JPH11211633A - Method for analyzing impurity on silicon wafer surface - Google Patents

Method for analyzing impurity on silicon wafer surface

Info

Publication number
JPH11211633A
JPH11211633A JP1256898A JP1256898A JPH11211633A JP H11211633 A JPH11211633 A JP H11211633A JP 1256898 A JP1256898 A JP 1256898A JP 1256898 A JP1256898 A JP 1256898A JP H11211633 A JPH11211633 A JP H11211633A
Authority
JP
Japan
Prior art keywords
impurities
silicon wafer
oxide film
solution
measurement area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1256898A
Other languages
Japanese (ja)
Inventor
Jiro Naka
慈朗 中
Naohiko Fujino
直彦 藤野
Junji Kobayashi
淳二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1256898A priority Critical patent/JPH11211633A/en
Publication of JPH11211633A publication Critical patent/JPH11211633A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure a quantity of impurities at a measurement area set optionally within a silicon wafer plane at the time of impurities analysis to the silicon wafer surface and provide in-plane distribution information on a considerably minute amount of impurities. SOLUTION: A circle is drawn with the use of a diamond pen 2 to a silicon wafer 1 having an oxide film. The inside of the circle becomes a measurement area 3, and the circumference is a non-measurement area 4. An aqueous solution 6 of 0.1% HF/1% H2 O2 is dropped with the use of a micropipette 5 to the measurement area 3. Drops of the solution are spread all the area. After the solution is left for about 10 minutes, the drops dissolve the oxide film and takes inside impurities in the oxide film. Thereafter, drops gathering at a central part of the measurement area 3 are collected with the use of the micropipette 5. The 0.1% HF/1% H2 O2 aqueous solution 6 dissolving the impurities is set to a chemical analyzer apparatus, so that a quantity of impurities in the aqueous solution 6 is measured. The operation is repeatedly carried out thereby evaluating a distribution of the quantity of impurities within a plane of the silicon wafer 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリコンウエハ表
面の不純物分析方法に関する。
The present invention relates to a method for analyzing impurities on a silicon wafer surface.

【0002】[0002]

【従来の技術】半導体製造プロセスの歩留まりやデバイ
スの信頼性を確保するためには、製造プロセス全般にわ
たるトータルクリーン化技術が不可欠となっている。こ
のため、製造工程のクリーン化と共に、シリコンウエハ
表面の清浄化が必要となっている。シリコンウエハ表面
の金属不純物はデバイス特性と密接な関係があり、接合
リーク電流の増大やゲート酸化膜の耐圧特性の劣化を引
き起こし、デバイスの信頼性に大きな影響を及ぼすこと
が知られている。このような不純物の制御レベルは、デ
バイスの高密度化・高集積化にともなって厳しくなって
いる。
2. Description of the Related Art In order to ensure the yield of a semiconductor manufacturing process and the reliability of a device, a total clean technology over the entire manufacturing process is indispensable. For this reason, it is necessary to clean the surface of the silicon wafer as well as to clean the manufacturing process. It is known that metal impurities on the surface of a silicon wafer have a close relationship with device characteristics, cause an increase in junction leakage current and a deterioration in breakdown voltage characteristics of a gate oxide film, and have a great effect on device reliability. The control level of such impurities has become stricter as the density and density of devices have increased.

【0003】このため、シリコンウエハ表面の金属不純
物量を高感度かつ精度よく分析する必要がある。さら
に、半導体デバイスの信頼性及び歩留まりの向上を図っ
ていく上で、シリコンウエハ面内のデバイスの特性分布
と金属不純物量分布の関連性を把握することは、極めて
重要である。
Therefore, it is necessary to analyze the amount of metal impurities on the surface of a silicon wafer with high sensitivity and high accuracy. Furthermore, in improving the reliability and yield of semiconductor devices, it is extremely important to understand the relationship between the device characteristic distribution and the metal impurity amount distribution in the silicon wafer surface.

【0004】従来、シリコンウエハ表面の金属不純物の
定量法としては、ウエハ表面の全域について、HF蒸気
またはHF系溶液を用いて不純物を溶解、回収した後、
その回収液中の不純物の量をフレームレス原子吸光分析
法や誘導結合プラズマ質量分析装置などの化学分析装置
などの化学分析装置を用いて測定し、全域の不純物量の
平均値を得るものであった。
Conventionally, as a method of quantifying metal impurities on the surface of a silicon wafer, the entire surface of the wafer is dissolved and recovered using HF vapor or an HF-based solution.
The amount of impurities in the recovered solution is measured using a chemical analyzer such as a flameless atomic absorption spectrometry or a chemical analyzer such as an inductively coupled plasma mass spectrometer to obtain an average value of the impurity amounts in the entire region. Was.

