JPH11210928A - Burying structure of pipe - Google Patents

Burying structure of pipe

Info

Publication number
JPH11210928A
JPH11210928A JP10030439A JP3043998A JPH11210928A JP H11210928 A JPH11210928 A JP H11210928A JP 10030439 A JP10030439 A JP 10030439A JP 3043998 A JP3043998 A JP 3043998A JP H11210928 A JPH11210928 A JP H11210928A
Authority
JP
Japan
Prior art keywords
pipe
backing
deformation
fill
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10030439A
Other languages
Japanese (ja)
Inventor
Atsushi Higashida
淳 東田
Joji Hinobayashi
譲二 日野林
Mikio Inuki
幹雄 井貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP10030439A priority Critical patent/JPH11210928A/en
Publication of JPH11210928A publication Critical patent/JPH11210928A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain the increase of pipe deflection due to ground deformation, by placing a pipe with outer periphery surrounded with back-fill material on an original ground, and expanding the width of a back-fill part formed on the pipe periphery with the back-fill material from upward depth to downward depth. SOLUTION: Soil pressure applied to a back-fill part 2 due to the settling of poor ground as banking can be applied to the back-fill part 2 as a horizontal component force, using tilting of the back-fill part 2 of trapezoidal cross section. At this time, silica sand with uniform diameter as back-fill material 20 constituting the back-fill part 2 can effectively transfer the force impressed onto the tilting surface to both sides of a pipe 1 without absorbing the force in the back-fill part 2. By reducing foundation thickness, the back-fill material 20 on the lower side of the back-fill part 2 can be prevented from escaping to the original ground 3 side. Thus, by preventing soil pressure from vertically crushing the pipe 1 by the load of soil pressure from its side, excessive deformation of the pipe 1 can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、管の埋設技術に関
し、特に、高密度ポリエチレン排水管等のたわみ性のあ
る管を盛土下に埋設する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for burying pipes, and more particularly to a technique for burying flexible pipes such as high-density polyethylene drain pipes under embankment.

【0002】[0002]

【従来の技術】高密度ポリエチレン排水管(以下、HD
PE管という)は、たわみ性に富み、地盤変形に良く追
随するため、他の材質の管では到底耐えられないような
過酷な条件で埋設されることが多い。例えば、谷部を埋
める造成地では、口径60cm〜1mのHDPE管が5
0mにも及ぶ盛土の下に埋設されるような施工例も少な
くない。このような盛土の場合の管の埋設設計法は確立
しておらず、浅埋設を対象とする現行設計法の適用には
不安が残る。
2. Description of the Related Art High-density polyethylene drain pipes (hereinafter HD)
PE pipes) have high flexibility and follow ground deformation well, and are often buried under severe conditions that pipes of other materials cannot withstand at all. For example, in a development site that fills a valley, HDPE pipes with a diameter of 60 cm to 1 m
There are many construction examples that are buried under an embankment of 0 m. The method of burying pipes for such embankments has not been established, and there is concern about the application of the current design method for shallow burial.

【0003】上記のHDPE管のクリープ破壊やバック
リング破壊は、たわみが15%で生じるとされている。
しかも、HDPE管の長期の安定性を考えると、このよ
うなプラスチック管に特有なクリープ変形、すなわちポ
リエチレン自身の弾性係数の低下を考慮して、埋設時の
最大たわみ率を10%程度に抑える必要があると思われ
る。
It is said that the creep fracture and the buckling fracture of the HDPE tube occur at a deflection of 15%.
Moreover, considering the long-term stability of the HDPE pipe, it is necessary to suppress the maximum deflection rate at the time of embedding to about 10% in consideration of creep deformation peculiar to such a plastic pipe, that is, a decrease in the elastic modulus of polyethylene itself. There seems to be.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、地中に
埋設したHDPE管は、地震による地盤の液状化、地下
水水位の上昇による地盤沈下等により大きな荷重を受
け、上下方向に押しつぶされるたわみを生じ、はなはだ
しい場合には、管頂が凹んだハート形の断面に変形す
る。こうしたたわみは、盛土の土質にもよるが、無対策
のまま埋設された内径1mのHDPEコルゲート管につ
いて、細粒分の多い砂質土と粘性土の混合からなる現地
発生土で約2m埋戻した時点で30%に達した例もあ
る。したがって、埋設管のたわみを上記のように10%
あるいはそれ以下に抑えることは容易ではない。
However, the HDPE pipe buried in the ground receives a large load due to liquefaction of the ground due to an earthquake, land subsidence due to an increase in the level of groundwater, etc., causing a deflection that is crushed in the vertical direction, In extreme cases, the tube deforms into a heart-shaped cross section with a concave top. Such a deflection depends on the soil quality of the embankment, but about 1 m of HDPE corrugated pipe buried without any measures is backfilled by about 2 m with locally generated soil consisting of a mixture of sandy soil and cohesive soil with many fine grains. In some cases, it reached 30% at that point. Therefore, the deflection of the buried pipe is reduced by 10% as described above.
Or it is not easy to keep it below that.

