JPH11210446A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JPH11210446A
JPH11210446A JP10011759A JP1175998A JPH11210446A JP H11210446 A JPH11210446 A JP H11210446A JP 10011759 A JP10011759 A JP 10011759A JP 1175998 A JP1175998 A JP 1175998A JP H11210446 A JPH11210446 A JP H11210446A
Authority
JP
Japan
Prior art keywords
catalyst
lean
air
fuel ratio
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10011759A
Other languages
Japanese (ja)
Other versions
JP3412491B2 (en
Inventor
Hitoshi Ishii
仁 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP01175998A priority Critical patent/JP3412491B2/en
Publication of JPH11210446A publication Critical patent/JPH11210446A/en
Application granted granted Critical
Publication of JP3412491B2 publication Critical patent/JP3412491B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0835Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/02Exhaust treating devices having provisions not otherwise provided for for cooling the device
    • F01N2260/022Exhaust treating devices having provisions not otherwise provided for for cooling the device using air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/12Tubes being corrugated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0684Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having more than one coating layer, e.g. multi-layered coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain HC purification effect to the maximum extent while suppressing NOx exhaust by providing lean NOx catalyst and HC adsorption catalyst in the order from the upstream side in an exhaust passage and controlling an air-fuel ratio of mixed air to a lean state while lean NOx catalyst is active and HC is removed from an HC adsorption material. SOLUTION: In an exhaust manifold of an air exhaust passage 17, an oxygen sensor 18 detecting rich or lean state of an air-fuel ratio is provided, a lean NOx catalyst 19 is provided on the downstream side thereof, and an HC adsorption catalyst 20 provided with a ternary catalyst layer on an upper layer of an HC adsorption material is provided on the downstream side furthermore. This HC adsorption catalyst 20 absorbs HC in exhaust air into the HC adsorption material when an internal combustion engine is cold and removes HC from the HC adsorption material upon completion of warming up the engine to purify the removed HC by oxygen in the ternary catalyst layer. In this case, an air-fuel ratio of mixed air is controlled to a lean state while lean NOx catalyst 19 is activated and HC is removed from the HC adsorption material. Consequently, it is possible to securely supply oxygen required for HC purification to the ternary catalyst layer and increase the purification efficiency of HC.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排気浄
化装置に関し、詳しくは、冷機時に排気中のHCをHC
吸着材に吸着させ、暖機終了後に前記HC吸着材からH
Cを脱離させて浄化する構成の内燃機関の排気浄化装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine, and more particularly, to HC in exhaust gas in a cold state.
After being warmed up, the HC adsorbent adsorbs H
The present invention relates to an exhaust gas purification device for an internal combustion engine having a configuration for removing and purifying C.

【0002】[0002]

【従来の技術】従来から、内燃機関の排気通路にHC吸
着材を介装し、冷機時に排気中のHCを前記HC吸着材
に吸着させ、暖機完了後に前記HC吸着材からHCを脱
離させ、この脱離されたHCを三元触媒により酸化浄化
する構成の排気浄化装置が知られている(特開平6−8
1637号公報参照)。
2. Description of the Related Art Conventionally, an HC adsorbent is interposed in an exhaust passage of an internal combustion engine so that HC in exhaust gas is adsorbed by the HC adsorbent during a cold period, and HC is desorbed from the HC adsorbent after completion of warm-up. There is known an exhaust gas purifying apparatus having a configuration in which the desorbed HC is oxidized and purified by a three-way catalyst (Japanese Patent Laid-Open No. 6-8 / 1994).
No. 1637).

【0003】また、本出願人は、HC吸着材の上層に三
元触媒層を備えて構成されるHC吸着触媒を排気通路に
備え、前記HC吸着材からのHCの脱離中に前記HC吸
着触媒の出口部の排気空燃比が所定量リーンになるよう
に燃料噴射量を制御する構成の排気浄化装置を先に提案
した(特願平9−246409号参照)。
[0003] The applicant of the present invention has an HC adsorbing catalyst comprising a three-way catalyst layer on an upper layer of an HC adsorbing material in an exhaust passage, so that the HC adsorbing material is removed during the desorption of HC from the HC adsorbing material. An exhaust gas purifying device having a configuration in which the fuel injection amount is controlled so that the exhaust air-fuel ratio at the outlet of the catalyst becomes lean by a predetermined amount has been previously proposed (see Japanese Patent Application No. 9-246409).

【0004】[0004]

【発明が解決しようとする課題】ところで、前記リーン
制御は、脱離したHCの酸化に必要な酸素の確保を目的
としており、リーン燃焼を行わせることで脱離したHC
を良好に酸化浄化できるが、リーン燃焼時には、三元触
媒におけるNOx転化率が低下するため、NOx排出量
を抑制するためにリーン化が制限され、前記リーン制御
によるHC浄化の効果を最大限に発揮させることができ
なくなる可能性があった。
The above-mentioned lean control aims at securing oxygen necessary for oxidizing the desorbed HC. The lean control is performed by performing the lean combustion.
However, at the time of lean combustion, the NOx conversion rate in the three-way catalyst is reduced, so that leaning is restricted to suppress NOx emissions, and the effect of HC purification by the lean control is maximized. There was a possibility that it could not be demonstrated.

【0005】本発明は上記問題点に鑑みなされたもので
あり、NOx排出量の抑制を図りつつ、HCの酸化に必
要な酸素が確保できる排気浄化装置を提供し、リーン制
御によるHC浄化効果を最大限に発揮させることができ
るようにすることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides an exhaust gas purifying apparatus capable of securing oxygen necessary for HC oxidation while suppressing NOx emission. The purpose is to be able to make the most of it.

【0006】[0006]

【課題を解決するための手段】そのため請求項1記載の
発明に係る内燃機関の排気浄化装置は、HC吸着材の上
層に三元触媒層を備えて構成されるHC吸着触媒を排気
通路に備えると共に、該HC吸着触媒の上流側の排気通
路に、リーン燃焼領域でNOx浄化性能を有するリーン
NOx触媒を備え、前記リーンNOx触媒が活性状態
で、かつ、前記HC吸着材からのHCの脱離中に、機関
の燃焼混合気の空燃比をリーンに制御する構成とした。
Therefore, an exhaust gas purifying apparatus for an internal combustion engine according to the first aspect of the present invention includes, in an exhaust passage, an HC adsorbing catalyst comprising a three-way catalyst layer above an HC adsorbing material. In addition, a lean NOx catalyst having NOx purification performance in a lean combustion region is provided in an exhaust passage on the upstream side of the HC adsorption catalyst, and the lean NOx catalyst is in an active state, and HC is desorbed from the HC adsorbent. During the operation, the air-fuel ratio of the combustion mixture of the engine is controlled lean.

【0007】かかる構成によると、HC吸着触媒の上流
側に設けられるリーンNOx触媒は、活性状態であれ
ば、リーン制御中に排気中のNOxを浄化する。従っ
て、HC吸着材から脱離したHCを三元触媒層で良好に
酸化させるためのリーン制御を、前記リーンNOx触媒
の活性状態で行えば、NOxはリーンNOx触媒で浄化
されるので、三元触媒層にHCの浄化に必要な酸素を供
給するためのリーン制御を、NOx排出量により制限さ
れること無しに行えることになる。
With this configuration, the lean NOx catalyst provided on the upstream side of the HC adsorption catalyst purifies NOx in the exhaust gas during the lean control if it is in an active state. Therefore, if lean control for oxidizing HC desorbed from the HC adsorbent in the three-way catalyst layer is performed in the activated state of the lean NOx catalyst, NOx is purified by the lean NOx catalyst. Lean control for supplying oxygen necessary for purifying HC to the catalyst layer can be performed without being limited by the NOx emission amount.

