JPH11209858A - Aerial pot for floating hot dipping metal - Google Patents

Aerial pot for floating hot dipping metal

Info

Publication number
JPH11209858A
JPH11209858A JP1016998A JP1016998A JPH11209858A JP H11209858 A JPH11209858 A JP H11209858A JP 1016998 A JP1016998 A JP 1016998A JP 1016998 A JP1016998 A JP 1016998A JP H11209858 A JPH11209858 A JP H11209858A
Authority
JP
Japan
Prior art keywords
steel strip
magnetic flux
flux density
hot
carry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1016998A
Other languages
Japanese (ja)
Other versions
JP3810545B2 (en
Inventor
Ichiro Yamashita
一郎 山下
Yasuo Fukada
保男 深田
Chiaki Kato
千昭 加藤
Toshiaki Amagasa
敏明 天笠
Atsushi Ando
敦司 安藤
Takuya Hashida
拓弥 橋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Mitsubishi Heavy Industries Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Kawasaki Steel Corp
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Kawasaki Steel Corp, Nisshin Steel Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP01016998A priority Critical patent/JP3810545B2/en
Publication of JPH11209858A publication Critical patent/JPH11209858A/en
Application granted granted Critical
Publication of JP3810545B2 publication Critical patent/JP3810545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To form the uniform magnetic flux density in the width direction of a steel strip and to prevent the unstable free movement of hot dipping metal by forming faced magnetic pole surfaces of an electric magnet interposing a carry-in opening part for a steel strip so as to compensate the variation of the magnetic flux density in the width direction of the strip with the steel strip passing through the carry-in opening part. SOLUTION: In order to prevent the hot dipping metal from flowing down from the carry-in opening part 13, in an aerial pot for exciting the plating by introducing the steel strip 1 into the hot dipping metal from the carry-in opening part 13 at the bottom part, the magnetic pole surfaces 17 of the electric magnet 10 generating the electromagnetic force are arranged so as to interpose the steel strip 1 at both sides of the carry-in opening part 13. At this time, the magnetic pole surfaces 17 are formed as convex shape so that the magnetic flux density between the magnetic pole surfaces becomes constant in the width direction of the strip, and as approaching the center part, the larger magnetic flux density B develops so as to develop the electromagnetic pushing-up force corresponding to this magnetic flux density B. In this way, in the whole width containing 'the strip passing part' (a) and 'no strip passing part' (b) in the carry-in opening part 13, the uniform prescribed magnetic flux density B can be held.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融めっき設備に
あって、溶融めっき金属浮上用空中ポットに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot-dip galvanizing equipment, and more particularly to an aerial pot for floating a hot-dip metal.

【0002】[0002]

【従来の技術】通常の連続溶融めっき設備では、還元焼
鈍炉で表面活性化された鋼帯を溶融めっき浴に浸漬し、
この溶融めっき浴に浸漬された状態で回転駆動されるシ
ンクロールにより、この溶融めっき浴から垂直方向に鋼
帯を引き上げることが行なわれる。
2. Description of the Related Art In a typical continuous hot-dip plating apparatus, a steel strip surface-activated in a reduction annealing furnace is immersed in a hot-dip plating bath.
The steel strip is pulled vertically from the hot-dip plating bath by a sink roll that is rotated while being immersed in the hot-dip plating bath.

【0003】この場合、鋼帯表面と接触した状態ではシ
ンクロールが回転するため、シンクロールとの接触不良
に起因した擦り疵が鋼帯表面に発生するのを避けられ
ず、鋼帯表面に形成されるめっき層に悪影響を及ぼす。
[0003] In this case, since the sink roll rotates in contact with the surface of the steel strip, it is inevitable that scratches due to poor contact with the sink roll are generated on the surface of the steel strip. Adversely affect the plating layer to be formed.

【0004】また、シンクロールによって鋼帯に曲げが
付与されるため、シンクロールを通過した後の鋼帯に板
幅方向の反りが発生し、この板幅方向の反りは、溶融め
っき浴から引上げられた鋼帯をガスワイピングする際に
ワイピングノズルと鋼帯表面との距離を変動させること
になって、結果として不均一ワイピングによって板幅方
向に関するめっき付着量にバラツキが発生し易くなる。
[0004] Further, since the steel strip is bent by the sink roll, the steel strip after passing through the sink roll is warped in the sheet width direction, and the warp in the sheet width direction is pulled up from the hot-dip plating bath. When the wiped steel strip is subjected to gas wiping, the distance between the wiping nozzle and the surface of the steel strip is changed. As a result, unevenness in the plating amount in the plate width direction is likely to occur due to uneven wiping.

【0005】更に、溶融めっき浴にシンクロールが浸漬
されることから、大容量の溶融めっき槽が必要とされ、
浴組成の切換えが困難になる。
Further, since the sink roll is immersed in the hot-dip plating bath, a large-capacity hot-dip bath is required.
Changing the bath composition becomes difficult.