【0005】ところで、埋設管の変形の5大要因とし
て、盛土材料の土質、荷重、水の影響、裏込め材料の種
類と締固め密度及び埋設形式が挙げられる。したがっ
て、これらの各要因に対する適切な対策あるいはそれら
の組合せで、地盤の変形による埋設管のたわみを許容範
囲内に収めることができる。
[0005] By the way, the five major factors of the deformation of the buried pipe include the soil properties of the embankment material, the load, the influence of water, the type and compaction density of the backfill material, and the burial type. Therefore, the deflection of the buried pipe due to deformation of the ground can be kept within an allowable range by appropriate measures against these factors or a combination thereof.

【0006】そこで、本発明は、地盤変形による管たわ
みの増大を埋設形式の改善により抑える管の埋設構造を
提供することを第1の目的とする。
SUMMARY OF THE INVENTION It is a first object of the present invention to provide a pipe burying structure for suppressing an increase in pipe deflection due to ground deformation by improving a burying type.

【0007】次に、本発明は、上記埋設形式の採用に伴
い必要とされる裏込材の所要量を可及的に少なくしなが
ら上記所期の目的を達成することを第2の目的とする。
Next, a second object of the present invention is to achieve the above-mentioned desired object while minimizing the required amount of backing material necessary for adopting the above-mentioned buried type. I do.

【0008】更に、本発明は、上記埋設形式において、
管たわみの増大を抑える裏込厚を得ることを第3の目的
とする。
Further, the present invention provides the above buried type,
A third object is to obtain a backing thickness that suppresses an increase in tube deflection.

【0009】そして、本発明は、地盤の水侵の前後を通
じて裏込材の変形特性の変化を小さくして、上記埋設形
式による管たわみの抑制効果を有効に発揮させることを
第4の目的とする。
A fourth object of the present invention is to reduce the change in the deformation characteristics of the backing material before and after water inundation of the ground, and to effectively exert the effect of suppressing the pipe deflection due to the above-mentioned buried type. I do.

【0010】[0010]

【課題を解決するための手段】上記第1の目的を達成す
るため、本発明は、裏込材により外周を囲んで管を原地
盤上に載置し、盛土下に埋設する管の埋設構造におい
て、裏込材により管外周に形成する裏込部を、管の上方
深度から下方深度に向かって拡幅させたことを特徴とす
る。
SUMMARY OF THE INVENTION In order to achieve the first object, the present invention provides a pipe burying structure in which a pipe is placed on an original ground with a backing material surrounding the outer circumference and buried under an embankment. Wherein the backing portion formed on the outer periphery of the pipe by the backing material is widened from an upper depth to a lower depth of the pipe.

【0011】上記第2の目的を達成するため、前記裏込
部の管中央深度での幅を、管外径の少なくとも2倍とさ
れる。
In order to achieve the second object, the width of the backing portion at the depth of the center of the pipe is at least twice the outer diameter of the pipe.

【0012】上記第3の目的を達成するため、前記裏込
部により原地盤と管の下方に形成される基礎厚を、管外
径に比して薄く構成される。
In order to achieve the third object, the base thickness formed below the original ground and the pipe by the backing portion is made thinner than the outer diameter of the pipe.

【0013】上記第4の目的を達成するため、前記裏込
材を細粒分含有率が低い地盤材料とされる。
In order to achieve the fourth object, the backing material is a ground material having a low fine particle content.