【0005】さらに詳しくは、シリコンウエハ表面不純
物の回収方法として、自然酸化膜等をもつシリコンウエ
ハとHF溶液を密閉容器に閉じこめ、酸化膜をHF蒸気
と一定時間反応させて不純物を溶解し、シリコンウエハ
表面全域の反応液を回収する気相分解法がある(特開平
2−192750号公報、特開平5−283381号公
報)。あるいは、HF蒸気による分解工程後、シリコン
ウエハ表面に少量の超純水あるいはHF水溶液を滴下
し、液滴でシリコンウエハ表面全域を走査することによ
り、不純物を回収する(「分析化学」Vol.38 1
77頁 1989)。
More specifically, as a method of collecting impurities on the surface of a silicon wafer, a silicon wafer having a natural oxide film or the like and an HF solution are sealed in an airtight container, and the oxide film is reacted with HF vapor for a predetermined time to dissolve impurities. There is a gas phase decomposition method for recovering a reaction solution over the entire surface of a wafer (Japanese Patent Application Laid-Open Nos. 2-192750 and 5-283381). Alternatively, after the decomposition step using HF vapor, a small amount of ultrapure water or HF aqueous solution is dropped on the silicon wafer surface, and the entire surface of the silicon wafer is scanned with the droplet to collect impurities (“Analytical Chemistry” Vol. 38). 1
77, 1989).

【0006】また、自然酸化膜等をもつシリコンウエハ
表面にHF系溶液を少量滴下して、一定時間放置するこ
とにより、シリコンウエハ表面全域の酸化膜と反応させ
て不純物を溶解し、シリコンウエハ面内の一カ所に集ま
る反応液滴をマイクロピペットで回収する液相分解法が
ある(特開平2−272359号公報)。別には、HF
系溶液でシリコンウエハ表面全域を走査し、不純物を溶
解して、回収する方法がある(特開平3−239343
号公報)。
Further, a small amount of an HF solution is dropped on the surface of a silicon wafer having a natural oxide film or the like, and left for a certain period of time to react with the oxide film on the entire surface of the silicon wafer to dissolve impurities, thereby reducing the surface of the silicon wafer. There is a liquid phase decomposition method in which the reaction droplets collected at one location in the inside are collected by a micropipette (Japanese Patent Laid-Open No. 2-272359). Separately, HF
There is a method of scanning the entire surface of a silicon wafer with a system solution to dissolve and collect impurities (Japanese Patent Laid-Open No. 3-239343).
No.).

【0007】また、フレームレス原子吸光分析法及び誘
導結合プラズマ質量分析法の測定原理や装置構成につい
ては、たとえば文献、「ファーネス原子吸光分析−極微
量を測る」、1〜56頁、及び「プラズマイオン源質量
分析」、13〜43頁、学会出版センター発行に詳細に
記載されている。
For the measurement principle and apparatus configuration of flameless atomic absorption spectrometry and inductively coupled plasma mass spectrometry, see, for example, literatures, “Furnace Atomic Absorption Spectroscopy—Measuring a Trace Amount”, pages 1 to 56, and “Plasma Ion source mass spectrometry ", pages 13 to 43, published by Gakkai Shuppan Center.

【0008】ところが、シリコンウエハ面内に一定のパ
ターンに従って形成されるデバイスの特性は面内分布を
持つ場合があり、デバイス特性と密接な関連をもつ金属
不純物の面内分布との相関を把握する必要がある。
However, the characteristics of a device formed in accordance with a certain pattern on the surface of a silicon wafer may have an in-plane distribution, and the correlation between the in-plane distribution of metal impurities closely related to the device characteristics is grasped. There is a need.

【0009】しかしながら、上記した従来技術の場合、
シリコンウエハ全域の金属不純物量の平均値のみを与え
るものであり、面内の各デバイスに対応した不純物量分
布を得るのは不可能であった。
However, in the case of the above-mentioned prior art,
Since only the average value of the metal impurity amount in the entire silicon wafer is given, it is impossible to obtain an impurity amount distribution corresponding to each device in the plane.