【0006】シンクロールを用いた溶融めっき設備は、
上述の如き問題が生じており、このため現在では、この
ようなシンクロールによる悪影響を排除して高品質の溶
融めっき鋼帯を製造するため、シンクロールを使用しな
い溶融めっき設備を用い、鋼帯を下から上に一方向に走
行させて空中ポットに収容した溶融めっき金属中を通過
させる方式が検討されており、特開平8−333663
号公報等で提案されている。
[0006] Hot-dip plating equipment using sink rolls
The problems as described above have occurred, and therefore, at present, in order to eliminate such adverse effects of the sink roll and produce a high-quality hot-dip coated steel strip, a hot-dip plating facility that does not use a sink roll is used. Is being studied in one direction from the bottom to the top to pass through the hot-dip coated metal housed in the aerial pot.
It is proposed in Japanese Patent Publication No.

【0007】空中ポットを用いた溶融めっき設備では、
図2に示すように、還元焼鈍炉で表面活性化された鋼帯
1は、導入室2内に配置されているデフレクタロール3
を経て上方へ引き上げられ、シールロール4を経て空中
ポット5に導入される。鋼帯1の酸化を防止するため導
入室2内には、H2 −N2 ガスが満たされており、シー
ルロール4と空中ポット5との間にはN2 ガスが満たさ
れている。シールロール4は、導入室2と空中ポット5
との間をガス遮断し、めっき開始時及びめっき停止時等
に導入室2への大気侵入を防止する。
In a hot-dip plating facility using an air pot,
As shown in FIG. 2, a steel strip 1 whose surface has been activated in a reduction annealing furnace is provided with a deflector roll 3 disposed in an introduction chamber 2.
, And is introduced into the aerial pot 5 through the seal roll 4. The introduction chamber 2 is filled with H 2 -N 2 gas to prevent oxidation of the steel strip 1, and the space between the seal roll 4 and the aerial pot 5 is filled with N 2 gas. The seal roll 4 includes the introduction chamber 2 and the air pot 5
To prevent air from entering the introduction chamber 2 when plating is started or stopped.

【0008】溶融めっき金属6は、ポンプ7によりサブ
ポット8から供給配管9を経て空中ポット5へ送り込ま
れる。空中ポット5内の溶融めっき金属6は、鋼帯1と
接する側で上へ流れるように循環し、両側部からオーバ
ーフローして接続室へ落ち、排出管12を経てサブポッ
ト8内へ流下する。空中ポット5は、図3の如く、底部
に鋼帯搬入開口部13が形成されており、この開口部1
3から溶融めっき金属6が漏出・流下しないように、上
向きの電磁力を溶融めっき金属6に付与する電磁石10
が開口部13の周囲に設けられている。
The hot-dip metal 6 is sent from the sub-pot 8 to the aerial pot 5 via the supply pipe 9 by the pump 7. The hot-dip metal 6 in the aerial pot 5 circulates upward on the side in contact with the steel strip 1, overflows from both sides, falls into the connection chamber, and flows down into the sub-pot 8 via the discharge pipe 12. As shown in FIG. 3, the aerial pot 5 has a steel strip carry-in opening 13 formed at the bottom thereof.
Electromagnet 10 for applying an upward electromagnetic force to hot-dip metal 6 so that hot-dip metal 6 does not leak or flow down
Are provided around the opening 13.

【0009】溶融めっき金属6を満たした空中ポット5
に底部から鋼帯1を導入し、溶融めっき金属6と接触さ
せた後、上方に引き上げることにより鋼帯1が溶融めっ
きされる。空中ポット5を出た後の鋼帯1にガスワイピ
ングノズル11からワイピングガスを吹き付けることに
より過剰量の溶融めっき金属6が除去され、めっき付着
量が調整された溶融めっき鋼帯が製造される。めっき作
業中は、空中ポット5の排出管12につながる接続室側
の壁をプラグ14で塞ぎ、電磁石10による電磁力で鋼
帯搬入開口部13から溶融めっき金属6が漏出・流下す
るのを阻止しながら、空中ポット5内に所定量の溶融め
っき金属6を溜めて保持する。めっき作業を停止させる
ときには、プラグ14を開放し、排出管12を経由して
空中ポット5内の溶融めっき金属6をサブポット8に排
出する。
Aerial pot 5 filled with hot-dip metal 6
Then, the steel strip 1 is introduced from the bottom, brought into contact with the hot-dip metal 6, and then pulled up to hot-dip the steel strip 1. By blowing a wiping gas from the gas wiping nozzle 11 onto the steel strip 1 after leaving the aerial pot 5, an excessive amount of the hot-dip metal 6 is removed, and a hot-dip steel strip with an adjusted coating amount is manufactured. During the plating operation, the wall on the connection chamber side connected to the discharge pipe 12 of the aerial pot 5 is closed with the plug 14 to prevent the molten plated metal 6 from leaking and flowing down from the steel strip carrying-in opening 13 by the electromagnetic force of the electromagnet 10. Meanwhile, a predetermined amount of hot-dip plated metal 6 is stored and held in the air pot 5. When the plating operation is stopped, the plug 14 is opened, and the hot-dip plated metal 6 in the air pot 5 is discharged to the sub-pot 8 via the discharge pipe 12.

