en
Publication of JPH11211637A publication Critical patent/JPH11211637A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain data of a creep rupture in a state in which triaxial stress is applied. SOLUTION: In obtaining data of a triaxial creep rupture, a welded joint of Cr-Mo steel is utilized and a smooth test piece 11 is placed in a direction at right angles to the welding. A uniaxial load is applied to the smooth test piece 11, and the generation of cracks is detected by an ultrasonic inspection or electric resistance method. Moreover, a stress state of a part where the cracks are generated in the smooth test piece 11 is obtained by a creep analysis with creep characteristics at each part of the welded part taken into consideration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は3軸クリープ破断試
験方法に関し、特に火力/原子力プラント等の高温機器
の設計・評価用基礎データ取得のための試験方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a triaxial creep rupture test method, and more particularly to a test method for acquiring basic data for design and evaluation of high-temperature equipment such as a thermal / nuclear power plant.

【0002】[0002]

【従来の技術】火力プラント、原子力プラントなどの高
温機器の設計・評価のためには、その装置において使用
される材料のクリープ破断データは必要不可欠なもので
ある。最も基礎的な設計用データは、図5に示すような
丸棒試験片1を用いた単軸試験により得られる。この試
験では、通常は丸棒試験片1を電気炉2で加熱し、荷重
を負荷して破断するまでの時間を計測し、図6に示す荷
重(応力)と破断時間の関係を求め、設計に使用してい
る。
2. Description of the Related Art For the design and evaluation of high-temperature equipment such as thermal power plants and nuclear power plants, creep rupture data of materials used in such equipment is indispensable. The most basic design data is obtained by a uniaxial test using a round bar test piece 1 as shown in FIG. In this test, usually, the round bar test piece 1 is heated in the electric furnace 2, the time until the specimen is broken by applying a load is measured, and the relationship between the load (stress) and the fracture time shown in FIG. Used for

【0003】[0003]

【発明が解決しようとする課題】しかしながら、一般的
に実際の高温機器の使用条件は多軸応力状態にあり、単
軸状態と多軸状態との関係を求めておく必要がある。こ
のため、図7に示すような十字型試験片や、図8に示す
ような円筒試験片に内圧若しくは内圧と軸荷重を負荷す
ることによって、2軸応力状態下の試験がよく行われ
る。
However, in general, the operating conditions of high-temperature equipment are in a multiaxial stress state, and it is necessary to obtain a relationship between a single-axis state and a multiaxial state. Therefore, a test under a biaxial stress condition is often performed by applying an internal pressure or an internal pressure and an axial load to a cross-shaped test piece as shown in FIG. 7 or a cylindrical test piece as shown in FIG.

【0004】ところで、実機の条件をそのまま再現する
ためには、3軸応力状態下の試験が必要であるが、3軸
応力状態下の試験については、図7に示した十字型試験
片を3軸化し、この試験片を用いた試験が試みられてい
る。しかし、試験片の加工が困難だったり、試験時に試
験対象部から破断させることが困難で、ほとんど全て荷
重負荷用の治具部から破断することは避けられず、3軸
応力状態でのクリープ破断データ取得に成功することは
極めて困難であった。
By the way, in order to reproduce the conditions of the actual machine as it is, a test under a triaxial stress state is necessary. For the test under a triaxial stress state, a cross-shaped test piece shown in FIG. Axialization and tests using this test piece have been attempted. However, it is difficult to process the test piece, or it is difficult to break it from the test object part during the test, and it is inevitable that almost all of the test piece will break from the jig for load application, and creep rupture in triaxial stress state Successful data acquisition has been extremely difficult.

【0005】本発明はこうした事情を考慮してなされた
もので、Cr−Mo鋼の溶接継手を利用して溶接直角方
向に平滑試験片を配置した後、この平滑試験片に単軸荷
重を負荷し、き裂発生を超音波検査若しくは電気抵抗法
により検出し、かつ平滑試験片内のき裂発生部の応力状
態を溶接部各部のクリープ特性を考慮したクリープ解析
により求めることにより、3軸応力状態でのクリープ破
断データ取得が可能な3軸クリープ破断試験方法を提供
することを目的とする。
The present invention has been made in view of such circumstances, and after arranging a smooth test piece in a direction perpendicular to the welding direction by using a Cr-Mo steel welded joint, a uniaxial load is applied to the smooth test piece. By detecting crack initiation by ultrasonic inspection or electrical resistance method and determining the stress state of the crack initiation site in the smooth specimen by creep analysis considering the creep characteristics of each part of the weld, the triaxial stress An object of the present invention is to provide a triaxial creep rupture test method capable of acquiring creep rupture data in a state.