【0014】[0014]

【作用】上記請求項1記載の構成では、盛土の沈下によ
り裏込部にかかる土圧を、管の上方深度から下方深度に
向かって拡幅させた裏込部の傾斜を利用して、水平方向
の分力として裏込部を介して管の両側に伝達させて、管
の上下方向の押しつぶし力に抗する力として作用させる
ことができる。
According to the first aspect of the present invention, the earth pressure applied to the backing portion due to the settlement of the embankment is increased in the horizontal direction by using the inclination of the backing portion which is widened from the upper depth to the lower depth of the pipe. Can be transmitted to both sides of the tube via the backing portion, and can act as a force against the vertical crushing force of the tube.

【0015】また、請求項2記載の構成では、必要最小
限の裏込量で管のたわみを許容範囲内に収めることがで
きる。
Further, according to the configuration of the second aspect, the deflection of the pipe can be kept within an allowable range with a minimum necessary backing amount.

【0016】更に、請求項3記載の構成では、盛土の沈
下に伴い裏込部が管の両側で下方にずれ込む変形を防い
で、土圧の水平方向分力を有効に管の両側に作用させる
ことができる。
Further, according to the third aspect of the invention, the backing portion is prevented from being displaced downward on both sides of the pipe due to the settlement of the embankment, and the horizontal component of the earth pressure is effectively applied to both sides of the pipe. be able to.

【0017】次に、請求項4記載の構成では、盛土の水
侵による裏込材の変形係数の減少割合を小さくし、かつ
水侵後の裏込材の変形係数を大きく維持することができ
るため、沈下に伴う土圧の水平方向分力を裏込部を介し
て均一に管に伝達することができる。
According to the fourth aspect of the present invention, the rate of decrease in the deformation coefficient of the backing material due to flooding of the embankment can be reduced, and the deformation coefficient of the backing material after flooding can be maintained large. Therefore, the horizontal component of the earth pressure accompanying the settlement can be uniformly transmitted to the pipe through the backing portion.

【0018】[0018]

【発明の実施の形態】以下、図面に沿い、本発明の実施
形態を説明する。図1は本発明を適用した管の埋設構造
を断面で示す。図に示すように、本形態において、HD
PE管からなる管1は、裏込材20により外周を囲んで
原地盤3上に載置され、盛土4下に埋設される。そし
て、本発明に従い、裏込材20により管外周に形成する
裏込部2は、管1の上方深度から下方深度に向かって拡
幅させている。この形態では、裏込部2は、断面台形状
とされ、台形の下底と両斜辺とのなす角は、左右対称に
それぞれ45°とされている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a buried structure of a pipe to which the present invention is applied. As shown in FIG.
The pipe 1 made of a PE pipe is placed on the original ground 3 around the outer periphery by a backing material 20 and buried under the embankment 4. Then, according to the present invention, the backing portion 2 formed on the outer periphery of the pipe by the backing material 20 is widened from the upper depth to the lower depth of the pipe 1. In this embodiment, the backing portion 2 has a trapezoidal cross section, and the angle between the lower base of the trapezoid and the two oblique sides is 45 ° symmetrically.

【0019】図2はこうした本発明に従う埋設形式と、
他の埋設形式とを比較して、変形メカニズムを模式化し
て示すもので、図の(A)に示すような裏込めを行なわ
ない形式のものでは、地盤沈下に伴う土圧の水平方向力
(図に黒塗り矢印で示す)は小さいため、管の上下方向
の押しつぶし変形は大きくなる。一方、図の(B)に示
すような断面逆台形状の裏込めを行なう形式の場合、裏
込めを行なわない場合に比して水平方向の土圧の作用は
大きくなるが、盛土の変形による土の動き(図に編みか
け矢印で示す)で管両側の裏込部の外方へのずれ込み
(図にずれの境界を点線で示す)が生じ、水平方向の力
はそがれる。これに対して、本発明に従う図の(C)に
示す形式では、盛土の動きにより生じる土圧の水平方向
の分力を管の両側に有効に作用させることができる。
FIG. 2 shows such a buried type according to the present invention,
In comparison with other buried types, the deformation mechanism is shown schematically. In the type without backfilling as shown in (A) of the figure, the horizontal force of earth pressure accompanying ground subsidence ( (Indicated by black arrows in the figure) is small, so that the vertical crushing deformation of the pipe becomes large. On the other hand, in the case of the backfilling of the inverted trapezoidal cross section as shown in FIG. 3 (B), the action of the earth pressure in the horizontal direction is larger than in the case where backfilling is not performed. The movement of the soil (knitted arrow in the figure) causes the backing portions on both sides of the pipe to slip outward (the boundary of the shift is shown by a dotted line in the figure), and the horizontal force is released. On the other hand, in the form shown in FIG. 3C according to the present invention, the horizontal component of the earth pressure generated by the movement of the embankment can be effectively applied to both sides of the pipe.