【0010】電磁石10は、図4(a)に示すように通
常、開口部13内を通過する鋼帯1の両面に対向する配
置の一対の磁極面17を対峙させた構成の鉄心コア15
とこの鉄心コア15に設けた複数個の励磁コイル16と
で構成されている。この場合、一対の磁極面17は板幅
方向に平行に相互に一定間隔gを隔てて設けられてい
る。そして、励磁コイル16へ通電すると、図5に示す
ように磁極面17間に鋼帯1の表裏を貫通する方向に磁
束Bを発生し、磁束Bにより溶融めっき金属内に生じる
板幅方向の誘導渦電流Iによって、上向きの電磁押上力
Fが発生する。この上向きの電磁力Fで鋼帯搬入開口部
13内の溶融めっき金属6を押し上げ保持することによ
って溶融めっき金属6の漏出・流下が防止される。
As shown in FIG. 4 (a), the electromagnet 10 usually has an iron core 15 having a configuration in which a pair of magnetic pole faces 17 arranged on both sides of the steel strip 1 passing through the opening 13 face each other.
And a plurality of exciting coils 16 provided on the iron core 15. In this case, the pair of magnetic pole faces 17 are provided in parallel with each other at a fixed interval g in the width direction of the plate. When the excitation coil 16 is energized, a magnetic flux B is generated between the magnetic pole faces 17 in a direction penetrating the front and back of the steel strip 1 as shown in FIG. The eddy current I generates an upward electromagnetic pushing force F. By pushing up and holding the hot-dip metal 6 in the steel strip carry-in opening 13 by this upward electromagnetic force F, the hot-dip metal 6 is prevented from leaking and flowing down.

【0011】上述のように電磁力にて溶融めっき金属の
保持が行われるが、更に、従来では、例えば特開平7−
48660号公報に開示されるように、溶融金属より電
気伝導度が大きいブスバ−を鋼帯搬入開口部13の回り
に、図6、7、8の如く配置することにより、渦電流を
このブスバ−18に流して溶融金属中の電流の方向転換
による押上力の低下を防止するという改良も行われてい
る。押し上げ力Fの発生に係る詳細は、次のようにな
る。図4の電磁石10の励磁コイル16に交流を通電
し、鉄心コア15内に交番磁界を発生させると、磁極面
17間にも交番磁界が現われる。ここにおいて、図6、
図7、図8にて示す渦電流用ブスバー18と溶融めっき
金属6、鋼帯1からなる系に着目するとき、ある瞬間の
磁束密度は、磁極間空間にてBg 、溶融めっき金属内で
zg、磁極間鋼帯挿入部でBs 、溶融めっき金属内の鋼
帯挿入部でBzsとなり、この交番磁束を打ち消すように
誘導渦電流が流れる。すなわち、溶融めっき金属底面及
び一部鋼帯表面〜渦電流ブスバー18からなる閉ループ
を図8に示す如きIz ,Izs〜Ibという具合に流れ
る。なお、鋼帯1の表面での渦電流はIs が流れる。こ
の結果、電磁石10による磁束密度と渦電流とによるベ
クトルの外積が電磁力となって渦電流に作用することに
なり、溶融めっき金属底面に流れる渦電流には絶えず上
向きの力(図5F)が働くことになる。
As described above, the hot-dip metal is held by the electromagnetic force.
As disclosed in Japanese Patent No. 48660, an eddy current is reduced by arranging a bus bar having a higher electrical conductivity than the molten metal around the steel strip carry-in opening 13 as shown in FIGS. 18 has been improved to prevent a reduction in the pushing force due to a change in the direction of the current in the molten metal. Details regarding the generation of the pushing force F are as follows. When an alternating current is applied to the exciting coil 16 of the electromagnet 10 of FIG. 4 to generate an alternating magnetic field in the iron core 15, an alternating magnetic field also appears between the magnetic pole faces 17. Here, FIG.
Focusing on the system composed of the eddy current bus bar 18, the hot-dip metal 6 and the steel strip 1 shown in FIGS. 7 and 8, the magnetic flux density at a certain moment is B g in the space between the magnetic poles and in the hot-dip metal. B zg, between the magnetic poles B s of steel strip insertion portion, B zs next at the steel strip insertion portion of the hot dipping in a metal, induced eddy current flows so as to cancel this alternating magnetic flux. That is, a closed loop consisting of the molten plating metal bottom and some steel strip surface - eddy current bus bar 18 as shown in FIG. 8 I z, it flows so on I zs ~I b. Incidentally, the eddy current at the surface of the steel strip 1 is flow I s. As a result, the outer product of the vector due to the magnetic flux density and the eddy current by the electromagnet 10 becomes an electromagnetic force and acts on the eddy current, and an upward force (FIG. 5F) is constantly applied to the eddy current flowing on the hot-dip coated metal bottom surface. Will work.