【0008】尚、前記リーンNOx触媒としては、リー
ン燃焼領域で排気中のNOxをNOx吸蔵物質に一時的
に吸蔵し、理論空燃比付近になったときに還元処理する
所謂NOx吸蔵還元型三元触媒を用いることができ、ま
た、基材の一部にゼオライトを用い、リーン燃焼領域
(酸化雰囲気)においてもNOxを還元処理できるゼオ
ライト型三元触媒であっても良い(以下同様)。
The lean NOx catalyst is a so-called NOx storage-reduction type three-way catalyst that temporarily stores NOx in exhaust gas in a lean combustion region into a NOx storage material and performs a reduction process when the stoichiometric air-fuel ratio is approached. A catalyst can be used, or a zeolite-type three-way catalyst that uses zeolite for a part of the base material and can reduce NOx even in a lean combustion region (oxidizing atmosphere) (the same applies hereinafter).

【0009】請求項2記載の発明に係る内燃機関の排気
浄化装置は、HC吸着材の上層に三元触媒層を備えて構
成されるHC吸着触媒を排気通路に備えると共に、該H
C吸着触媒の上流側の排気通路に、リーン燃焼領域でN
Ox浄化性能を有するリーンNOx触媒を備え、かつ、
前記リーンNOx触媒の活性開始後に、前記HC吸着材
からのHCの脱離が開始されるよう構成し、前記HC吸
着材からのHCの脱離中に機関の燃焼混合気の空燃比を
リーンに制御する構成とした。
According to a second aspect of the present invention, there is provided an exhaust gas purifying apparatus for an internal combustion engine, wherein an HC adsorbing catalyst constituted by providing a three-way catalyst layer on an upper layer of an HC adsorbing material is provided in an exhaust passage,
In the exhaust passage on the upstream side of the C adsorption catalyst, N
Equipped with a lean NOx catalyst having Ox purification performance, and
The desorption of HC from the HC adsorbent is started after the activation of the lean NOx catalyst, and the air-fuel ratio of the combustion mixture of the engine becomes lean during the desorption of HC from the HC adsorbent. It was configured to control.

【0010】かかる構成によると、リーンNOx触媒が
活性してからHC吸着触媒のHC吸着材からのHCの脱
離が開始されるから、脱離開始と同時にリーン制御を開
始させても、該リーン制御の当初からNOxがリーンN
Ox触媒で浄化されることになる。請求項3記載の発明
に係る内燃機関の排気浄化装置は、図1に示すように構
成される。
According to this configuration, the desorption of HC from the HC adsorbent of the HC adsorbing catalyst is started after the lean NOx catalyst is activated. NOx is lean N from the beginning of control
It will be purified by the Ox catalyst. The exhaust gas purifying apparatus for an internal combustion engine according to the third aspect of the present invention is configured as shown in FIG.

【0011】図1において、HC吸着触媒は、HC吸着
材の上層に三元触媒層を備えて構成される触媒であり、
このHC吸着触媒の上流側には、リーン燃焼領域でNO
x浄化性能を有するリーンNOx触媒が備えられる。一
方、活性判定手段は、前記リーンNOx触媒の活性状態
を判定し、脱離判定手段は、前記HC吸着材からのHC
の脱離状態を判定する。
In FIG. 1, the HC adsorbing catalyst is a catalyst comprising a three-way catalyst layer on an upper layer of an HC adsorbing material.
On the upstream side of the HC adsorption catalyst, NO
A lean NOx catalyst having x purification performance is provided. On the other hand, the activity judging means judges the activation state of the lean NOx catalyst, and the desorption judging means judges the amount of HC from the HC adsorbent.
Is determined.

【0012】そして、リーン制御手段は、前記活性判定
手段で前記リーンNOx触媒が活性状態であることが判
定され、かつ、前記脱離判定手段で前記HC吸着材から
のHCの脱離状態であることが判定されたときに、機関
の燃焼混合気の空燃比をリーンに制御する。かかる構成
によると、リーンNOx触媒が活性状態になったことが
判定されていて、かつ、HC吸着材からのHCの脱離状
態であることが判定されているときに、前記HC吸着触
媒の三元触媒層におけるHCの酸化処理に必要な酸素を
確保すべく空燃比をリーンに制御する。従って、リーン
制御によってHC吸着触媒の三元触媒層におけるHCの
酸化処理を促進しつつ、NOxは上流側のリーンNOx
触媒において浄化されることになる。
The lean control means determines that the lean NOx catalyst is in an active state by the activity determining means, and indicates a state in which HC is desorbed from the HC adsorbent by the desorption determining means. Is determined, the air-fuel ratio of the combustion mixture of the engine is controlled lean. According to such a configuration, when it is determined that the lean NOx catalyst has been activated and it is determined that the HC is desorbed from the HC adsorbent, the HC adsorbing catalyst is reset. The air-fuel ratio is controlled lean so as to secure oxygen necessary for the oxidation treatment of HC in the source catalyst layer. Accordingly, NOx is reduced by lean control on the upstream side while promoting oxidation of HC in the three-way catalyst layer of the HC adsorption catalyst by lean control.
It will be purified in the catalyst.

【0013】請求項4記載の発明では、前記リーンNO
x触媒の活性開始後に前記HC吸着材からのHCの脱離
を開始させるべく、前記リーンNOx触媒と前記HC吸
着触媒との間で排気を冷却する排気冷却手段を設ける構
成とした。かかる構成によると、リーンNOx触媒を通
過した排気が排気冷却手段によって冷却されてからHC
吸着触媒に導入されることにより、リーンNOx触媒の
温度上昇よりもHC吸着触媒(HC吸着材)の温度上昇
を遅らせて、リーンNOx触媒が活性化した後で、HC
吸着材がHCの脱離温度まで温度上昇するようにする。
これにより、HC吸着材からのHCの脱離が開始される
ときには、既にリーンNOx触媒が活性化していてリー
ン燃焼領域でのNOx浄化が可能な状態になっているか
ら、脱離開始時からリーン制御が行われることになる。
[0013] In the invention described in claim 4, the lean NO
In order to start the desorption of HC from the HC adsorbent after the activation of the x catalyst, exhaust cooling means for cooling exhaust gas between the lean NOx catalyst and the HC adsorption catalyst is provided. According to such a configuration, after the exhaust gas that has passed through the lean NOx catalyst is cooled by the exhaust gas cooling means,
By being introduced into the adsorption catalyst, the temperature rise of the HC adsorption catalyst (HC adsorbent) is delayed more than the temperature rise of the lean NOx catalyst, and after the lean NOx catalyst is activated, HC
The temperature of the adsorbent is raised to the desorption temperature of HC.
Thus, when the desorption of HC from the HC adsorbent is started, the lean NOx catalyst has already been activated and the NOx can be purified in the lean combustion region. Control will be performed.