【0006】[0006]

【課題を解決するための手段】本発明は、3軸クリープ
破断データ取得のための3軸クリープ破断試験方法にお
いて、Cr−Mo鋼の溶接継手を利用して溶接直角方向
に平滑試験片を配置した後、この平滑試験片に単軸荷重
を負荷し、き裂発生を超音波検査若しくは電気抵抗法に
より検出し、かつ平滑試験片内のき裂発生部の応力状態
を溶接部各部のクリープ特性を考慮したクリープ解析に
より求めることを特徴とする3軸クリープ破断試験方法
である。
According to the present invention, there is provided a triaxial creep rupture test method for acquiring triaxial creep rupture data, in which a smooth test piece is arranged in a direction perpendicular to a weld by using a Cr-Mo steel welded joint. After that, a uniaxial load is applied to this smooth specimen, crack initiation is detected by ultrasonic inspection or electric resistance method, and the stress state of the crack initiation part in the smooth specimen is evaluated by the creep characteristics of each part of the weld. This is a triaxial creep rupture test method obtained by creep analysis in consideration of

【0007】[0007]

【発明の実施の形態】以下、本発明の一実施例を図面を
参照して説明する。図1は、Cr−Mo鋼の溶接継手を
利用した3軸クリープ破断試験方法を示す。ここで、平
滑試験片11とは、溶接金属14、溶接熱影響部12、母材13
及び両端のねじ部15を含めた全体を意味する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a triaxial creep rupture test method using a Cr-Mo steel welded joint. Here, the smooth test piece 11 is a weld metal 14, a weld heat affected zone 12, a base material 13
And the whole including the screw portions 15 at both ends.

【0008】本実施例では、溶接継手の平滑試験片11を
電気炉で加熱して高温に保持し、単軸荷重を負荷し、平
滑試験片11内の溶接熱影響部12あるいは軟化域断面内の
中央部のき裂発生を超音波検査や電気抵抗法により検出
する。但し、平滑試験片11内部のき裂発生部の応力状態
は溶接部各部(母材13、溶接熱影響部12及び溶接金属1
4)のクリープ特性を考慮したクリープ解析により求め
る。
In this embodiment, a smooth test piece 11 of a welded joint is heated in an electric furnace and maintained at a high temperature, a uniaxial load is applied, and a weld heat-affected zone 12 in the smooth test piece 11 or a cross-section in a softened area is formed. Of cracks in the central part of the specimen is detected by ultrasonic inspection or electric resistance method. However, the stress state of the crack initiation portion inside the smooth test piece 11 is determined by the welded parts (base material 13, welding heat affected zone 12, welding metal 1).
Determined by creep analysis considering the creep characteristics of 4).

【0009】図2は、Cr−Mo鋼溶接継手の組織の例
として低合金鋼の場合の概要を示す説明図である。母材
素材を溶接施工及び溶接後熱処理すると、溶接熱影響部
12が母材13の溶接金属14に接する側に生じ、その母材側
に幅数mmの狭い細粒あるいは軟化域が生じる。この細
粒あるいは軟化域は、周囲の母材及び溶接金属に比べて
クリープ強度が低く、クリープ変形速度が速い。この特
性は基本的には9−12Cr鋼でも同様である。なお、
図2において、領域1は擬固溶接金属を、領域2は非混
合域+再溶融域(融合域)を、領域3は熱影響部粗粒域
を、領域4は熱影響部細粒域を、領域5は熱影響部イン
タークリティカル域を、領域6は焼戻し熱影響部を、領
域7は非熱影響母材を示す。
FIG. 2 is an explanatory view showing an outline of the case of a low alloy steel as an example of the structure of a Cr--Mo steel welded joint. When the base material is welded and heat-treated after welding, the heat affected zone
12 is formed on the side of the base metal 13 which is in contact with the weld metal 14, and narrow fine grains or a softened region having a width of several mm are generated on the base metal side. This fine grain or softened region has a lower creep strength and a faster creep deformation rate than the surrounding base metal and weld metal. This characteristic is basically the same for 9-12Cr steel. In addition,
In FIG. 2, region 1 is a pseudo-solid weld metal, region 2 is an unmixed region + remelted region (fusion region), region 3 is a heat-affected zone coarse-grained region, and region 4 is a heat-affected zone fine-grained region. , Region 5 indicates a heat-affected zone intercritical region, region 6 indicates a tempered heat-affected region, and region 7 indicates a non-heat-affected base material.

【0010】このような溶接継手に高温で溶接線直角方
向に荷重を負荷すると、図3に示したように幅が狭く強
度が低い溶接熱影響部細粒域(若しくは軟化域)21の変
形が強度が高い周囲の溶接金属22および母材23によって
拘束され、強度が低い溶接熱影響部細粒域(若しくは軟
化域)の中央部24が3軸応力状態となる。
When a load is applied to such a welded joint at a high temperature in a direction perpendicular to the weld line, the deformation of the finely grained area (or softened area) 21 of the weld heat affected zone having a small width and a low strength as shown in FIG. The central portion 24 of the low-strength weld heat-affected zone fine grain region (or softened region), which is constrained by the surrounding high-strength weld metal 22 and base metal 23, is in a triaxial stress state.