【0012】[0012]

【発明が解決しようとする課題】しかし、上述にて説明
した空中ポットにおいては、次のような問題が生じてい
る。図4に示すように電磁石10の磁極面17は板幅方
向に平行に形成され、換言すれば磁極面17間の間隔g
が一様に形成されている。この場合、めっき作業時鋼帯
1が空中ポット5の鋼帯搬入開口部13を通過している
と、鋼帯1による磁束Bのしゃ断作用によって図4
(b)の如く「板あり部」aと「板なし部」bとで磁束
密度分布が変化する。つまり、交番磁束にて生ずる金属
中の渦電流により交流磁束は侵入しにくくなり金属は、
一種の磁気シールドとなるが、また、溶融めっき金属で
はこの渦電流によって制限される磁束と渦電流とによっ
て電磁押上力が発生するのであるが、交流磁束に対して
直交するよう位置する鋼帯1ではこの表面の渦電流によ
る磁場のため磁束密度が減少することになる。この結
果、「板なし部」bでは略一定の磁束密度が保たれる反
面、「板あり部」aでは鋼帯1の中央部にて磁束密度が
最も低下するという放物線状の磁束分布となる。なお、
この磁束密度分布は実験にても確認された。
However, the above-described aerial pot has the following problems. As shown in FIG. 4, the pole face 17 of the electromagnet 10 is formed parallel to the width direction of the plate, in other words, the distance g between the pole faces 17
Are formed uniformly. In this case, when the steel strip 1 is passing through the steel strip carry-in opening 13 of the aerial pot 5 during the plating operation, the magnetic flux B is cut off by the steel strip 1 and FIG.
As shown in (b), the magnetic flux density distribution changes between the “plated portion” a and the “plateless portion” b. In other words, the AC magnetic flux is difficult to penetrate due to the eddy current in the metal generated by the alternating magnetic flux,
Although it becomes a kind of magnetic shield, in the case of hot-dip coated metal, an electromagnetic push-up force is generated by the magnetic flux and the eddy current limited by the eddy current. In this case, the magnetic flux density decreases due to the magnetic field due to the eddy current on the surface. As a result, while a substantially constant magnetic flux density is maintained in the “plateless portion” b, a parabolic magnetic flux distribution in which the magnetic flux density decreases most in the central portion of the steel strip 1 in the “plateless portion a” . In addition,
This magnetic flux density distribution was also confirmed in experiments.

【0013】かかる鋼帯1の板幅方向での磁束密度分布
の変化は、板幅方向での電磁押上力Fの分布に変化をも
たらし、鋼帯搬入開口部13付近の溶融めっき金属6に
板幅方向の不規則な流れを生じさせ、この開口部13内
の溶融めっき金属6を不安定にする。この開口部13内
の溶融めっき金属6が不安定になると、この開口部13
からの溶融めっき金属6流出が生じ易くなる。同時に、
空中ポット5内の溶融めっき金属6の循環が乱れて鋼帯
1への均質な溶融めっきを阻害する原因となるのを避け
られない。また、この板幅方向での磁束密度分布の変化
による鋼帯搬入開口部13の溶融めっき金属6の保持力
の低下を補うために、電磁石10には運転中に高めの電
磁力を生じさせることが必要になり、大きい投入電力が
必要になる。
The change in the magnetic flux density distribution in the width direction of the steel strip 1 causes a change in the distribution of the electromagnetic push-up force F in the width direction of the steel strip. An irregular flow in the width direction is generated, and the hot-dip metal 6 in the opening 13 becomes unstable. When the hot-dip plating metal 6 in the opening 13 becomes unstable, the opening 13
Out of the hot-dip plating metal 6 from the metal. at the same time,
It is unavoidable that the circulation of the hot-dip metal 6 in the aerial pot 5 is disturbed and hinders the uniform hot-dip coating on the steel strip 1. In order to compensate for the decrease in the holding force of the hot-dip metal 6 in the steel strip carrying-in opening 13 due to the change in the magnetic flux density distribution in the plate width direction, the electromagnet 10 is required to generate a high electromagnetic force during operation. And a large input power is required.

【0014】本発明は、上述の問題に鑑み、鋼帯の板幅
方向に均一な磁束密度分布となるようにした溶融めっき
金属浮上用空中ポットを提供する。
The present invention has been made in view of the above-mentioned problems, and provides an aerial pot for floating a hot-dip plated metal having a uniform magnetic flux density distribution in a width direction of a steel strip.