【0014】尚、前記排気冷却手段としては、リーンN
Ox触媒とHC吸着触媒との間に、冷却フィンやハニカ
ム構造体等からなるヒートマス(熱容量)を介装させる
構成の他、水などの冷媒によって冷却する方式であって
も良い。請求項5記載の発明では、前記リーン制御手段
が、前記HC吸着触媒の出口における排気空燃比を目標
リーン空燃比に一致させるべくフィードバック制御する
構成とした。
The exhaust cooling means includes a lean N
In addition to a configuration in which a heat mass (heat capacity) composed of a cooling fin or a honeycomb structure is interposed between the Ox catalyst and the HC adsorption catalyst, a method of cooling with a coolant such as water may be used. According to a fifth aspect of the present invention, the lean control means performs feedback control so that the exhaust air-fuel ratio at the outlet of the HC adsorption catalyst matches the target lean air-fuel ratio.

【0015】かかる構成によると、HC吸着触媒の出口
の排気空燃比が目標リーン空燃比になるようにフィード
バック制御することで、HC吸着触媒におけるHC量と
酸素量とのバランスを一定に制御する。請求項6記載の
発明では、前記リーン制御手段が、前記HC吸着触媒の
温度に応じた目標リーン空燃比に制御する構成とした。
According to this configuration, the balance between the HC amount and the oxygen amount in the HC adsorption catalyst is controlled by performing feedback control so that the exhaust air-fuel ratio at the outlet of the HC adsorption catalyst becomes the target lean air-fuel ratio. In the invention described in claim 6, the lean control means controls the target lean air-fuel ratio in accordance with the temperature of the HC adsorption catalyst.

【0016】かかる構成によると、HCの脱離濃度に関
連するHC吸着触媒(HC吸着材)の温度に応じて目標
リーン空燃比を設定することで、HC脱離量に応じた酸
素の供給を図る。
According to this configuration, by setting the target lean air-fuel ratio in accordance with the temperature of the HC adsorption catalyst (HC adsorbent) related to the desorbed concentration of HC, oxygen can be supplied in accordance with the amount of HC desorbed. Aim.

【0017】[0017]

【発明の効果】請求項1又は3に記載の発明によると、
リーン燃焼領域でNOxを浄化できるリーンNOx触媒
の活性状態で、HC吸着触媒のHC吸着材から脱離した
HCの浄化のためのリーン制御を行うので、NOx排出
量を抑制するためにリーン化が制限されることがなく、
HCの浄化に必要な酸素をHC吸着触媒の三元触媒層に
確実に供給でき、NOx排出量を抑制しつつHC吸着材
から脱離したHCを最大限に浄化できるという効果があ
る。
According to the invention described in claim 1 or 3,
In the active state of the lean NOx catalyst that can purify NOx in the lean combustion region, lean control for purifying HC desorbed from the HC adsorbent of the HC adsorbing catalyst is performed, so leaning is performed to suppress NOx emissions. Without being restricted,
Oxygen required for purifying HC can be reliably supplied to the three-way catalyst layer of the HC adsorption catalyst, and there is an effect that HC desorbed from the HC adsorbent can be maximally purified while suppressing NOx emission.

【0018】請求項2又は4記載の発明によると、リー
ンNOx触媒が活性化してからHC吸着材からのHCの
脱離が開始されるので、HCの脱離開始時からHCの浄
化に必要な酸素量を確保できるリーン制御を行わせるこ
とができるという効果がある。請求項5記載の発明によ
ると、HC吸着触媒の出口部の排気空燃比を目標リーン
空燃比にフィードバック制御することで、HC吸着触媒
の三元触媒層におけるHC量と酸素量とのバランスを一
定に制御することができるという効果がある。
According to the second or fourth aspect of the invention, the desorption of HC from the HC adsorbent is started after the activation of the lean NOx catalyst. There is an effect that it is possible to perform lean control that can secure the oxygen amount. According to the fifth aspect of the present invention, the balance between the amount of HC and the amount of oxygen in the three-way catalyst layer of the HC adsorption catalyst is kept constant by feedback-controlling the exhaust air-fuel ratio at the outlet of the HC adsorption catalyst to the target lean air-fuel ratio. There is an effect that can be controlled.

【0019】請求項6記載の発明によると、HC吸着材
からのHCの脱離濃度に応じた目標リーン空燃比を設定
でき、HCの酸化に必要な酸素を過不足なく供給できる
という効果がある。
According to the sixth aspect of the present invention, it is possible to set a target lean air-fuel ratio in accordance with the concentration of desorbed HC from the HC adsorbent, and it is possible to supply oxygen necessary for oxidizing HC without excess or deficiency. .

【0020】[0020]

【発明の実施の形態】以下に、本発明の実施形態を、添
付の図面に基づいて説明する。本発明の実施形態の構成
を示す図2において、内燃機関11の吸気通路12に
は、機関11の吸入空気流量Qaを検出するエアフロー
メータ13及びアクセルペダルと連動して吸入空気流量
Qaを制御するスロットル弁14が設けられ、下流の吸
気マニホールド部には気筒毎に電磁式の燃料噴射弁15
が設けられている。なお、燃料噴射弁15を各気筒の燃
焼室に臨ませる構成とし、本実施形態にかかる内燃機関
を所謂筒内直接噴射式内燃機関とすることもできる。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In FIG. 2 showing the configuration of the embodiment of the present invention, an intake passage 12 of an internal combustion engine 11 controls an intake air flow rate Qa in conjunction with an air flow meter 13 for detecting an intake air flow rate Qa of the engine 11 and an accelerator pedal. A throttle valve 14 is provided, and an electromagnetic fuel injection valve 15 is provided for each cylinder in a downstream intake manifold section.
Is provided. The fuel injection valve 15 may be configured to face the combustion chamber of each cylinder, and the internal combustion engine according to the present embodiment may be a so-called direct injection type internal combustion engine.

【0021】前記燃料噴射弁15は、後述するようにし
てコントロールユニット50において設定される駆動パ
ルス信号によって開弁駆動され、図示しない燃料ポンプ
から圧送されてプレッシャレギュレータにより所定圧力
に制御された燃料を噴射供給する。また、機関11のウ
ォータジャケットに臨んで設けられ、ウォータジャケッ
ト内の冷却水温度Twを検出する水温センサ16が設け
られている。
The fuel injection valve 15 is driven to open by a drive pulse signal set in the control unit 50 as will be described later. The fuel is supplied from a fuel pump (not shown) under pressure and controlled to a predetermined pressure by a pressure regulator. Inject supply. Further, a water temperature sensor 16 is provided facing the water jacket of the engine 11 and detects a cooling water temperature Tw in the water jacket.

【0022】一方、排気通路17の排気マニホールド集
合部近傍には、排気中の酸素濃度を検出することによっ
て排気空燃比のリッチ・リーンを検出する酸素センサ1
8が設けられる。また、前記酸素センサ18下流側の排
気通路17には、リーンNOx触媒19が介装されてい
る。前記リーンNOx触媒19は、理論空燃比近傍にお
いて排気中のCO,HCの酸化とNOX の還元を行って
排気を浄化する三元触媒としての浄化性能を有すると共
に、リーン燃焼領域においてNOx吸蔵物質にNOxを
一時的に吸蔵し、理論空燃比付近になったときに前記吸
蔵されたNOxを前記三元触媒により還元浄化すること
で、リーン燃焼領域におけるNOx浄化性能を有する公
知のNOx吸蔵還元型三元触媒である。
On the other hand, an oxygen sensor 1 for detecting rich / lean exhaust air-fuel ratio by detecting oxygen concentration in exhaust gas is provided in the exhaust passage 17 near the exhaust manifold gathering portion.
8 are provided. A lean NOx catalyst 19 is interposed in the exhaust passage 17 downstream of the oxygen sensor 18. The lean NOx catalyst 19, CO in the exhaust at near the stoichiometric air-fuel ratio, which has a purification performance as the three-way catalyst for purifying exhaust by performing the reduction of oxidation and NO X of HC, NOx occluding substance in the lean combustion region A known NOx storage-reduction type having NOx purification performance in a lean combustion region by temporarily storing NOx and reducing and purifying the stored NOx by the three-way catalyst when the stoichiometric air-fuel ratio is approached. It is a three-way catalyst.