【0011】この3軸応力状態は、図4の低合金鋼の場
合の試験片寸法と応力状態との関係図に示すように、試
験片の直径に依存する。従って、試験片の直径を変化さ
せることによって、応力条件を変化させることができ、
種々の応力条件下での試験が可能である。図4におい
て、3軸性指数TFと主応力σ1,σ2,σ3、ミーゼ
スの相当応力σMisesとの関係は、TF=(σ1+σ2
+σ3)/σMisesとなる。
The triaxial stress state depends on the diameter of the test piece, as shown in FIG. 4 showing the relationship between the test piece size and the stress state in the case of low alloy steel. Therefore, by changing the diameter of the test piece, it is possible to change the stress condition,
Testing under various stress conditions is possible. In FIG. 4, the relationship between the triaxiality index TF and the principal stresses σ1, σ2, σ3, and Mises equivalent stress σMises is TF = (σ1 + σ2
+ Σ3) / σMises.

【0012】なお、試験片内部のき裂発生部の応力状態
は、溶接部各部(母材13、溶接熱影響部12、溶接金属1
4)のクリープ特性を考慮したクリープ解析により求め
る。また、このような試験においてき裂が試験片内部か
ら発生した場合、き裂発生(寿命)の検出は超音波検査
や電気抵抗計測など非破壊検査により行う。
Incidentally, the stress state of the crack initiation portion inside the test piece is determined by the respective portions of the welded portion (base metal 13, weld heat affected zone 12, weld metal 1).
Determined by creep analysis considering the creep characteristics of 4). When a crack is generated from the inside of the test piece in such a test, the detection of crack generation (lifetime) is performed by a non-destructive inspection such as an ultrasonic inspection or an electric resistance measurement.

【0013】[0013]

【発明の効果】以上詳述したように本発明によれば、C
r−Mo鋼の溶接継手を利用して溶接直角方向に平滑試
験片を配置した後、この平滑試験片に単軸荷重を負荷
し、き裂発生を超音波検査若しくは電気抵抗法により検
出し、かつ平滑試験片内のき裂発生部の応力状態を溶接
部各部のクリープ特性を考慮したクリープ解析により求
めることにより、3軸応力状態でのクリープ破断データ
取得が可能な3軸クリープ破断試験方法を提供できる。
As described in detail above, according to the present invention, C
After arranging a smooth test piece in a direction perpendicular to the weld using a r-Mo steel welded joint, a uniaxial load is applied to the smooth test piece, and crack initiation is detected by ultrasonic inspection or an electric resistance method, In addition, a triaxial creep rupture test method that can acquire creep rupture data under triaxial stress conditions by obtaining the stress state of the crack initiation part in the smooth specimen by creep analysis considering the creep characteristics of each part of the welded part. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る3軸クリープ破断試験
方法の説明図。
FIG. 1 is an explanatory view of a triaxial creep rupture test method according to one embodiment of the present invention.

【図2】溶接継手の説明図。FIG. 2 is an explanatory view of a welded joint.

【図3】溶接継手クリープ破断試験における応力状態の
説明図。
FIG. 3 is an explanatory diagram of a stress state in a weld joint creep rupture test.

【図4】試験片の大きさと3軸性指数TFとの関係を示
す特性図。
FIG. 4 is a characteristic diagram showing a relationship between a test piece size and a triaxiality index TF.

【図5】丸棒試験片を用いた単軸試験の説明図。FIG. 5 is an explanatory view of a uniaxial test using a round bar test piece.

【図6】図5の単軸試験による破断時間と荷重(応力)
との関係を示す特性図。
FIG. 6 shows the fracture time and load (stress) in the uniaxial test of FIG.
FIG. 3 is a characteristic diagram showing a relationship with the graph.

【図7】十字型試験片の平面図。FIG. 7 is a plan view of a cross-shaped test piece.

【図8】図7の十字型試験片を3軸化した試験片の斜視
図。
FIG. 8 is a perspective view of a test piece obtained by converting the cross-shaped test piece of FIG. 7 into three axes.