【0015】[0015]

【課題を解決するための手段】上述の目的を達成する本
発明は、次の発明特定事項を有する。 (1)鋼帯の搬入開口部からの溶融めっき金属の流下を
防止する電磁力を発生する電磁石を上記搬入開口部の両
側から挾むように対峙させた溶融めっき金属浮上用空中
ポットにおいて、前記鋼帯の搬入開口部を挾んで対峙す
る電磁石の磁極面を、前記搬入開口部を通過する前記鋼
帯による板幅方向の磁束密度変化を補償するように形成
したことを特徴とする。
The present invention that achieves the above object has the following matters specifying the invention. (1) A hot-dip galvanized metal floating pot in which electromagnets for generating an electromagnetic force for preventing the molten plated metal from flowing down from a carry-in opening of a steel strip are sandwiched from both sides of the carry-in opening. The magnetic pole faces of the electromagnets facing each other with the carrying opening interposed therebetween are formed so as to compensate for a change in magnetic flux density in the sheet width direction due to the steel strip passing through the carrying opening.

【0016】(2)前記(1)において、前記電磁石の
磁極面は、この磁極面間の磁束密度が前記板幅方向で一
定となるよう凸曲面状に形成したことを特徴とする。
(2) In the above (1), the magnetic pole surface of the electromagnet is formed in a convex curved shape so that the magnetic flux density between the magnetic pole surfaces is constant in the plate width direction.

【0017】[0017]

【発明の実施の形態】ここで、図1を参照して本発明の
実施の形態の一例を説明する。なお、図1において、図
2〜図8と同一部分には同符号を付す。まず、一般的に
は、図1、図5に示す構成にあって、電磁石10の励磁
コイル16への通電によって磁極面17間に得られる鋼
帯1面と直角方向の磁束密度Bと、この磁束密度Bによ
って生じる誘導渦電流Iと、この誘導渦電流1により発
生する上向きの電磁押上力Fとをベクトルとして捕らえ
ると、前述の如く外積〔F=I×B]として表わされ
る。しかも、誘導渦電流Iは磁束密度Bに比例すること
になるので、磁極面17間の磁束密度Bと電磁押上力F
とはF∝B2 に示す関係が生ずる。したがって、磁束密
度Bの少しの変化であっても電磁押上力Fは大きく違っ
てくることになる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Here, an example of an embodiment of the present invention will be described with reference to FIG. In FIG. 1, the same parts as those in FIGS. 2 to 8 are denoted by the same reference numerals. First, in general, in the configuration shown in FIGS. 1 and 5, the magnetic flux density B in a direction perpendicular to the steel strip 1 surface obtained between the magnetic pole surfaces 17 by energizing the excitation coil 16 of the electromagnet 10, When the induced eddy current I generated by the magnetic flux density B and the upward electromagnetic pushing force F generated by the induced eddy current 1 are captured as vectors, they are expressed as the outer product [F = I × B] as described above. In addition, since the induced eddy current I is proportional to the magnetic flux density B, the magnetic flux density B between the magnetic pole faces 17 and the electromagnetic pushing force F
And the relation shown by F∝B 2 occurs. Therefore, even if the magnetic flux density B is slightly changed, the electromagnetic push-up force F is greatly different.

【0018】一方、電磁石10上の励磁コイル16のコ
イル巻数をN、励磁コイル16に流れる電流をIc 、励
磁コイル16の起磁力をf1 とすると、起磁力f1 は次
の式で表わされる。 f1 =2・N・Ic ・・・・・・・・・・・・・(1) また、磁極面17間における、「板あり部」aと、「板
なし部」bの透磁率をμ0 としてほぼ同一の定数と考
え、磁路の断面積をA,磁束密度をBとすれば、磁束密
度Bは、次の式で表わされる。 B=μ0 ・f1 /A・g=μ0 ・2・N・Ic /A・g ・・(2)
On the other hand, assuming that the number of turns of the exciting coil 16 on the electromagnet 10 is N, the current flowing through the exciting coil 16 is I c , and the magnetomotive force of the exciting coil 16 is f 1 , the magnetomotive force f 1 is expressed by the following equation. It is. f 1 = 2 · N · I c (1) Further, the magnetic permeability of the “plated portion” a and the “plateless portion” b between the pole faces 17 Is assumed to be approximately the same constant as μ 0 , and the magnetic flux density B is represented by the following equation, where A is the cross-sectional area of the magnetic path and B is the magnetic flux density. B = μ 0 · f 1 / A · g = μ 0 · 2 · N · I c / A · g (2)

【0019】この結果、(2)式において、起磁力f1
=2・N・Ic を一定にすれば、磁束密度Bの大きさ
は、磁極面17間の間隔gの大きさに依存し、一定の割
合で反比例することになる。
As a result, in the equation (2), the magnetomotive force f 1
= 2 · N · I c , the magnitude of the magnetic flux density B depends on the magnitude of the gap g between the pole faces 17 and is inversely proportional at a constant rate.