【0020】図3は上記3つの埋設形式と変形率の関係
を示すもので、図2の(A)に示すような裏込めを行な
わないものでは、変形率δがクリープ破壊やバックリン
グ破壊が生じるとされる変形率δm a x 値の15%をは
るかに超え、図2の(B)に示すような断面逆台形状の
裏込めを行なった場合、変形率δm a x 値の15%とな
り、本発明に従う図2の(C)に示す形式では、変形率
δm a x 値に対して十分な安全を見込んだ許容値のδ=
7%の許容変形率内に収めることができるのが分かる。
FIG. 3 shows the relationship between the above three embedding types and the deformation rate. In the case where backfilling is not performed as shown in FIG. If the reverse trapezoidal cross section as shown in FIG. 2B is backfilled as shown in FIG. 2B, the deformation ratio δmax value is 15% of the deformation ratio δmax value, which is far more than 15%. In the form shown in FIG. 2 (C) according to the invention, the allowable value δ =
It can be seen that the deformation ratio can be kept within the allowable deformation rate of 7%.

【0021】次に、裏込部2は、図1に示すように、管
中央深度での裏込幅Bsが、管外径Dの2倍とされてい
る。図4は裏込幅Bsの大小に応じた変形メカニズムの
違いを示すもので、裏込幅Bsが大きい方が土の抵抗が
大きいことが分かる。図5は裏込幅Bsと管1の変形率
の関係を示すもので、裏込幅の管外径に対する割合Bs
/Dが2未満では、許容値のδ=7%を超えてしまい、
Bs/Dを2以上とすることで、許容値のδ=7%以下
に抑えることができるのが分かる。そして、Bs/Dが
2以上では、この値を大きくすることで変形率の低下は
見られるものの、Bs/Dの増加に対する変形率の減少
は漸減することがわかる。そこで、この形態では、必要
最小限の裏込幅Bsとして管外径Dの2倍を選択してい
る。
Next, as shown in FIG. 1, the backing portion 2 has a backing width Bs at the center depth of the pipe that is twice the outer diameter D of the pipe. FIG. 4 shows the difference in the deformation mechanism depending on the size of the backing width Bs. It can be seen that the larger the backing width Bs, the greater the resistance of the soil. FIG. 5 shows the relationship between the backing width Bs and the deformation rate of the pipe 1, and the ratio Bs of the backing width to the pipe outer diameter.
If / D is less than 2, the allowable value δ exceeds 7%,
It is understood that by setting Bs / D to 2 or more, the allowable value δ can be suppressed to 7% or less. When the value of Bs / D is 2 or more, a decrease in the deformation rate can be seen by increasing this value, but the decrease in the deformation rate with respect to the increase in Bs / D gradually decreases. Therefore, in this embodiment, twice the tube outer diameter D is selected as the minimum necessary backing width Bs.