【0010】[0010]

【発明が解決しようとする課題】上記したように、従来
においては、シリコンウエハ全域の金属不純物量の平均
値を得るに留まり、デバイス特性と金属不純物量との正
確な関連性を把握するのは困難であるという問題があっ
た。
As described above, in the prior art, it is only necessary to obtain the average value of the metal impurity amount over the entire silicon wafer, and to grasp the exact relationship between the device characteristics and the metal impurity amount. There was a problem that it was difficult.

【0011】本発明は上記のような課題に鑑みて発明さ
れたものであって、シリコンウエハ表面の任意の測定領
域について不純物を高感度かつ高精度に分析でき、面内
の微量な不純物量分布までも評価することが可能なシリ
コンウエハの不純物分析方法を提供することを目的とし
ている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and it is possible to analyze impurities with high sensitivity and high accuracy in an arbitrary measurement region on the surface of a silicon wafer, and to obtain a small impurity amount distribution in a plane. It is an object of the present invention to provide a method for analyzing impurities in a silicon wafer that can be evaluated even to date.

【0012】[0012]

【課題を解決するための手段】この発明に係るシリコン
ウエハ表面の不純物分析方法は、表面に酸化膜が形成さ
れたシリコンウエハ表面の任意の測定領域の周囲の酸化
物を除去する工程と、前記測定領域の酸化膜を溶解し、
不純物を含む溶解液を回収する工程と、回収した溶解液
中の不純物の量を測定する工程とからなるものである。
According to the present invention, there is provided a method for analyzing impurities on a silicon wafer surface, the method comprising: removing an oxide around an arbitrary measurement region on a silicon wafer surface having an oxide film formed on the surface; Dissolve the oxide film in the measurement area,
It comprises a step of collecting a solution containing impurities and a step of measuring the amount of impurities in the collected solution.

【0013】また、この発明に係るシリコンウエハ表面
の不純物分析方法は、任意の測定領域の周囲の酸化膜を
除去する工程で、測定領域以外の酸化膜を削り取るもの
であっても良い。
In the method for analyzing impurities on the surface of a silicon wafer according to the present invention, the step of removing an oxide film around an arbitrary measurement region may be performed by removing an oxide film other than the measurement region.

【0014】また、この発明に係るシリコンウエハ表面
の不純物分析方法は、酸化膜の削り取りが、機械的に削
り取るものであっても良い。
In the method for analyzing impurities on the surface of a silicon wafer according to the present invention, the oxide film may be mechanically removed.

【0015】また、この発明に係るシリコンウエハ表面
の不純物分析方法は、酸化膜の削り取りが、モース硬度
8以上の材質を用いるものであっても良い。
In the method for analyzing impurities on the surface of a silicon wafer according to the present invention, the oxide film may be removed by using a material having a Mohs hardness of 8 or more.

【0016】また、この発明に係るシリコンウエハ表面
の不純物分析方法は、酸化膜の削り取りが、ダイヤモン
ドやダイヤモンドライクカーボンを含む硬質材を用いる
ものであっても良い。
In the method for analyzing impurities on the surface of a silicon wafer according to the present invention, the oxide film may be removed by using a hard material containing diamond or diamond-like carbon.

【0017】また、この発明に係るシリコンウエハ表面
の不純物分析方法における測定領域の酸化膜の溶解は、
HF水溶液またはH22 およびHNO3 の少なくとも
一つを添加したHF水溶液を滴下して行うものであって
も良い。
Further, in the method for analyzing impurities on the surface of a silicon wafer according to the present invention, the dissolution of the oxide film in the measurement region is as follows.
An HF aqueous solution or an HF aqueous solution to which at least one of H 2 O 2 and HNO 3 is added may be dropped.

【0018】また、この発明に係るシリコンウエハ表面
の不純物分析方法の不純物の量を測定する工程は、フレ
ームレス原子吸光装置または誘導結合プラズマ質量分析
装置を用いて行うものであっても良い。
Further, the step of measuring the amount of impurities in the method for analyzing impurities on a silicon wafer surface according to the present invention may be performed using a flameless atomic absorption spectrometer or an inductively coupled plasma mass spectrometer.

【0019】[0019]

【発明の実施の形態】以下、本発明に係るシリコンウエ
ハ表面の不純物分析方法の一実施例を図面に基づいて説
明する。図1は実施例に係るシリコンウエハ表面の不純
物分析方法を実施するための手順を示したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the method for analyzing impurities on the surface of a silicon wafer according to the present invention will be described below with reference to the drawings. FIG. 1 shows a procedure for carrying out a method for analyzing impurities on a silicon wafer surface according to an embodiment.

【0020】たとえば、図1(a)のように酸化膜(S
iO2 )830Åが形成されたシリコンウエハ1に、ダ
イヤモンドペン2を用いて、直径1cmの円を描く。描
いた円周部分は、ダイモヤンドにより親水性の熱酸化膜
が削り取られ、シリコン基盤の地肌が出て疎水性とな
る。円内部を測定領域3とすると、円周を含む周囲が非
測定領域4となる。
For example, as shown in FIG. 1A, an oxide film (S
Using a diamond pen 2, a circle having a diameter of 1 cm is drawn on the silicon wafer 1 on which (iO 2 ) 830 ° is formed. A hydrophilic thermal oxide film is scraped off from the drawn circumferential portion by the dimoyand, and the silicon-based surface is exposed and becomes hydrophobic. If the inside of the circle is the measurement area 3, the circumference including the circumference becomes the non-measurement area 4.

【0021】次に、図1(b)のようにマイクロピペッ
ト5を用いて、0.1%HF/1%H22 水溶液6の
20マイクロリットルを測定領域3に滴下する。水溶液
は、親水性の酸化膜に覆われた測定領域内に広がり、水
溶液は疎水性である円周を越えて非測定領域4に出るこ
とはない。そして、約10分間放置することにより、液
滴が熱酸化膜を溶解するとともに、酸化膜中の不純物を
取り込む。これにより、シリコンウエハ表面の任意の領
域を選択してその不純物を溶解させることができる。
Next, as shown in FIG. 1B, using a micropipette 5, 20 microliters of a 0.1% HF / 1% H 2 O 2 aqueous solution 6 is dropped on the measurement area 3. The aqueous solution spreads in the measurement area covered with the hydrophilic oxide film, and the aqueous solution does not pass over the hydrophobic circumference to the non-measurement area 4. Then, the droplet is left for about 10 minutes to dissolve the thermal oxide film and take in impurities in the oxide film. Thereby, an arbitrary region on the surface of the silicon wafer can be selected to dissolve the impurities.

【0022】図1(b)の操作では、0.1%HF/1
%H22 水溶液6が酸化膜を溶解すると同時に、測定
領域3を親水性から疎水性表面に改質するため、図1
(c)のように液膜が溌水され液滴となり、測定領域3
の1ヶ所に液滴として集まる。
In the operation of FIG. 1B, 0.1% HF / 1
% H 2 simultaneously with O 2 solution 6 to dissolve the oxide film, for reforming the hydrophobic surface of the measuring region 3 from hydrophilic, 1
The liquid film is repelled into liquid droplets as shown in FIG.
At one location.

【0023】次に、図1(d)のように、マイクロピペ
ット5を用いて液滴となった水溶液6を回収する。
Next, as shown in FIG. 1D, the aqueous solution 6 which has become droplets is collected using the micropipette 5.

【0024】こうして、不純物を集められた0.1%H
F/1%H22 水溶液6を、たとえばフレームレス原
子吸光分析装置または誘導結合プラズマ質量分析装置な
どの化学分析装置にかけることにより、0.1%HF/
1%H22 水溶液6中の不純物の量を測定する。
In this way, 0.1% H
By applying the F / 1% H 2 O 2 aqueous solution 6 to a chemical analyzer such as a flameless atomic absorption spectrometer or an inductively coupled plasma mass spectrometer, a 0.1% HF /
The amount of impurities in the 1% H 2 O 2 aqueous solution 6 is measured.

【0025】こうすることにより、酸化膜が形成された
シリコンウエハ1の表面における任意の測定領域につい
ての不純物濃度を測定することができる。さらに、図1
(e)のようにシリコンウエハ1の表面における任意の
測定領域内の不純物を選択的に回収し、同操作をシリコ
ンウエハ面内で繰り返すことによって、不純物の面内分
布を評価することが可能となるものである。
This makes it possible to measure the impurity concentration in an arbitrary measurement region on the surface of the silicon wafer 1 on which the oxide film has been formed. Further, FIG.
It is possible to evaluate the in-plane distribution of impurities by selectively collecting impurities in an arbitrary measurement region on the surface of the silicon wafer 1 and repeating the same operation in the silicon wafer surface as shown in FIG. It becomes.

【0026】なお、任意の測定領域面積に応じて、不純
物を溶解する0.1%HF/1%H22 水溶液6を増
減することや濃度の調整により同様な回収操作が可能で
ある。
A similar recovery operation can be performed by increasing or decreasing the concentration of the 0.1% HF / 1% H 2 O 2 aqueous solution 6 for dissolving impurities or adjusting the concentration according to the area of an arbitrary measurement region.

【0027】また、不純物を溶解する0.1%HF/1
%H22 水溶液6の変わりに、0.1%HF水溶液あ
るいは0.1%HF/1%HNO3 水溶液を用いても同
様な回収が可能である。
Further, 0.1% HF / 1 for dissolving impurities is used.
Similar recovery is possible by using a 0.1% HF aqueous solution or a 0.1% HF / 1% HNO 3 aqueous solution instead of the% H 2 O 2 aqueous solution 6.

【0028】この結果、シリコンウエハ面内に複数個作
製される個々のデバイス領域に対応して、測定領域を設
定し不純物量を測定することにより、シリコンウエハ面
内でデバイスの電気特性と不純物量1対1対応の不純物
量評価が可能となる。
As a result, by setting a measurement region and measuring the impurity amount corresponding to each of a plurality of device regions formed on the silicon wafer surface, the electrical characteristics of the device and the impurity amount are measured on the silicon wafer surface. It is possible to evaluate the amount of impurities on a one-to-one basis.

【0029】なお、このような分析は自然酸化膜をもつ
シリコンウエハにおいても同様に行うことができる。な
お実施例では、ダイヤモンドペンを用いたがこれに限ら
れるものではなく、モース硬度8以上の物質(例えばサ
ファイア)でも同様に行うことができる。
Such an analysis can be similarly performed on a silicon wafer having a natural oxide film. In the embodiment, a diamond pen is used. However, the present invention is not limited to this, and a substance having a Mohs hardness of 8 or more (for example, sapphire) can be similarly used.

【0030】[0030]

【発明の効果】この発明係るシリコンウエハ表面の不純
物分析方法によれば、表面に酸化膜が形成されたシリコ
ンウエハ表面の任意の測定領域の周囲の酸化膜を除去す
る工程と、前記測定領域の酸化膜を溶解し、不純物を含
む溶解液を回収する工程と、回収した溶解液中の不純物
の量を測定する工程とを有するので、シリコンウエハ表
面の任意の測定領域について不純物量を高感度、高精度
に分析でき、極微量な不純物の面内分布を評価すること
が可能となる。
According to the method for analyzing impurities on the surface of a silicon wafer according to the present invention, a step of removing an oxide film around an arbitrary measurement region on the surface of the silicon wafer having an oxide film formed on the surface; Dissolving the oxide film and recovering the solution containing impurities, and measuring the amount of impurities in the recovered solution, the sensitivity of the impurity amount is high for any measurement area on the silicon wafer surface, The analysis can be performed with high accuracy, and the in-plane distribution of a trace amount of impurities can be evaluated.

【0031】また、測定領域周囲の酸化膜を削り取るこ
とによって、測定領域の選択性を維持することができ、
同時に周囲の不純物を除去するため、測定領域の不純物
と分離することができる。
Further, by removing the oxide film around the measurement area, the selectivity of the measurement area can be maintained.
At the same time, since the surrounding impurities are removed, the impurities can be separated from the impurities in the measurement region.

【0032】また、測定領域周囲の酸化膜を機械的に削
り取ることによって、酸化膜を除去し、次の工程での溶
解液が任意の測定領域外に進入することを防ぐことがで
き、測定領域の選択性を維持することができる。
Further, the oxide film around the measurement area is mechanically scraped off to remove the oxide film and prevent the solution in the next step from entering an arbitrary measurement area. Selectivity can be maintained.

【0033】また、測定領域周囲の酸化膜をシリコンや
シリコン酸化膜のモース硬度8より高い物質を用いて、
容易に削り取ることができる。
The oxide film around the measurement area is made of silicon or a substance having a Mohs hardness of higher than 8 of the silicon oxide film,
Can be easily scraped off.

【0034】また、測定領域周囲の酸化膜をモース硬度
10のダイヤモンドを用いて、容易に削り取ることがで
きる。
Further, the oxide film around the measurement area can be easily scraped off using diamond having Mohs hardness of 10.

【0035】また、測定領域の酸化膜の溶解にHF水溶
液または、H22 およびHNO3の少なくとも一つを
添加したHF水溶液を滴下することによって、不純物が
溶解され、液滴が測定領域の1ヶ所に集まるので容易に
溶解液を回収することができる。
Further, by dropping an aqueous HF solution or an aqueous HF solution to which at least one of H 2 O 2 and HNO 3 is added to dissolve the oxide film in the measurement region, the impurities are dissolved, and the droplet is removed in the measurement region. Since it is collected in one place, the solution can be easily collected.

【0036】また、溶解液の不純物濃度をフレームレス
原子吸光装置または誘導結合プラズマ質量分析装置を用
いて測定することによって、高感度に不純物量を測定す
ることができ、シリコンウエハ表面の極微量の不純物に
ついて面内分布を調べることができる。
Further, by measuring the impurity concentration of the solution using a flameless atomic absorption spectrometer or an inductively coupled plasma mass spectrometer, the amount of impurities can be measured with high sensitivity, and a very small amount of impurities on the surface of the silicon wafer can be measured. The in-plane distribution of impurities can be examined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 (a)〜(e)は本発明の一実施の形態に係
るシリコンウエハ表面の不純物分析方法を工程順に示す
図である。
FIGS. 1A to 1E are diagrams showing a method of analyzing impurities on the surface of a silicon wafer according to an embodiment of the present invention in the order of steps.

【符号の説明】[Explanation of symbols]

1 シリコンウエハ 2 ダイヤモンド
ペン 3 測定領域 4 非測定領域 5 マイクロピペット 6 HF/H2
2 水溶液
Reference Signs List 1 silicon wafer 2 diamond pen 3 measuring area 4 non-measuring area 5 micropipette 6 HF / H 2 O
2 aqueous solution

フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/66 G01N 1/28 X H01L 21/306 D Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/66 G01N 1/28 X H01L 21/306 D

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 表面に酸化膜が形成されたシリコンウエ
ハ表面の任意の測定領域の周囲の酸化膜を除去する工程
と、前記測定領域の酸化膜を溶解し、不純物を含む溶解
液を回収する工程と、回収した溶解液中の不純物の量を
測定する工程とを有することを特徴とするシリコンウエ
ハ表面の不純物分析方法。
1. A step of removing an oxide film around an arbitrary measurement region on the surface of a silicon wafer having an oxide film formed on the surface, dissolving the oxide film in the measurement region, and collecting a solution containing impurities. A method for analyzing impurities on the surface of a silicon wafer, comprising: a step of measuring an amount of impurities in the recovered solution.
【請求項2】 任意の測定領域周囲の酸化膜を除去する
工程は、測定領域の周囲の酸化膜を削り取ることを特徴
とする請求項1記載のシリコンウエハ表面の不純物分析
方法。
2. The method for analyzing impurities on a silicon wafer surface according to claim 1, wherein the step of removing an oxide film around an arbitrary measurement region includes shaving off the oxide film around the measurement region.
【請求項3】 酸化膜の削り取りは、機械的に削り取る
ことを特徴とする請求項2記載のシリコンウエハ表面の
不純物分析方法。
3. The method for analyzing impurities on a silicon wafer surface according to claim 2, wherein the oxide film is cut off mechanically.
【請求項4】 酸化膜の削り取りは、モース硬度8以上
の材質を用いることを特徴とする請求項3記載のシリコ
ンウエハ表面の不純物分析方法。
4. The method for analyzing impurities on a silicon wafer surface according to claim 3, wherein the oxide film is shaved using a material having a Mohs hardness of 8 or more.
【請求項5】 酸化膜の削り取りは、ダイヤモンドまた
はダイヤモンドライクカーボンを含む硬質材を用いるこ
とを特徴とする請求項3記載のシリコンウエハ表面の不
純物分析方法。
5. The method for analyzing impurities on a silicon wafer surface according to claim 3, wherein the oxide film is shaved using a hard material containing diamond or diamond-like carbon.
【請求項6】 測定領域の酸化膜の溶解は、HF水溶液
またはH22 およびHNO3 の少なくとも一つを添加
したHF水溶液を滴下して行うことを特徴とする請求項
1記載のシリコンウエハ表面の不純物分析方法。
6. The silicon wafer according to claim 1, wherein the oxide film in the measurement area is dissolved by dropping an aqueous HF solution or an aqueous HF solution to which at least one of H 2 O 2 and HNO 3 is added. Surface impurity analysis method.
【請求項7】 不純物の量を測定する工程は、フレーム
レス原子吸光装置または誘導結合プラズマ質量分析装置
を用いて行うことを特徴とする請求項1記載のシリコン
ウエハ表面の不純物分析方法。
7. The method for analyzing impurities on a silicon wafer surface according to claim 1, wherein the step of measuring the amount of impurities is performed using a frameless atomic absorption spectrometer or an inductively coupled plasma mass spectrometer.
JP1256898A 1998-01-26 1998-01-26 Method for analyzing impurity on silicon wafer surface Pending JPH11211633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1256898A JPH11211633A (en) 1998-01-26 1998-01-26 Method for analyzing impurity on silicon wafer surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1256898A JPH11211633A (en) 1998-01-26 1998-01-26 Method for analyzing impurity on silicon wafer surface

Publications (1)

Publication Number Publication Date
JPH11211633A true JPH11211633A (en) 1999-08-06

Family

ID=11808968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1256898A Pending JPH11211633A (en) 1998-01-26 1998-01-26 Method for analyzing impurity on silicon wafer surface

Country Status (1)

Country Link
JP (1) JPH11211633A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139255A (en) * 2008-12-09 2010-06-24 Covalent Materials Corp Method for analysis of impurity in ceramics member
JP2013024605A (en) * 2011-07-15 2013-02-04 Institute Of Physical & Chemical Research Substrate for biochemical reaction, system for processing biochemical reaction, and method for draining liquid from the substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139255A (en) * 2008-12-09 2010-06-24 Covalent Materials Corp Method for analysis of impurity in ceramics member
JP2013024605A (en) * 2011-07-15 2013-02-04 Institute Of Physical & Chemical Research Substrate for biochemical reaction, system for processing biochemical reaction, and method for draining liquid from the substrate

Similar Documents

Publication Publication Date Title
US20030073240A1 (en) Method for evaluating concentration of metallic impurities in silicon wafer
JP3336898B2 (en) Method and apparatus for collecting impurities on silicon wafer surface
JPH11211633A (en) Method for analyzing impurity on silicon wafer surface
JP2004028787A (en) Total reflection fluorescent x-ray analysis method, total reflection fluorescent x-ray analysis pretreatment device, and total reflection fluorescent x-ray analyzer
JPH07161791A (en) Impurity analyzing method of semiconductor substrate
JP3436123B2 (en) Method for analyzing metal impurities on silicon wafer surface and method for pretreatment thereof
JP2001242052A (en) Method for analyzing impurity in semiconductor substrate or chemicals
US7601541B2 (en) Method for detecting Cu concentration of silicon substrate
JP2005249546A (en) Analysis method for metal element on wafer surface
JP3532786B2 (en) Method for preparing sample for analysis of metal impurities contained in synthetic resin and method for measuring metal impurities using the same
JP4877897B2 (en) Method for removing impurities from silicon wafer and analysis method
US5055413A (en) Method of measuring impurities in oxide films using a meltable sample collection stick
JP2003202278A (en) Sample degrading device and impurity analyzing method
JP2005077133A (en) Analyzing sample producing method, analyzing method of substance present on semiconductor substrate and analyzing sample producing apparatus
JPH02272359A (en) Method for measuring quantity of impurity on wafer surface
JPH05283381A (en) Recovery of contaminant metal element on silicon wafer surface
JPH1114618A (en) Analytical equipment and analytical method of impurities of semiconductor wafer
JP2002184828A (en) Method of analyzing metallic impurities in semiconductor substrate
JP4232457B2 (en) Method for analyzing metal impurities in surface oxide film on silicon substrate surface
JPH0979957A (en) Method and device for extracting sample
JP3476373B2 (en) Sample processor for highly sensitive analysis of impurities in siliconaceous analysis sample and analysis method using the same
JP2701813B2 (en) Method for analyzing impurities on semiconductor substrate surface and thin film on substrate
JPH07130808A (en) Analysis of impurity in wafer surface
KR20000067357A (en) Method for collection contamination sample of semiconductor wafers surface
JP2000107672A (en) Semiconductor substrate surface impurity recovering device