【0020】本例については、前記(2)式の関係に着
目し、図1(b)に示す如く、磁極面17間の「板あり
部」aと、「板なし部」bとで、一定の平均した磁束密
度Bを保つように、鋼帯搬入開口部13を挾んで対峙す
る磁極面17を、図4(b)に示す鋼帯1の通過時の遮
蔽作用による板幅方向の磁束密度変化を補償するよう
に、板幅方向に異なる磁極面間隔g分布を設定し、図1
(a)に示す凸曲面状の磁極端面で構成したものであ
る。すなわち、板幅方向の複数点で、前記(2)式に基
いて磁束密度変化を補償するに必要な磁極面間隔g値を
設定し、電磁石10の磁極面17間を、鋼帯搬入開口部
13の中央部で最少の磁極面間隔gmin 、鋼帯搬入開口
部13の両端部で最大の磁極面間隔gmax とする間隔g
の分布にて、相互に凸曲面状の端面で向かい合う磁極面
として構成したものである。
In this example, focusing on the relationship of the above equation (2), as shown in FIG. 1B, the "plated portion" a between the magnetic pole faces 17 and the "plateless portion" b In order to maintain a constant average magnetic flux density B, the magnetic pole surface 17 opposed to the steel strip carrying opening 13 is interposed between the magnetic pole surface 17 and the magnetic flux in the width direction of the plate due to the shielding action when passing through the steel strip 1 shown in FIG. In order to compensate for the density change, different distributions of the magnetic pole surface spacing g are set in the plate width direction, and FIG.
It is composed of a convex magnetic pole end surface shown in FIG. That is, at a plurality of points in the sheet width direction, the gap value g of the magnetic pole faces required to compensate for the change in magnetic flux density is set based on the above equation (2), and the gap between the magnetic pole faces 17 of the electromagnet 10 is set to the steel strip carrying opening. 13 is the minimum pole surface spacing g min at the center and the maximum pole surface spacing g max at both ends of the steel strip carry-in opening 13.
, And are configured as mutually facing magnetic pole faces with convex curved end faces.

【0021】図1に示す構成の電磁石10では、空中ポ
ット5にサブポット8から溶融めっき金属6をポンプ7
により供給し、電磁石10の励磁コイル16に設計され
た一定の電力(電流)を通電し、この状態で空中ポット
5に鋼帯1が下から上へ通過開始されると、相互に凸曲
面状の端面で向かい合う磁極面17間には、前記(2)
式にて磁極面間隔gが小さい位置ほど、すなわち、板幅
中央部分ほど大きい磁束密度Bが発生し、この磁束密度
Bに対応した電磁押上力Fが発生する。
In the electromagnet 10 having the construction shown in FIG.
Is supplied to the exciting coil 16 of the electromagnet 10, and when the steel strip 1 is started to pass from the bottom to the top in the aerial pot 5 in this state, the mutually convex curved surfaces are formed. Between the magnetic pole faces 17 facing each other at the end face of (2).
In the formula, a magnetic flux density B is generated at a position where the magnetic pole surface distance g is smaller, that is, at a central portion of the plate width, and an electromagnetic pushing force F corresponding to the magnetic flux density B is generated.

【0022】このとき、鋼帯1の通過時の遮蔽作用によ
る板幅方向の磁束密度Bの低下量を、板幅方向に適当な
ピッチで予め計測し、これを基に前記(2)式により磁
束密度Bの計測位置毎の低下量を補償するに必要な磁極
面間隔gの分布を設定しておくことによって、磁極面1
7間で発生する上向き電磁押上力Fが、鋼帯1の遮蔽作
用による磁束密度Bの低下分布を相殺し、図1(b)に
示すように鋼帯搬入開口部13の「板あり部」a及び
「板なし部」bを含む全幅域に、均等な所定の磁束密度
Bを保つことができるようになる。
At this time, the amount of decrease in the magnetic flux density B in the sheet width direction due to the shielding action when the steel strip 1 passes is measured in advance at an appropriate pitch in the sheet width direction, and based on this, the above equation (2) is used. By setting the distribution of the magnetic pole surface spacing g necessary to compensate for the decrease amount of the magnetic flux density B at each measurement position, the magnetic pole surface 1
The upward electromagnetic push-up force F generated between the coils 7 offsets the decrease distribution of the magnetic flux density B due to the shielding action of the steel strip 1, and as shown in FIG. a and a uniform magnetic flux density B can be maintained in the entire width region including the “a” and the “plateless portion” b.