【符号の説明】[Explanation of symbols]

11…平滑試験片、 12…溶接熱影響部、 13、23…母材、 14、22…溶接金属、 21…溶接熱影響部細粒域(若しくは軟化域)。 11: smooth specimen, 12: heat affected zone, 13, 23: base metal, 14, 22: weld metal, 21: fine grain area (or softened area) of heat affected zone.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 3軸クリープ破断データ取得のための3
軸クリープ破断試験方法において、 Cr−Mo鋼の溶接継手を利用して溶接直角方向に平滑
試験片を配置した後、この平滑試験片に単軸荷重を負荷
し、き裂発生を超音波検査若しくは電気抵抗法により検
出し、かつ平滑試験片内のき裂発生部の応力状態を溶接
部各部のクリープ特性を考慮したクリープ解析により求
めることを特徴とする3軸クリープ破断試験方法。
1. A method for acquiring triaxial creep rupture data.
In the axial creep rupture test method, after arranging a smooth test piece in a direction perpendicular to the weld using a weld joint of Cr-Mo steel, a uniaxial load is applied to this smooth test piece, and ultrasonic inspection or crack inspection is performed. A triaxial creep rupture test method characterized by detecting by an electric resistance method and determining a stress state of a crack initiation portion in a smooth test piece by creep analysis in consideration of creep characteristics of each portion of a welded portion.
JP1411698A 1998-01-27 1998-01-27 Method for testing triaxial creep rupture Withdrawn JPH11211637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1411698A JPH11211637A (en) 1998-01-27 1998-01-27 Method for testing triaxial creep rupture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1411698A JPH11211637A (en) 1998-01-27 1998-01-27 Method for testing triaxial creep rupture

Publications (1)

Publication Number Publication Date
JPH11211637A true JPH11211637A (en) 1999-08-06

Family

ID=11852158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1411698A Withdrawn JPH11211637A (en) 1998-01-27 1998-01-27 Method for testing triaxial creep rupture

Country Status (1)

Country Link
JP (1) JPH11211637A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122345A (en) * 2006-11-15 2008-05-29 Mitsubishi Heavy Ind Ltd Method of evaluating life by creep elongation in high-strength steel welded part, and method of evaluating life of high-strength steel welded part
CN103604697A (en) * 2013-11-22 2014-02-26 山东大学 Fake triaxial creeping device and method for geotechnical engineering under uniform confining pressure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122345A (en) * 2006-11-15 2008-05-29 Mitsubishi Heavy Ind Ltd Method of evaluating life by creep elongation in high-strength steel welded part, and method of evaluating life of high-strength steel welded part
CN103604697A (en) * 2013-11-22 2014-02-26 山东大学 Fake triaxial creeping device and method for geotechnical engineering under uniform confining pressure
CN103604697B (en) * 2013-11-22 2015-07-22 山东大学 Fake triaxial creeping device and method for geotechnical engineering under uniform confining pressure

Similar Documents

Publication Publication Date Title
Hyde et al. Creep crack growth data and prediction for a P91 weld at 650 C
JP5196926B2 (en) Apparatus for evaluating hydrogen embrittlement for thin steel sheet and method for evaluating hydrogen embrittlement of thin steel sheet
JP5263178B2 (en) Nondestructive inspection method for steel rails for tracks
Hyde et al. Creep behaviour of parent, weld and HAZ materials of new, service-aged and repaired 1/2Cr1/2Mo1/4V: 2 1/4Cr1Mo pipe welds at 640 C
JP2009128171A (en) Heat resistant material testing device, heat resistant material test method, and test piece
Hyde et al. Some considerations on specimen types for small sample creep tests
Kaltmann et al. Strain fields of tensile and shear loaded weldments of AIMgSi0. 6 extrusions
JPH11211637A (en) Method for testing triaxial creep rupture
Barkey et al. Testing of spot welded coupons in combined tension and shear
Barkey et al. Failure modes of single resistance spot welded joints subjected to combined fatigue loading
Ufuah Characterization of elevated temperature mechanical properties of butt-welded connections made with HS Steel Grade S420M
CN115555756A (en) Detection process for performance of welded joint in postweld heat treatment
KR101141005B1 (en) Measuring device for testing crack in root pass for welding point in a high-strength steel plate and the method using thereof
Farrar Hot cracking tests—The route to International Standardization
CN111468828A (en) Welding equipment and welding detection method
Panella et al. CDW aluminium joints welding and optimisation with NDT/mechanical testing
Zhang Stresses in laser-beam-welded lap joints determined by outer surface strains
Jones Evaluation of stress-corrosion cracking
Rudland et al. Toughness Behavior of Through-Wall Cracks in Dissimilar Metal Welds
Winarto et al. Effects of Heat Input on Microstructures, Hardness, and Residual Stress of GMA Weld Dissimilar butt joints between Stainless Steel SUS 316 and Marine Steel AH 36
US5013370A (en) Method for localization of tensile residual stress and product produced thereby
Kimmins et al. Creep deformation and rupture of low alloy ferritic weldments under shear loading
Ceyhan et al. High temperature cross-weld characterisation of steel weldments by microtensile testing
Murty et al. Condition monitoring of structural materials using nondestructive ball indentation technique
Černý et al. Visualization of the coated electrode welding

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405