【0023】尚、前記リーンNOx触媒19として、基
材の一部にゼオライトを用い、該ゼオライトの微細な孔
にトラップしたHCとNOxとを反応させて、リーン燃
焼領域においてもNOxを還元浄化できるゼオライト型
三元触媒を用いても良い。更に、前記リーンNOx触媒
19の下流側には、図3(A)に示すようなHC吸着材
20Aの上層に三元触媒層20Bを備えたHC吸着触媒
20が介装されており、冷機時に排気中のHCを前記H
C吸着材20Aに吸着し(図3(B)参照)、暖機完了
後に前記HC吸着材20AからHCを脱離すると共に脱
離したHCを、前記三元触媒層20Bで酸化浄化するよ
うになっている(図3(C)参照)。
As the lean NOx catalyst 19, zeolite is used as a part of the base material, and HC trapped in the fine pores of the zeolite reacts with NOx, so that NOx can be reduced and purified even in the lean combustion region. A zeolite-type three-way catalyst may be used. Further, on the downstream side of the lean NOx catalyst 19, an HC adsorption catalyst 20 having a three-way catalyst layer 20B on an upper layer of the HC adsorbent 20A as shown in FIG. The HC in the exhaust gas is
After adsorbing onto the C adsorbent 20A (see FIG. 3 (B)), after the warm-up is completed, HC is desorbed from the HC adsorbent 20A, and the desorbed HC is oxidized and purified by the three-way catalyst layer 20B. (See FIG. 3C).

【0024】前記HC吸着触媒20の出口部には、排気
中の酸素濃度を検出することによって排気空燃比をリー
ン領域からリッチ領域までリニアに検出することができ
る空燃比センサ21が設けられている。また、クランク
軸又はカム軸から検出信号を取り出すクランク角センサ
22が設けられており、コントロールユニット50で
は、該クランク角センサ22から機関回転に同期して出
力されるクランク単位角信号を一定時間カウントして、
又は、クランク基準角信号の周期を計測して機関回転速
度Neを検出できるようになっている。
At the outlet of the HC adsorption catalyst 20, there is provided an air-fuel ratio sensor 21 capable of linearly detecting the exhaust air-fuel ratio from a lean region to a rich region by detecting the oxygen concentration in the exhaust gas. . Further, a crank angle sensor 22 for extracting a detection signal from the crankshaft or the camshaft is provided. The control unit 50 counts a crank unit angle signal output from the crank angle sensor 22 in synchronization with the engine rotation for a predetermined time. do it,
Alternatively, the engine rotation speed Ne can be detected by measuring the cycle of the crank reference angle signal.

【0025】前記リーンNOx触媒19とHC吸着触媒
20との間の排気通路17には、リーンNOx触媒19
の活性後にHC吸着触媒20(HC吸着材20A)にお
けるHCの脱離が開始されるように、リーンNOx触媒
19を通過した排気を冷却する排気冷却手段としてのヒ
ートマス24を介装させてある。即ち、ヒートマス24
を設けることで、HC吸着触媒20に導入される排気の
温度を積極的に低下させ、上流側のリーンNOx触媒1
9の活性化に対して、HC吸着材20Aが脱離開始温度
に達するのを確実に遅らせるようにするものである。
In the exhaust passage 17 between the lean NOx catalyst 19 and the HC adsorption catalyst 20, a lean NOx catalyst 19
A heat mass 24 is provided as exhaust cooling means for cooling the exhaust gas that has passed through the lean NOx catalyst 19 so that the desorption of HC from the HC adsorption catalyst 20 (HC adsorbent 20A) is started after the activation. That is, the heat mass 24
, The temperature of the exhaust gas introduced into the HC adsorption catalyst 20 is positively lowered, and the upstream lean NOx catalyst 1
The activation of the HC adsorbent 9 ensures that the HC adsorbent 20A does not reach the desorption start temperature.

【0026】前記ヒートマス24としては、例えば図2
中に示すような蛇腹状のフレキシブルチューブを用いる
ことができる他、触媒用として製造されるハニカム担体
(貴金属を担持させないもの)を介装させたり、また、
図4に示すように配管内壁に軸に平行でかつ放射状に複
数の冷却フィンを設けたものなどを用いることができ
る。前記ヒートマス24により排気の冷却を行わせたい
運転領域は、冷機から完暖に至る過渡状態であり、排気
の熱を配管に吸熱させることが要求されるので、排気通
路17内の排気と接触する面積を大きくすることが好ま
しく、例えば配管の外側に冷却フィン等を設けるより
も、配管内にハニカム担体や冷却フィンを設けて吸熱性
能を高くする構成とすることが好ましい。
As the heat mass 24, for example, FIG.
A bellows-like flexible tube as shown in the inside can be used, and a honeycomb carrier (one that does not support a noble metal) manufactured for a catalyst is interposed,
As shown in FIG. 4, a pipe in which a plurality of cooling fins are provided radially in parallel with the axis on the inner wall of the pipe can be used. The operation region in which the exhaust is desired to be cooled by the heat mass 24 is in a transitional state from cooling to complete warming, and it is required that the heat of the exhaust be absorbed by the pipe, so that it comes into contact with the exhaust in the exhaust passage 17. It is preferable to increase the area. For example, it is preferable to provide a honeycomb carrier or a cooling fin in the pipe to increase the heat absorption performance, rather than providing a cooling fin or the like outside the pipe.

【0027】尚、排気冷却手段としては、前記ヒートマ
ス24の他、機関11の冷却水などの冷媒を、前記リー
ンNOx触媒19とHC吸着触媒20との間の排気通路
17に循環させて内部の排気を冷却する構成を用いても
良い。また、排気通路17に対するリーンNOx触媒1
9,HC吸着触媒20の位置や、リーンNOx触媒1
9,HC吸着触媒20の容積などを考慮するなどして、
単にリーンNOx触媒19をHC吸着触媒20の上流側
に介装させる構成としただけで、リーンNOx触媒19
の活性が、HCの脱離が開始される前に得られる場合に
は、前記ヒートマス24等の排気冷却手段を省略するこ
とが可能である。
In addition, as the exhaust cooling means, in addition to the heat mass 24, a coolant such as cooling water for the engine 11 is circulated through the exhaust passage 17 between the lean NOx catalyst 19 and the HC adsorption catalyst 20 to circulate the internal gas. A configuration for cooling the exhaust gas may be used. The lean NOx catalyst 1 for the exhaust passage 17
9. The position of the HC adsorption catalyst 20 and the lean NOx catalyst 1
9. Considering the volume of the HC adsorption catalyst 20, etc.,
By simply interposing the lean NOx catalyst 19 upstream of the HC adsorption catalyst 20, the lean NOx catalyst 19
Is obtained before the start of the desorption of HC, the exhaust cooling means such as the heat mass 24 can be omitted.

【0028】ところで、CPU,ROM,RAM,A/
D変換器及び入出力インタフェース等を含んで構成され
るマイクロコンピュータからなるコントロールユニット
50では、各種センサからの入力信号を受け、通常時
(始動時のHCの吸着,脱離処理後)には、概略以下の
ようにして、燃料噴射弁15の噴射量(延いては空燃
比)を制御する。
By the way, CPU, ROM, RAM, A /
The control unit 50 including a microcomputer including a D converter, an input / output interface, and the like receives input signals from various sensors, and normally (after HC adsorption and desorption processing at the time of starting), The injection amount of the fuel injection valve 15 (and thus the air-fuel ratio) is controlled as described below.

【0029】即ち、エアフローメータ13からの検出信
号に基づき求められる吸入空気流量Qaと、クランク角
センサ22からの信号に基づき求められる機関回転速度
Neとから基本燃料噴射パルス幅Tp=k×Qa/Ne
(kは定数)を演算すると共に、低水温時に強制的にリ
ッチ側に補正する水温補正係数Kwや、始動及び始動後
増量補正係数Kasや、空燃比フィードバック補正係数L
AMD1や、電圧補正分Ts等により、最終的な燃料噴
射パルス幅Ti=Tp×(1+Kw+Kas+・・・)×
LAMD1+Tsを演算する。
That is, the basic fuel injection pulse width Tp = k × Qa / from the intake air flow rate Qa obtained based on the detection signal from the air flow meter 13 and the engine rotation speed Ne obtained based on the signal from the crank angle sensor 22. Ne
(K is a constant), a water temperature correction coefficient Kw for forcibly correcting to a rich side at low water temperature, a start and post-start increase correction coefficient Kas, and an air-fuel ratio feedback correction coefficient L
The final fuel injection pulse width Ti = Tp × (1 + Kw + Kas +...) × by AMD1 and the voltage correction Ts.
Calculate LAMD1 + Ts.

【0030】そして、この燃料噴射パルス幅Tiが駆動
パルス信号として前記燃料噴射弁15に出力されて、噴
射パルス幅Tiに比例する量の燃料が噴射供給されるこ
とになる。上記空燃比フィードバック補正係数LAMD
1は、リーンNOx触媒19の上流側に設けられた酸素
センサ18のリッチ・リーン反転出力に基づいて比例積
分(PI)制御等により増減されるもので、これに基づ
き前記基本燃料噴射パルス幅Tpを補正することで、燃
焼混合気の空燃比を目標空燃比(理論空燃比)近傍にフ
ィードバック制御するものである。
Then, the fuel injection pulse width Ti is output to the fuel injection valve 15 as a drive pulse signal, and an amount of fuel proportional to the injection pulse width Ti is injected and supplied. The air-fuel ratio feedback correction coefficient LAMD
1 is increased or decreased by proportional integration (PI) control or the like based on the rich / lean inversion output of the oxygen sensor 18 provided on the upstream side of the lean NOx catalyst 19, and based on this, the basic fuel injection pulse width Tp , The air-fuel ratio of the combustion air-fuel mixture is feedback-controlled near the target air-fuel ratio (stoichiometric air-fuel ratio).

【0031】一方、始動時(冷機時)には以下のように
して、燃料噴射弁15の噴射量(延いては空燃比)を制
御する。なお、以下に説明するように、本発明にかかる
活性判定手段,脱離判定手段,リーン制御手段としての
機能は、コントロールユニット50がソフトウェア的に
備えている。また、図5のフローチャートは、機関11
の始動時毎に実行される。
On the other hand, at the time of starting (at the time of cooling), the injection amount (and hence the air-fuel ratio) of the fuel injection valve 15 is controlled as follows. As described below, the functions of the activity determination unit, the desorption determination unit, and the lean control unit according to the present invention are provided as software in the control unit 50. The flowchart of FIG.
It is executed every time the engine is started.

【0032】ステップ(図では、Sと記してある。以
下、同様)1では、冷却水温度Twが予め設定された冷
機判定温度Aよりも低いか否かを判定する。Tw<Aで
あれば、冷機時であるので、ステップ2へ進む。Tw≧
Aであれば、通常運転時であるとして前述した通常の空
燃比制御を行なわせるべく、本フローを終了する。ステ
ップ2では、基本燃料噴射量Tpや機関回転速度Ne等
の機関運転条件からHC吸着触媒20の温度Tcを推定
する。ここで、外気温度,水温Tw等を考慮すれば、よ
り推定精度を向上できる。
In step (denoted by S in the figure, hereinafter the same), in step 1, it is determined whether or not the cooling water temperature Tw is lower than a predetermined cooling determination temperature A. If Tw <A, the process proceeds to step 2 because the engine is cold. Tw ≧
If the answer is A, the flow is terminated in order to perform the normal air-fuel ratio control described above assuming that the normal operation is being performed. In step 2, the temperature Tc of the HC adsorption catalyst 20 is estimated from engine operating conditions such as the basic fuel injection amount Tp and the engine speed Ne. Here, if the outside air temperature, the water temperature Tw, and the like are considered, the estimation accuracy can be further improved.

【0033】また、図2に示した触媒温度センサ23を
介して、直接HC吸着触媒20の温度Tcを検出する構
成とすることもできる。ステップ3では、前記推定又は
直接検出されたHC吸着触媒20の温度Tcが予め設定
されたHC脱離開始温度T1を越えているか否かを判別
する。そして、Tc>T1であれば、HC吸着触媒20
の温度が上昇し、冷機時に吸着したHCがHC吸着材2
0Aから脱離する状態であると判断し(脱離判定手
段)、ステップ4へ進む。一方、Tc≦T1であれば、
HCが脱離される状態ではないので、ステップ2へ戻
る。
Further, the temperature Tc of the HC adsorption catalyst 20 may be directly detected via the catalyst temperature sensor 23 shown in FIG. In step 3, it is determined whether or not the estimated or directly detected temperature Tc of the HC adsorption catalyst 20 exceeds a preset HC desorption start temperature T1. If Tc> T1, the HC adsorption catalyst 20
Temperature rises, and the HC adsorbed at the time of cooling becomes HC adsorbent 2
It is determined that it is in a state of desorption from 0A (desorption determination means), and the process proceeds to step 4. On the other hand, if Tc ≦ T1,
Since it is not in a state where HC is desorbed, the process returns to step 2.

【0034】ステップ4では、前記ステップ2と同様に
して、リーンNOx触媒19の温度Tc2を機関運転条件
に基づく推定又は触媒温度センサ26による直接の検出
によって求める。ステップ5では、ステップ4で求めた
リーンNOx触媒19の温度Tc2が、予め設定された活
性判定温度T2を越えているか否かを判断することで、
リーンNOx触媒19が活性しているか否かを判断する
(活性判定手段)。そして、Tc2>T2であれば、リー
ンNOx触媒19が活性化しているので、ステップ6へ
進む。一方、Tc2≦T2であれば、リーンNOx触媒1
9の非活性状態であるので、ステップ4に戻る。
In step 4, similarly to step 2, the temperature Tc2 of the lean NOx catalyst 19 is obtained by estimation based on the engine operating conditions or by direct detection by the catalyst temperature sensor 26. In step 5, it is determined whether or not the temperature Tc2 of the lean NOx catalyst 19 obtained in step 4 exceeds a preset activation determination temperature T2.
It is determined whether the lean NOx catalyst 19 is active (activity determining means). If Tc2> T2, the lean NOx catalyst 19 has been activated, and the process proceeds to step 6. On the other hand, if Tc2 ≦ T2, the lean NOx catalyst 1
Since it is in the inactive state of No. 9, the process returns to Step 4.

【0035】なお、前記ヒートマス24を設けてあるこ
とにより、通常であれば、HC吸着触媒20のHC吸着
材20AからのHC脱離が開始されるときには、既に、
リーンNOx触媒19が活性温度に達していることにな
る。ステップ6では、HC吸着材20AのHC吸着量を
演算する。なお、HC吸着量は、例えば、基本燃料噴射
量Tp(或いは吸入空気流量Qa)の積算値に、吸着効
率αを乗算することで推定演算することができる。
By providing the heat mass 24, normally, when the HC desorption of the HC adsorption catalyst 20 from the HC adsorbent 20A is started,
This means that the lean NOx catalyst 19 has reached the activation temperature. In step 6, the HC adsorption amount of the HC adsorbent 20A is calculated. The HC adsorption amount can be estimated and calculated by, for example, multiplying the integrated value of the basic fuel injection amount Tp (or the intake air flow rate Qa) by the adsorption efficiency α.

【0036】つづくステップ7では、目標当量比TFB
YA(HC吸着触媒20の出口部における目標空燃比を
示す値であり、理論空燃比よりもリーン側に設定され
る)を、前記HC吸着触媒20の温度Tcに応じて演算
する。HCの脱離濃度(速度)は触媒温度Tcが高いと
きほど大きくなるので、図6に示すように、触媒温度T
cが高いときほど(脱離濃度が大きいときほど)、HC
吸着触媒20の出口部における目標空燃比がよりリーン
になるように(HC吸着触媒20における排気中の酸素
濃度が高くなるように)、前記目標当量比TFBYAを
演算する。
In the following step 7, the target equivalent ratio TFB
YA (a value indicating the target air-fuel ratio at the outlet of the HC adsorption catalyst 20, which is set to be leaner than the stoichiometric air-fuel ratio) is calculated according to the temperature Tc of the HC adsorption catalyst 20. Since the desorption concentration (speed) of HC increases as the catalyst temperature Tc increases, as shown in FIG.
The higher the c (the higher the desorption concentration), the higher the HC
The target equivalence ratio TFBYA is calculated so that the target air-fuel ratio at the outlet of the adsorption catalyst 20 becomes leaner (so that the oxygen concentration in the exhaust gas of the HC adsorption catalyst 20 becomes higher).

【0037】上記目標当量比TFBYA(目標リーン空
燃比)に基づく噴射量制御によって、排気空燃比をリー
ン化させ(酸化雰囲気として)、HC吸着材20Aから
脱離したHCを三元触媒層20Bで酸化浄化するときに
必要となる酸素を供給し、HCの酸化浄化が良好に行わ
れるようにするものである。なお、上記目標当量比TF
BYA(目標リーン空燃比)による空燃比制御によっ
て、三元触媒におけるNOx転化率が低下するリーン燃
焼が行われることになるが、該リーン燃焼がリーンNO
x触媒19の活性を条件として行われるから、機関11
から排出されるNOxは上流側のリーンNOx触媒19
で浄化(吸蔵)されることになる。従って、NOx排出
量を抑制すべくリーン化を制限する必要がなく、HCの
酸化浄化に必要な酸素を確保することができ、リーンN
Ox触媒19を備えない場合に比べて、よりリーン化を進
めることができる。
The exhaust air-fuel ratio is made lean (as an oxidizing atmosphere) by injection amount control based on the target equivalent ratio TFBYA (target lean air-fuel ratio), and HC desorbed from the HC adsorbent 20A is removed by the three-way catalyst layer 20B. Oxygen required for oxidizing and purifying is supplied so that oxidizing and purifying of HC is performed favorably. The target equivalent ratio TF
By the air-fuel ratio control based on the BYA (target lean air-fuel ratio), lean combustion in which the NOx conversion rate in the three-way catalyst is reduced is performed.
x is performed under the condition of the activity of the catalyst 19,
From the upstream lean NOx catalyst 19
Will be purified (occluded). Therefore, it is not necessary to limit the lean operation to suppress the NOx emission amount, and it is possible to secure the oxygen necessary for the oxidative purification of HC, and to achieve the lean N operation.
Leaning can be further promoted as compared with the case where the Ox catalyst 19 is not provided.

【0038】従って、本実施形態によると、図7及び図
8に示すように、NOx排出量を抑制しつつ、脱離した
HCの酸化処理に必要な酸素量を確保してHCの排出量
を最小限に抑制できる。ステップ8では、HC吸着触媒
20の出口部に設けた空燃比センサ21で検出された排
気空燃比に基づき、HC吸着触媒20の出口部における
排気空燃比が、目標当量比TFBYA(目標リーン空燃
比)になるように空燃比フィードバック補正係数LAM
D2を設定しつつ、最終的な燃料噴射パルス幅Tiを、
Ti=Tp×(1+Kw+Kas+・・・)×TFBYA
×LAMD2+Tsとして演算し、この燃料噴射パルス
幅Tiを駆動パルス信号として前記燃料噴射弁15に出
力する(リーン制御手段)。
Therefore, according to the present embodiment, as shown in FIGS. 7 and 8, the amount of oxygen required for the oxidation treatment of the desorbed HC is secured while the amount of NOx is suppressed, thereby reducing the amount of HC emission. Can be minimized. In step 8, based on the exhaust air-fuel ratio detected by the air-fuel ratio sensor 21 provided at the outlet of the HC adsorption catalyst 20, the exhaust air-fuel ratio at the outlet of the HC adsorption catalyst 20 is changed to a target equivalent ratio TFBYA (target lean air-fuel ratio). ) So that the air-fuel ratio feedback correction coefficient LAM
While setting D2, the final fuel injection pulse width Ti
Ti = Tp × (1 + Kw + Kas +...) × TFBYA
XLAMD2 + Ts, and outputs the fuel injection pulse width Ti to the fuel injection valve 15 as a drive pulse signal (lean control means).

【0039】ステップ9では、HC吸着材20AのHC
脱離量を積算する。なお、HC脱離量は、例えば、以下
の式により推定演算することができる。 HC脱離量=Qa×Tc×β(β:脱離量換算係数) 前述のように、HCの脱離濃度は触媒温度Tcで決まる
ので、Tc×βにより、触媒温度に応じたHCの脱離濃
度を算出することができ、また、HCの脱離濃度に吸入
空気流量Qa(排気流量に相関する値)を乗算すること
で、HCの脱離量を求めることができる。
In step 9, the HC of the HC adsorbent 20A is
Integrate the desorption amount. The HC desorption amount can be estimated and calculated by, for example, the following equation. HC desorption amount = Qa × Tc × β (β: desorption amount conversion coefficient) As described above, since the desorption concentration of HC is determined by the catalyst temperature Tc, the desorption of HC according to the catalyst temperature is determined by Tc × β. The desorption concentration can be calculated, and the desorption amount of HC can be obtained by multiplying the desorption concentration of HC by the intake air flow rate Qa (a value correlated with the exhaust flow rate).

【0040】そして、ステップ10では、ステップ9で
推定したHC脱離量と、ステップ6で推定したHC吸着
量とを比較し、HC脱離量≧HC吸着量であれば、HC
の脱離処理は完了したと判断して、通常の空燃比制御へ
移行させる。一方、HC脱離量<HC吸着量であれば、
未だHCの脱離中であるので、本フローによるリーン空
燃比制御を継続する必要があるので、HC脱離量≧HC
吸着量となるまで、ステップ7へリターンする。
In step 10, the HC desorption amount estimated in step 9 is compared with the HC adsorption amount estimated in step 6, and if HC desorption amount ≧ HC adsorption amount, HC is detected.
It is determined that the desorption process has been completed, and the process shifts to normal air-fuel ratio control. On the other hand, if HC desorption amount <HC adsorption amount,
Since the HC is still being desorbed, it is necessary to continue the lean air-fuel ratio control by this flow.
The process returns to step 7 until the suction amount is reached.

【0041】このように、本実施形態によれば、HC吸
着触媒20の出口部における排気空燃比がHC脱離濃度
に応じた目標リーン空燃比になるように制御するので、
HC吸着材20Aから脱離したHCが三元触媒層20B
へ拡散する速度と、排気ガス中の酸素が三元触媒層20
Bに取り込まれる(吸着される)速度と、の差を考慮し
て、脱離したHCの酸化に必要な酸素を三元触媒層20
B表面に十分に吸着させることができ、HC吸着材から
脱離したHCを良好に浄化することができる。
As described above, according to the present embodiment, control is performed so that the exhaust air-fuel ratio at the outlet of the HC adsorption catalyst 20 becomes the target lean air-fuel ratio corresponding to the HC desorption concentration.
HC desorbed from the HC adsorbent 20A is converted to the three-way catalyst layer 20B.
And the oxygen in the exhaust gas is diffused into the three-way catalyst layer 20.
In consideration of the difference between the rate of being taken in (adsorbed) by B and the oxygen required for the oxidation of the desorbed HC, the three-way catalyst layer 20
HC can be sufficiently adsorbed on the B surface, and HC desorbed from the HC adsorbent can be satisfactorily purified.

【0042】なお、図5のフローチャートにおけるステ
ップ8を省略して、所謂オープン制御(フィードフォワ
ード制御)により、HC吸着触媒20の出口部における
空燃比を、目標当量比TFBYA(目標リーン空燃比)
に制御することもできる。この場合は、空燃比センサ2
1を省略してもよい。また、リーンNOx触媒19が活
性する前に、HC吸着触媒20においてHCの脱離が開
始したときには、NOx排出量を許容レベルに抑制でき
る範囲内に制限して目標リーン空燃比を設定し、その後
リーンNOx触媒19が活性化したときには、HCの酸
化浄化に必要な酸素量を確保できる要求通りの目標リー
ン空燃比を設定してリーン燃焼を行わせるようにしても
良い。
Step 8 in the flowchart of FIG. 5 is omitted, and the so-called open control (feedforward control) is used to reduce the air-fuel ratio at the outlet of the HC adsorption catalyst 20 to the target equivalent ratio TFBYA (target lean air-fuel ratio).
Can also be controlled. In this case, the air-fuel ratio sensor 2
1 may be omitted. Further, when the desorption of HC is started in the HC adsorption catalyst 20 before the lean NOx catalyst 19 is activated, the target lean air-fuel ratio is set by restricting the NOx emission to a range that can suppress the NOx emission to an allowable level. When the lean NOx catalyst 19 is activated, lean combustion may be performed by setting a target lean air-fuel ratio as required to ensure the amount of oxygen necessary for HC oxidation purification.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】本発明の実施形態にかかるシステム構成図。FIG. 2 is a system configuration diagram according to the embodiment of the present invention.

【図3】実施形態におけるHC吸着触媒を示す図であ
り、(A)はHC吸着触媒の構造を説明する図、(B)
は冷機時におけるHC吸着機能を説明する図、(C)は
暖機時におけるHC脱離・酸化機能を説明する図。
3A and 3B are diagrams illustrating an HC adsorption catalyst according to an embodiment, wherein FIG. 3A is a diagram illustrating the structure of the HC adsorption catalyst, and FIG.
FIG. 3 is a diagram for explaining an HC adsorption function at the time of cold operation, and FIG.

【図4】実施形態におけるヒートマスの他の例を示す排
気通路の横断面図。
FIG. 4 is a cross-sectional view of an exhaust passage showing another example of the heat mass in the embodiment.

【図5】同上実施形態における空燃比制御を説明するた
めのフローチャート。
FIG. 5 is a flowchart for explaining air-fuel ratio control in the embodiment.

【図6】同上実施形態におけるHC吸着触媒の温度と目
標リーン空燃比との相関を示す線図。
FIG. 6 is a diagram showing a correlation between the temperature of the HC adsorption catalyst and a target lean air-fuel ratio in the embodiment.

【図7】HC排出量の低減効果を説明するためのタイミ
ングチャート。
FIG. 7 is a timing chart for explaining the effect of reducing the amount of HC emission.

【図8】NOx排出量の低減効果を説明するためのタイ
ミングチャート。
FIG. 8 is a timing chart for explaining the effect of reducing NOx emission.

【符号の説明】[Explanation of symbols]

11 内燃機関 12 吸気通路 13 エアフローメータ 14 スロットル弁 15 燃料噴射弁 17 排気通路 18 酸素センサ 19 リーンNOx触媒 20 HC吸着触媒 21 空燃比センサ 22 クランク角センサ 50 コントロールユニット 11 Internal combustion engine 12 Intake passage 13 Air flow meter 14 Throttle valve 15 Fuel injection valve 17 Exhaust passage 18 Oxygen sensor 19 Lean NOx catalyst 20 HC adsorption catalyst 21 Air-fuel ratio sensor 22 Crank angle sensor 50 Control unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02D 41/04 ZAB F02D 41/04 ZAB 305 305A 41/14 ZAB 41/14 ZAB 310 310F ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F02D 41/04 ZAB F02D 41/04 ZAB 305 305A 41/14 ZAB 41/14 ZAB 310 310F

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】HC吸着材の上層に三元触媒層を備えて構
成されるHC吸着触媒を排気通路に備えると共に、該H
C吸着触媒の上流側の排気通路に、リーン燃焼領域でN
Ox浄化性能を有するリーンNOx触媒を備え、 前記リーンNOx触媒が活性状態で、かつ、前記HC吸
着材からのHCの脱離中に、機関の燃焼混合気の空燃比
をリーンに制御することを特徴とする内燃機関の排気浄
化装置。
An exhaust gas passage is provided with an HC adsorption catalyst comprising a three-way catalyst layer on an upper layer of an HC adsorbent.
In the exhaust passage on the upstream side of the C adsorption catalyst, N
A lean NOx catalyst having an Ox purification performance, wherein the lean NOx catalyst is in an active state and the air-fuel ratio of the combustion mixture of the engine is lean while the HC is being desorbed from the HC adsorbent. An exhaust purification device for an internal combustion engine.
【請求項2】HC吸着材の上層に三元触媒層を備えて構
成されるHC吸着触媒を排気通路に備えると共に、該H
C吸着触媒の上流側の排気通路に、リーン燃焼領域でN
Ox浄化性能を有するリーンNOx触媒を備え、かつ、
前記リーンNOx触媒の活性開始後に、前記HC吸着材
からのHCの脱離が開始されるよう構成し、 前記HC吸着材からのHCの脱離中に機関の燃焼混合気
の空燃比をリーンに制御することを特徴とする内燃機関
の排気浄化装置。
2. An exhaust passage having an HC adsorbing catalyst comprising a three-way catalyst layer on an upper layer of an HC adsorbing material.
In the exhaust passage on the upstream side of the C adsorption catalyst, N
Equipped with a lean NOx catalyst having Ox purification performance, and
The desorption of HC from the HC adsorbent is started after the activation of the lean NOx catalyst, and the air-fuel ratio of the combustion mixture of the engine becomes lean during the desorption of HC from the HC adsorbent. An exhaust gas purifying apparatus for an internal combustion engine, characterized by controlling.
【請求項3】HC吸着材の上層に三元触媒層を備えて構
成されるHC吸着触媒を排気通路に備えると共に、該H
C吸着触媒の上流側の排気通路に、リーン燃焼領域でN
Ox浄化性能を有するリーンNOx触媒を備える一方、 前記リーンNOx触媒の活性状態を判定する活性判定手
段と、 前記HC吸着材からのHCの脱離状態を判定する脱離判
定手段と、 前記活性判定手段で前記リーンNOx触媒が活性状態で
あることが判定され、かつ、前記脱離判定手段で前記H
C吸着材からのHCの脱離状態であることが判定された
ときに、機関の燃焼混合気の空燃比をリーンに制御する
リーン制御手段と、 を備えたことを特徴とする内燃機関の排気浄化装置。
3. An exhaust gas passage having an HC adsorbing catalyst comprising a three-way catalyst layer on an upper layer of an HC adsorbing material.
In the exhaust passage on the upstream side of the C adsorption catalyst, N
An activation determining unit that determines an activation state of the lean NOx catalyst; a desorption determination unit that determines a desorption state of HC from the HC adsorbent; and an activation determination. Means determines that the lean NOx catalyst is in an active state, and the desorption determining means determines that the H
And a lean control means for leanly controlling the air-fuel ratio of the combustion mixture of the engine when it is determined that the HC is desorbed from the C adsorbent. Purification device.
【請求項4】前記リーンNOx触媒の活性開始後に前記
HC吸着材からのHCの脱離を開始させるべく、前記リ
ーンNOx触媒と前記HC吸着触媒との間で排気を冷却
する排気冷却手段を設けたことを特徴とする請求項3記
載の内燃機関の排気浄化装置。
4. An exhaust cooling means for cooling exhaust gas between the lean NOx catalyst and the HC adsorption catalyst so as to start desorption of HC from the HC adsorbent after the activation of the lean NOx catalyst has started. The exhaust gas purifying apparatus for an internal combustion engine according to claim 3, wherein:
【請求項5】前記リーン制御手段が、前記HC吸着触媒
の出口における排気空燃比を目標リーン空燃比に一致さ
せるべくフィードバック制御することを特徴とする請求
項3又は4に記載の内燃機関の排気浄化装置。
5. An exhaust gas for an internal combustion engine according to claim 3, wherein said lean control means performs feedback control so that an exhaust air-fuel ratio at an outlet of said HC adsorption catalyst coincides with a target lean air-fuel ratio. Purification device.
【請求項6】前記リーン制御手段が、前記HC吸着触媒
の温度に応じた目標リーン空燃比に制御することを特徴
とする請求項3〜5のいずれか1つに記載の内燃機関の
排気浄化装置。
6. The exhaust gas purification of an internal combustion engine according to claim 3, wherein said lean control means controls a target lean air-fuel ratio in accordance with a temperature of said HC adsorption catalyst. apparatus.
JP01175998A 1998-01-23 1998-01-23 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3412491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01175998A JP3412491B2 (en) 1998-01-23 1998-01-23 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01175998A JP3412491B2 (en) 1998-01-23 1998-01-23 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11210446A true JPH11210446A (en) 1999-08-03
JP3412491B2 JP3412491B2 (en) 2003-06-03

Family

ID=11786922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01175998A Expired - Lifetime JP3412491B2 (en) 1998-01-23 1998-01-23 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3412491B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6601383B2 (en) 2001-01-16 2003-08-05 Denso Corporation Emission control apparatus for engine and method for reducing emissions of engine
WO2009157292A1 (en) 2008-06-25 2009-12-30 いすゞ自動車株式会社 Exhaust gas purification apparatus
EP2284372A1 (en) * 2008-04-30 2011-02-16 Isuzu Motors, Ltd. Exhaust gas purification method and exhaust gas purificaton system
CN113446090A (en) * 2020-03-25 2021-09-28 丰田自动车株式会社 Control device for internal combustion engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6601383B2 (en) 2001-01-16 2003-08-05 Denso Corporation Emission control apparatus for engine and method for reducing emissions of engine
EP2284372A1 (en) * 2008-04-30 2011-02-16 Isuzu Motors, Ltd. Exhaust gas purification method and exhaust gas purificaton system
EP2284372A4 (en) * 2008-04-30 2015-04-01 Isuzu Motors Ltd Exhaust gas purification method and exhaust gas purificaton system
WO2009157292A1 (en) 2008-06-25 2009-12-30 いすゞ自動車株式会社 Exhaust gas purification apparatus
JP2010007524A (en) * 2008-06-25 2010-01-14 Isuzu Motors Ltd Exhaust emission control device
EP2305980A1 (en) * 2008-06-25 2011-04-06 Isuzu Motors Limited Exhaust gas purification apparatus
AU2009263542B2 (en) * 2008-06-25 2012-01-19 Isuzu Motors Limited Exhaust gas purification apparatus
EP2305980A4 (en) * 2008-06-25 2013-05-15 Isuzu Motors Ltd Exhaust gas purification apparatus
US8561396B2 (en) 2008-06-25 2013-10-22 Isuzu Motors Limited Exhaust gas purification apparatus
CN113446090A (en) * 2020-03-25 2021-09-28 丰田自动车株式会社 Control device for internal combustion engine
CN113446090B (en) * 2020-03-25 2023-06-20 丰田自动车株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP3412491B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
JP4308396B2 (en) Fuel supply control device for internal combustion engine
JPH10339195A (en) Exhaust emission control device of internal combustion engine
JPH1182003A (en) Control device of internal combustion engine
JP2000337129A (en) Exhaust emission control device for internal combustion engine
JP4475117B2 (en) Engine air-fuel ratio control device
JP3412491B2 (en) Exhaust gas purification device for internal combustion engine
JP3632614B2 (en) Exhaust gas purification device for internal combustion engine
JPH11107827A (en) Catalyst temperature controller for internal combustion engine
JP4987354B2 (en) Catalyst early warm-up control device for internal combustion engine
JP3610740B2 (en) Air-fuel ratio control device for internal combustion engine
JP4127585B2 (en) Exhaust gas purification device for internal combustion engine
JP3392197B2 (en) Engine air-fuel ratio control device
JPH11343832A (en) Exhaust emission control device for internal combustion engine
JP2002180885A (en) Exhaust emission control device for internal combustion engine
JP3309669B2 (en) Secondary air supply device for internal combustion engine
JP3772554B2 (en) Engine exhaust purification system
JP2000192811A (en) Exhaust emission control device for internal combustion engine
JP2002195025A (en) Exhaust emission control device for internal combustion engine
JP2000120428A (en) Exhaust emission control device of internal combustion engine
JP2004124824A (en) Secondary air supply device
JP2019052578A (en) Exhaust emission control device for engine
JP3661461B2 (en) Exhaust gas purification device for internal combustion engine
JP2004360569A (en) Exhaust gas purification control system of internal combustion engine
JP3334634B2 (en) Exhaust gas purification device for internal combustion engine
JP3764193B2 (en) Exhaust purification device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 10

EXPY Cancellation because of completion of term