【0023】[0023]

【発明の効果】以上説明したように本発明によれば、鋼
帯の搬入開口部を挾んで対峙する電磁石の磁極面を、前
記搬入開口部を通過する前記鋼帯による板幅方向の磁束
密度変化を補償するように形成したことにより、例えば
凸曲面状に形成したことにより、実際の開口部内の溶融
めっき金属には、板幅方向に設計値通りの均等な分布の
電磁押上力が働くようになり、鋼帯搬入開口部内の溶融
めっき金属の不安定な遊動がなくなり、めっき運転中に
おけるこの開口部からの溶融めっき金属流出の危険がな
くなる。同時に空中ポット内の溶融めっき金属の循環が
安定し、均質な溶融めっき鋼帯を生産できるようにな
る。また、鋼帯が磁束を遮蔽することで生じる磁束密度
分布の低下を、大きい投入電力で補う必要がなくなり、
経済的に溶融めっき鋼帯を生産できる効果が得られる。
As described above, according to the present invention, the magnetic pole surface of the electromagnet facing the carrying opening of the steel strip is made to have a magnetic flux density in the sheet width direction by the steel strip passing through the carrying opening. By forming so as to compensate for the change, for example, by forming it into a convex curved surface, the molten metal in the actual opening has an electromagnetic push-up force with a uniform distribution as designed in the plate width direction. As a result, unstable movement of the hot-dip metal in the steel strip carrying-in opening is eliminated, and there is no danger of the hot-dip metal flowing out of this opening during the plating operation. At the same time, the circulation of the hot-dip coated metal in the aerial pot is stabilized, and a homogeneous hot-dip coated steel strip can be produced. In addition, there is no need to compensate for the decrease in magnetic flux density distribution caused by the steel strip shielding magnetic flux with large input power,
The effect of economically producing a hot-dip steel strip can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例の平面及び特性線
図。
FIG. 1 is a plan view and a characteristic diagram of an example of an embodiment of the present invention.

【図2】従来例の断面(図3のII−II線断面)図。FIG. 2 is a sectional view (sectional view taken along line II-II of FIG. 3) of a conventional example.

【図3】従来例の平面(図2のIII−IIIからみた平面)
図。
FIG. 3 is a plane view of a conventional example (a plane viewed from III-III in FIG. 2).
FIG.

【図4】従来例の平面及び特性線図。FIG. 4 is a plan view and a characteristic line diagram of a conventional example.

【図5】電磁押上力の説明図。FIG. 5 is an explanatory diagram of an electromagnetic lifting force.

【図6】渦電流ブスバーの配置状態図。FIG. 6 is an arrangement state diagram of an eddy current bus bar.

【図7】渦電流ブスバーの簡略平面図。FIG. 7 is a simplified plan view of an eddy current bus bar.

【図8】磁束密度と渦電流との状態図。FIG. 8 is a state diagram of magnetic flux density and eddy current.

【符号の説明】[Explanation of symbols]

1 鋼帯 5 空中ポット 6 溶融めっき金属 10 電磁石 13 鋼帯搬入開口部 17 磁極面 18 渦電流用ブスバー DESCRIPTION OF SYMBOLS 1 Steel strip 5 Aerial pot 6 Hot-dip plating metal 10 Electromagnet 13 Steel strip carry-in opening 17 Magnetic pole face 18 Bus bar for eddy current

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 一郎 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 深田 保男 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島製作所内 (72)発明者 加藤 千昭 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 天笠 敏明 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 安藤 敦司 大阪府堺市石津西町5番地 日新製鋼株式 会社技術研究所内 (72)発明者 橋田 拓弥 愛媛県東予市北条962番地14号 日新製鋼 株式会社東予建設本部内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yamashita Ichiro 4--22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd. Hiroshima Laboratory (72) Inventor Yasuo Fukada 4-chome Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture 6-22 Mitsubishi Heavy Industries, Ltd.Hiroshima Plant (72) Inventor Chiaki Kato 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Engineering Co., Ltd. (72) Inventor Toshiaki Amagasa Kawasaki, Chuo-ku, Chiba-shi, Chiba No. 1, Kawasaki Steel Corporation Chiba Works (72) Inventor Atsushi Ando 5 Ishizu Nishimachi, Sakai City, Osaka Prefecture Nisshin Steel Co., Ltd.Technical Research Institute (72) Inventor Takuya Hashida 962-14 Hojo, Toyo City, Ehime Prefecture Nisshin Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼帯の搬入開口部からの溶融めっき金属
の流下を防止する電磁力を発生する電磁石を上記搬入開
口部の両側から挾むように対峙させた溶融めっき金属浮
上用空中ポットにおいて、 前記鋼帯の搬入開口部を挾んで対峙する電磁石の磁極面
を、前記搬入開口部を通過する前記鋼帯による板幅方向
の磁束密度変化を補償するように形成したことを特徴と
する溶融めっき金属浮上用空中ポット。
1. An aerial pot for floating a hot-dip plated metal in which electromagnets for generating an electromagnetic force for preventing the hot-dip plated metal from flowing down from a carry-in opening of a steel strip are sandwiched from both sides of the carry-in opening. A hot-dip galvanized metal, wherein the pole faces of the electromagnets facing each other across the carry-in opening of the steel strip are formed so as to compensate for a change in magnetic flux density in the sheet width direction due to the steel strip passing through the carry-in opening. Aerial pot for levitation.
【請求項2】 前記電磁石の磁極面は、この磁極面間の
磁束密度が前記板幅方向で一定となるよう凸曲面状に形
成したことを特徴とする請求項1記載の溶融めっき金属
浮上用空中ポット。
2. The hot-dip galvanized metal floating surface according to claim 1, wherein a magnetic pole surface of the electromagnet is formed in a convex curved shape such that a magnetic flux density between the magnetic pole surfaces is constant in the plate width direction. Aerial pot.
JP01016998A 1998-01-22 1998-01-22 Hot pot for floating metal plating Expired - Fee Related JP3810545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01016998A JP3810545B2 (en) 1998-01-22 1998-01-22 Hot pot for floating metal plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01016998A JP3810545B2 (en) 1998-01-22 1998-01-22 Hot pot for floating metal plating