【0022】また、裏込部2により原地盤3と管1の下
方に形成される基礎厚Hbは、図1に示すように管外径
Dに比して十分薄くされており、この形態では、管外径
Dの0.22倍とされている。図6は基礎厚Hbの大小
に応じた変形メカニズムの違いを示すもので、基礎厚H
bが大き過ぎると、裏込材20が管1の両側下方にずれ
込む変形により管側にかかる土の抵抗が小さくなる。し
たがって、図7に基礎厚Hbと変形率δの関係を示すよ
うに、基礎厚の管外径に対する割合Hb/Dが0.6以
上では変形率δが上記許容値の7%以上となり、それ未
満では変形率δの低下は見られるものの、Hb/Dの減
少に対する変形率δの減少は漸減することがわかる。一
方、裏込部2の上底は、図1に示すように管1の外周に
接する位置とされている。これは、管上方の裏込厚は管
の変形率δの改善に格別関与しないため、必要最小限の
裏込厚としたことによる。
The base thickness Hb formed below the original ground 3 and the pipe 1 by the backing portion 2 is sufficiently thinner than the pipe outer diameter D as shown in FIG. , 0.22 times the pipe outer diameter D. FIG. 6 shows the difference in the deformation mechanism according to the magnitude of the base thickness Hb.
If b is too large, the backing material 20 is deformed to be shifted downward on both sides of the pipe 1, so that the resistance of the soil applied to the pipe is reduced. Accordingly, as shown in FIG. 7, the relationship between the base thickness Hb and the deformation rate δ is shown. When the ratio Hb / D of the base thickness to the pipe outer diameter is 0.6 or more, the deformation rate δ becomes 7% or more of the allowable value. When the value is less than the above, it can be seen that although the deformation ratio δ decreases, the decrease in the deformation ratio δ with respect to the decrease in Hb / D gradually decreases. On the other hand, the upper bottom of the backing portion 2 is located in contact with the outer periphery of the pipe 1 as shown in FIG. This is because the backing thickness above the pipe does not significantly affect the improvement of the deformation rate δ of the pipe, so that the backing thickness is set to the minimum necessary.

【0023】そして、裏込材20は、細粒分含有率が低
い砂又は砕石からなる地盤材料とされ、この形態では、
珪砂が用いられている。図8はシルト質砂、まさ土及び
珪砂の通過重量百分率を示すもので、シルト質砂(図に
実線で示す)やまさ土(同じく一点鎖線で示す)の場合
は、最大粒径が2.0mm程度で粒径のばらつきが大き
く、細粒分を30%程度含むのに対して、珪砂(図に破
線で示す)の場合は、最大粒径が1.4mm程度で、細
粒分を含まないことが分かる。
The backing material 20 is a ground material made of sand or crushed stone having a low fine particle content.
Silica sand is used. FIG. 8 shows the passing weight percentage of silty sand, Masato and quartz sand. In the case of silty sand (shown by a solid line in the figure) and Masato (also shown by a dashed line), the maximum particle size is 2.0 mm. In the case of silica sand (indicated by a broken line in the figure), the maximum particle size is about 1.4 mm and does not include fine particles. You can see that.

【0024】このように、粒径がある程度大きく一様な
珪砂のような裏込材の場合、水侵による裏込材の変形係
数の減少割合を小さくし、かつ水侵後の裏込材の変形係
数を大きく維持することができるため、地盤沈下に伴う
土圧の水平方向分力を裏込部を介して均一に管に伝達す
ることができる。
As described above, in the case of the backing material such as silica sand having a relatively large particle size, the reduction rate of the deformation coefficient of the backing material due to water erosion is reduced, and the backing material after water immersion is reduced. Since the deformation coefficient can be kept large, the horizontal component of the earth pressure accompanying the land subsidence can be uniformly transmitted to the pipe through the backing portion.

【0025】以上、詳述したように、上記実施形態によ
れば、盛土としての軟弱地盤の沈下により裏込部2にか
かる土圧を、断面台形状の裏込部2の傾斜を利用して、
水平方向の分力として裏込部2に作用させることができ
る。その際、裏込部2を構成する裏込材20としての粒
径の一様に大きな珪砂が、傾斜面にかかる力を裏込部2
中で吸収してしまうことなく、有効に管1の両側に伝達
することができる。また、基礎厚Hbを小さくすること
で、裏込部2下方の裏込材20の原地盤3側への逃げを
防ぐことができる。かくして上記実施形態の構成によれ
ば、土圧による管1の上下方向の押しつぶしを側方から
の土圧の負荷により防いで、管1の過剰変形を防ぐこと
ができる。
As described in detail above, according to the above embodiment, the earth pressure applied to the backing portion 2 due to the subsidence of the soft ground as the embankment is obtained by utilizing the inclination of the backing portion 2 having a trapezoidal cross section. ,
The component force in the horizontal direction can act on the backing portion 2. At this time, silica sand having a uniform particle size as the backing material 20 constituting the backing portion 2 applies the force applied to the inclined surface to the backing portion 2.
It can be effectively transmitted to both sides of the tube 1 without being absorbed inside. Further, by reducing the base thickness Hb, it is possible to prevent the backing material 20 below the backing portion 2 from escaping to the original ground 3 side. Thus, according to the configuration of the above-described embodiment, the vertical deformation of the pipe 1 due to the earth pressure can be prevented by the load of the earth pressure from the side, and the excessive deformation of the pipe 1 can be prevented.

【0026】以上、本発明を特定のHDPE管に適用し
た一実施形態に基づき詳説したが、本発明は、他の材質
の管にも広く適用可能なものである。
Although the present invention has been described in detail based on one embodiment in which the present invention is applied to a specific HDPE pipe, the present invention can be widely applied to pipes of other materials.

【0027】[0027]

【発明の効果】本発明の請求項1に記載の構成によれ
ば、盛土の沈下により裏込部にかかる土圧を、管の上方
深度から下方深度に向かって拡幅させた裏込部の傾斜を
利用して、水平方向の分力として裏込部を介して管の両
側に伝達させて管の上下方向の押しつぶしに抗する土の
抵抗力として作用させることができ、それにより管のた
わみを減少させることができる。
According to the structure of the first aspect of the present invention, the inclination of the backing portion is such that the earth pressure applied to the backing portion due to the settlement of the embankment is increased from the upper depth to the lower depth of the pipe. Utilizing this, it can be transmitted as a horizontal component to both sides of the pipe through the backing and act as soil resistance against crushing in the vertical direction of the pipe, thereby reducing the deflection of the pipe. Can be reduced.

【0028】次に、請求項2に記載の構成によれば、必
要最小限の裏込めで管の変形を破壊を生じない許容範囲
内に収めることができる。
Next, according to the configuration of the second aspect, the deformation of the pipe can be kept within a permissible range that does not cause breakage with the minimum necessary backfill.

【0029】更に、請求項3に記載の構成によれば、盛
土の沈下に伴い裏込部が管の両側で下方にずれ込む変形
を防いで、土圧の水平方向分力を有効に管の両側に作用
させ、管の上下方向のたわみを減少させることができ
る。しかも、裏込厚を小さくすることができるので、裏
込材の使用量を抑えることができる。
According to the third aspect of the present invention, the backing portion is prevented from being displaced downward on both sides of the pipe due to the settlement of the embankment, and the horizontal component of the earth pressure is effectively reduced on both sides of the pipe. To reduce the vertical deflection of the tube. Moreover, since the backing thickness can be reduced, the amount of backing material used can be reduced.

【0030】そして、請求項4に記載の構成によれば、
盛土沈下に伴う土圧を裏込部を介して均一に管に伝達す
ることができる。また、盛土沈下の繰り返しに対する土
圧の伝達特性の変化を小さく抑えることができる。
According to the structure of the fourth aspect,
The earth pressure accompanying the settlement of the embankment can be uniformly transmitted to the pipe through the backing part. In addition, it is possible to suppress a change in the transmission characteristic of the earth pressure due to the repetition of the embankment settlement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の管埋設構造の一実施形態を示す断面図
である。
FIG. 1 is a sectional view showing an embodiment of a pipe burying structure according to the present invention.

【図2】実施形態の管埋設構造と他の埋設形式とを対比
して変形メカニズムを示す模式的断面図である。
FIG. 2 is a schematic cross-sectional view showing a deformation mechanism by comparing the pipe burying structure of the embodiment with another burying type.

【図3】埋設形式と変形率の関係を示すグラフである。FIG. 3 is a graph showing a relationship between an embedding type and a deformation rate.

【図4】裏込幅による変形メカニズムの違いを示す模式
的断面図である。
FIG. 4 is a schematic cross-sectional view showing a difference in a deformation mechanism depending on a backing width.

【図5】裏込幅と変形率の関係を示すグラフである。FIG. 5 is a graph showing the relationship between the backing width and the deformation ratio.

【図6】基礎厚による変形メカニズムの違いを示す模式
的断面図である。
FIG. 6 is a schematic sectional view showing a difference in a deformation mechanism depending on a base thickness.

【図7】基礎厚と変形率の関係を示すグラフである。FIG. 7 is a graph showing a relationship between a base thickness and a deformation rate.

【図8】各裏込材の細粒分含有率を示すグラフである。FIG. 8 is a graph showing the fine particle content of each backing material.

【符号の説明】[Explanation of symbols]

1 管 2 裏込部 3 原地盤 4 盛土 20 裏込材 DESCRIPTION OF SYMBOLS 1 Pipe 2 Backing part 3 Original ground 4 Embankment 20 Backing material

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 裏込材により外周を囲んで管を原地盤上
に載置し、盛土下に埋設する管の埋設構造において、裏
込材により管外周に形成する裏込部を、管の上方深度か
ら下方深度に向かって拡幅させたことを特徴とする管の
埋設構造。
In a buried structure of a pipe in which a pipe is placed on the original ground around an outer periphery by a backing material and buried under an embankment, a backing part formed on the outer periphery of the pipe by the backing material is provided. A buried pipe structure characterized by being widened from an upper depth to a lower depth.
【請求項2】 前記裏込部の管中央深度での幅を、管外
径の少なくとも2倍としたことを特徴とする請求項1記
載の管の埋設構造。
2. The buried structure for a pipe according to claim 1, wherein the width of the backing portion at the center depth of the pipe is at least twice the outer diameter of the pipe.
【請求項3】 前記裏込部により原地盤と管の下方に形
成される基礎厚を、管外径に比して薄くしたことを特徴
とする請求項1又は2記載の管の埋設構造。
3. The buried pipe structure according to claim 1, wherein a base thickness formed below the original ground and the pipe by the backing portion is made thinner than an outer diameter of the pipe.
【請求項4】 前記裏込材を細粒分含有率が低い地盤材
料としたことを特徴とする請求項1、2又は3記載の管
の埋設構造。
4. The pipe burying structure according to claim 1, wherein the backing material is a ground material having a low fine particle content.
JP10030439A 1998-01-28 1998-01-28 Burying structure of pipe Pending JPH11210928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10030439A JPH11210928A (en) 1998-01-28 1998-01-28 Burying structure of pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10030439A JPH11210928A (en) 1998-01-28 1998-01-28 Burying structure of pipe

Publications (1)

Publication Number Publication Date
JPH11210928A true JPH11210928A (en) 1999-08-06

Family

ID=12303979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10030439A Pending JPH11210928A (en) 1998-01-28 1998-01-28 Burying structure of pipe

Country Status (1)

Country Link
JP (1) JPH11210928A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267567A (en) * 2007-04-24 2008-11-06 National Agriculture & Food Research Organization Shallow burying construction method of underground structure by geotextile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267567A (en) * 2007-04-24 2008-11-06 National Agriculture & Food Research Organization Shallow burying construction method of underground structure by geotextile

Similar Documents

Publication Publication Date Title
Van Eekelen et al. Geosynthetic-reinforced pile-supported embankments: state of the art
KR102161458B1 (en) Double pile assembly for reducing negative skin friction
JP2007247165A (en) Base isolation structure and base isolation device
JP7333291B2 (en) Foundation foot protection structure and foundation foot protection method
JPH11210928A (en) Burying structure of pipe
JP2000008623A (en) Restoration method of structure
JP5954351B2 (en) Artificial shallow ground or tidal flat and its repair method
JP6361889B2 (en) Artificial shallow or tidal flat
JP2001011847A (en) Mounting load increasing and decreasing method
JP6213749B2 (en) Artificial shallow or tidal flat
JP3350694B2 (en) Connection structure of pile type pier with earth retaining wall
JP3740600B2 (en) Structure for preventing settlement of underground structures
JP2006193900A (en) Manhole burial structure
JP2007120240A (en) Foundation structure of building in weak ground
JPH10131208A (en) Construction method for preventing ground from lateral flow
Kasper et al. Foundation of an immersed tunnel on marine clay improved by cement deep mixing and sand compaction piles
JP4194679B2 (en) Ground improvement method to prevent liquefaction
JP2524537B2 (en) Foundation structure of underground structure
JPH10204857A (en) Backfilling method for pipeline
Wu et al. On seismic design of retaining walls
Roslan et al. Seepage Analysis of Senggarang Coastal Embankment with Chemically-Stabilised Backfill
JPH01174729A (en) Method for burying pipe
JP2009046839A (en) Unfloating structure of manhole
Lew et al. Liquefaction basics
JPH0516495B2 (en)