Publications (2)

Publication Number Publication Date
JPH11209858A true JPH11209858A (en) 1999-08-03
JP3810545B2 JP3810545B2 (en) 2006-08-16

Family

ID=11742789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01016998A Expired - Fee Related JP3810545B2 (en) 1998-01-22 1998-01-22 Hot pot for floating metal plating

Country Status (1)

Country Link
JP (1) JP3810545B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083970A1 (en) * 2001-04-10 2002-10-24 Posco Apparatus and method for holding molten metal in continuous hot dip coating of metal strip
KR20040019730A (en) * 2002-08-29 2004-03-06 재단법인 포항산업과학연구원 Apparatus for floating molten metal in the molten metal plating process using ac eletromanetic field, floating method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083970A1 (en) * 2001-04-10 2002-10-24 Posco Apparatus and method for holding molten metal in continuous hot dip coating of metal strip
US6984357B2 (en) 2001-04-10 2006-01-10 Posco Apparatus and method for holding molten metal in continuous hot dip coating of metal strip
EP1379707A4 (en) * 2001-04-10 2006-09-06 Posco Apparatus and method for holding molten metal in continuous hot dip coating of metal strip
KR20040019730A (en) * 2002-08-29 2004-03-06 재단법인 포항산업과학연구원 Apparatus for floating molten metal in the molten metal plating process using ac eletromanetic field, floating method thereof

Also Published As

Publication number Publication date
JP3810545B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
CN109716860B (en) Compact continuous annealing solution heat treatment
CA2196056C (en) Electro-magnetic plugging means for hot dip coating pot
US9689063B2 (en) Electromagnetic wiping device, plated steel sheet wiping apparatus including same, and method for manufacturing plated steel sheet
JP2017508864A (en) A continuous processing line for processing a non-magnetic metal strip with a galvanic ring section, and a method for inductively heating the strip in the galvanic ring section
JPH11209858A (en) Aerial pot for floating hot dipping metal
AU2008362112B2 (en) Method and device for draining liquid coating metal at the output of a tempering metal coating tank
EP2304067B1 (en) Electromagnetic device for coating flat metal products by means of continuous hot dipping, and coating process thereof
KR19980701232A (en) METHOD AND APPARATUS FOR HOLDING MOLTEN METAL
US6106620A (en) Electro-magnetic plugging means for hot dip coating pot
CA2072210A1 (en) Method for continuously moving a steel strip
JP3706473B2 (en) High-frequency electromagnet for levitation of molten metal and air pot equipped with this high-frequency electromagnet
EP2167697A2 (en) Method and device for controlling the thickness of coating of a flat metal product
JP4867453B2 (en) Adhesion amount control device for continuous molten metal plating
US7361224B2 (en) Device for hot dip coating metal strands
JPH051359A (en) Method for coating hot-dip metal coated steel sheet
JP2556217B2 (en) Method for preventing vibration and plate warpage of continuously passing steel plates
JP5228653B2 (en) Control apparatus for molten metal bath and method for producing hot-dip metal strip
AU689284B2 (en) Electro-magnetic plugging means for hot dip coating pot
KR100312131B1 (en) Vertical floating type hot dip coating method and apparatus using linear induction motors and high frequency coils
KR20040019730A (en) Apparatus for floating molten metal in the molten metal plating process using ac eletromanetic field, floating method thereof
JP3034958B2 (en) Method and apparatus for holding molten metal
JPH05156420A (en) Heating method and heater for metallic strip
JPH1192901A (en) Hot dip metal coating device
KR100544649B1 (en) Method and apparatus for the levitation of molten metal in the hot dip coating process
JPH051360A (en) Method for coating hot-dip metal coating steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060524

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees