JPH11209416A - Preparation of high polymeric thin film by plasma-polymerization - Google Patents

Preparation of high polymeric thin film by plasma-polymerization

Info

Publication number
JPH11209416A
JPH11209416A JP1019398A JP1019398A JPH11209416A JP H11209416 A JPH11209416 A JP H11209416A JP 1019398 A JP1019398 A JP 1019398A JP 1019398 A JP1019398 A JP 1019398A JP H11209416 A JPH11209416 A JP H11209416A
Authority
JP
Japan
Prior art keywords
polymerization
plasma
minutes
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1019398A
Other languages
Japanese (ja)
Other versions
JP2942821B2 (en
Inventor
Toshihiro Hirotsu
敏博 広津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1019398A priority Critical patent/JP2942821B2/en
Publication of JPH11209416A publication Critical patent/JPH11209416A/en
Application granted granted Critical
Publication of JP2942821B2 publication Critical patent/JP2942821B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polymerisation Methods In General (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently obtain a polymeric thin film by means of plasma- polymerization of an organic compd., needless to say, which has been used so far in the plasma-polymerization, furthermore of even an organic compd. which is substantially unpolymerizable by a conventional plasma-polymerization, by adding a catalytic amt. of iodine gas to a reaction system in a preparing process for a polymeric thin film by plasma-polymerization. SOLUTION: A preparing process for a polymeric thin film by plasma- polymerizing a gaseous organic compd., comprises addition to the reaction system of an iodine gas as a catalyst having a vol. ratio to the organic compd. of one tenth or less. The iodine gas added to the reaction system has a partial press. of pref. 0.1-0.6 Pa. This process enables plasma-polymerizing even an organic compd. having been substantially unpolymerizable, e.g. ethanol, acetone, or the like. This process can use not only a well known plasma-polymerizing apparatus, with no specially limited polymerization condition, but the raw material organic compd. gas introduced pref. has a partial press. of 1-10 Pa.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はプラズマ重合による
高分子薄膜の製造方法の改良に関するものである。さら
に詳しくは、本発明は、ガス状有機化合物をプラズマ放
電により重合させるに際し、重合を促進させて高分子薄
膜を効率よく製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for producing a polymer thin film by plasma polymerization. More specifically, the present invention relates to a method for efficiently producing a polymer thin film by promoting polymerization when a gaseous organic compound is polymerized by plasma discharge.

【0002】[0002]

【従来の技術】グロー放電を使用したプラズマ重合は、
極く一部の化合物を除いて、ほとんどすべての化合物に
対して適用が可能である。そして、この重合は、原料の
重合用モノマーについて、連鎖重合におけるビニル基や
縮合重合における酸などの重合性活性基を必ずしも必要
としないという特徴を有し、一般の鎖状ポリマーと異な
り、分岐性の高い架橋構造の高分子薄膜を形成すること
ができるという長所がある。
2. Description of the Related Art Plasma polymerization using glow discharge
It can be applied to almost all compounds except a few compounds. In addition, this polymerization has a feature that the polymerization monomer of the raw material does not necessarily require a polymerizable active group such as a vinyl group in chain polymerization or an acid in condensation polymerization. It is advantageous in that a polymer thin film having a high cross-linked structure can be formed.

【0003】このようなプラズマ重合方法は、機能性薄
膜の形成方法として広く知られており、実用化も進めら
れている。このプラズマ重合によって形成される薄膜に
所望の機能をもたせるには、その機能を発揮する官能基
を膜中に導入する必要があるが、官能基を有する原料モ
ノマーは、すべてが効率的に重合できるわけではなく、
分子設計的に膜形成を行うのは困難であった。
[0003] Such a plasma polymerization method is widely known as a method for forming a functional thin film, and its practical use is being promoted. In order for a thin film formed by this plasma polymerization to have a desired function, it is necessary to introduce a functional group exhibiting that function into the film, but all the raw material monomers having a functional group can be efficiently polymerized. But not
It was difficult to form a film by molecular design.

【0004】すなわち、原料化合物の重合活性について
は、化合物の構造や組成に応じて重合しやすさに違いが
あり、一部の化合物は機能性官能基をもち、機能性高分
子薄膜を作製する上から、利用価値があると期待される
にもかかわらず、プラズマ重合に供しえないものがあっ
た。
[0004] That is, regarding the polymerization activity of the starting compounds, there is a difference in easiness of polymerization depending on the structure and composition of the compounds, and some of the compounds have a functional functional group to prepare a functional polymer thin film. From the above, there were some that were not useful for plasma polymerization, although they were expected to be useful.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
事情のもとで、これまでプラズマ重合に用いられていた
有機化合物はもちろん、通常のプラズマ重合法では実質
上重合しない有機化合物についてもプラズマ重合させる
ことができ、高分子薄膜を効率よく製造する方法を提供
することを目的としてなされたものである。
Under the above circumstances, the present invention relates to not only organic compounds which have been used in plasma polymerization but also organic compounds which are not substantially polymerized by ordinary plasma polymerization. An object of the present invention is to provide a method of efficiently producing a polymer thin film that can be plasma-polymerized.

【0006】[0006]

【課題を解決するための手段】本発明者は、プラズマ重
合による高分子薄膜の製造について鋭意研究を重ねた結
果、反応系に触媒量のヨウ素ガスを添加することによ
り、これまでのプラズマ重合を著しく促進することがで
き、しかもこれまでプラズマ重合することができなかっ
た有機化合物もプラズマ重合させうることを見出し、こ
の知見に基づいて本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies on the production of a polymer thin film by plasma polymerization, the present inventor has succeeded in adding a catalytic amount of iodine gas to the reaction system, thereby reducing the conventional plasma polymerization. It has been found that organic compounds that can significantly accelerate the polymerization and that can not be plasma-polymerized can also be plasma-polymerized, and based on this finding, have completed the present invention.

【0007】すなわち、本発明は、ガス状有機化合物を
プラズマ重合させて、高分子薄膜を製造するに当り、反
応系に触媒量のヨウ素ガスを添加することを特徴とする
高分子薄膜の製造方法を提供するものである。この際、
反応系に添加するヨウ素ガスの分圧は0.1〜0.6P
aであるのが好ましい。
That is, the present invention provides a method for producing a polymer thin film, which comprises adding a catalytic amount of iodine gas to a reaction system in producing a polymer thin film by plasma-polymerizing a gaseous organic compound. Is provided. On this occasion,
The partial pressure of iodine gas added to the reaction system is 0.1-0.6P
a is preferred.

【0008】[0008]

【発明の実施の形態】本発明方法において原料として用
いられる有機化合物としては、従来プラズマ重合用原料
として用いられていたもののほか、ヨウ素存在下でのプ
ラズマ重合が可能であって、高真空下にて室温から50
℃程度の温度で蒸発し、気体になるものであればよく、
特に制限されない。本発明方法においては、この原料の
有機化合物として、通常の条件でプラズマ重合可能なも
のを用いた場合には、プラズマ重合が著しく促進され、
また、通常のプラズマ重合条件では、これまで実質上重
合不可能であった有機化合物、例えばエタノールやアセ
トンなどを用いても、プラズマ重合が可能となる。
DETAILED DESCRIPTION OF THE INVENTION As the organic compound used as a raw material in the method of the present invention, in addition to those conventionally used as a raw material for plasma polymerization, plasma polymerization in the presence of iodine is possible. From room temperature to 50
It only has to evaporate at a temperature of about ℃ and become a gas,
There is no particular limitation. In the method of the present invention, when a material that can be plasma-polymerized under ordinary conditions is used as the organic compound as the raw material, plasma polymerization is remarkably promoted,
In addition, under ordinary plasma polymerization conditions, plasma polymerization can be performed even when an organic compound which has been practically impossible to polymerize, such as ethanol or acetone, is used.

【0009】本発明方法におけるプラズマ重合は、従来
公知のプラズマ重合装置を用いて行うことができる。プ
ラズマ重合の条件については特に制限はないが、原料の
有機化合物ガスは、分圧が、好ましくは1〜10Paの
範囲になるように導入されるとともに、ヨウ素ガスは、
上記有機化合物に対し、触媒量添加されるが、例えば容
量基準で1/10以下になるように、また分圧が0.1
〜0.6Paの範囲になるような量で反応系に添加する
のが好ましい。
The plasma polymerization in the method of the present invention can be carried out using a conventionally known plasma polymerization apparatus. The conditions of the plasma polymerization are not particularly limited, but the organic compound gas as the raw material is introduced such that the partial pressure is preferably in the range of 1 to 10 Pa, and the iodine gas is
A catalytic amount is added to the organic compound. For example, the partial pressure is 0.1
It is preferable to add to the reaction system in such an amount that the range is up to 0.6 Pa.

【0010】このようなガスの高真空条件下において、
通常13.56MHz(ラジオ波)の高周波を印加して
プラズマ放電させ、プラズマ重合反応が行われるが、高
周波として、上記ラジオ波よりも低いキロヘルツオーダ
ーのオーディオ波を用いることもできる。また、反応系
にヘリウムガスを存在させ、常圧でプラズマ放電させ
て、プラズマ重合反応を行っても差しつかえない。
Under the high vacuum conditions of such a gas,
Usually, a plasma polymerization reaction is performed by applying a high frequency of 13.56 MHz (radio wave) to cause plasma discharge. As the high frequency, an audio wave on the order of kilohertz lower than the above radio wave can be used. In addition, a plasma polymerization reaction may be carried out by causing helium gas to be present in the reaction system and performing plasma discharge at normal pressure.

【0011】さらに、放電出力は、重合装置により異な
るが、一般には2〜200Wの範囲で放電が発生し、プ
ラズマ重合が可能となる。重合時間は特に制限はなく、
形成される高分子薄膜の所望膜厚に応じて、適宜選定す
ればよい。
Further, although the discharge output varies depending on the polymerization apparatus, generally, a discharge is generated in a range of 2 to 200 W, and plasma polymerization can be performed. The polymerization time is not particularly limited,
What is necessary is just to select suitably according to the desired film thickness of the formed polymer thin film.

【0012】本発明方法におけるプラズマ重合反応は、
プラズマで活性化されたラジカル種が成長種となって反
応が開始される。すなわち、放電のもとで発生した電子
が有機化合物に衝突し、これが炭素−水素結合などの化
学結合を解離してラジカルを生成させ、この生成した気
相ラジカルが再結合することによって、架橋構造の重合
体が形成される。
[0012] The plasma polymerization reaction in the method of the present invention comprises:
The radical species activated by the plasma become growth species and the reaction starts. In other words, electrons generated under discharge collide with an organic compound, which dissociates chemical bonds such as carbon-hydrogen bonds to generate radicals, and the generated gas-phase radicals recombine to form a crosslinked structure. Is formed.

【0013】[0013]

【発明の効果】本発明方法によれば、有機化合物のプラ
ズマ重合反応を促進させるとともに、通常のプラズマ重
合条件下では、これまで実質上重合が不可能であった有
機化合物のプラズマ重合を可能とし、高分子薄膜をプラ
ズマ重合により、効率よく製造することができる。
According to the method of the present invention, the plasma polymerization reaction of an organic compound can be promoted, and the plasma polymerization of an organic compound which has been practically impossible under ordinary plasma polymerization conditions can be performed. In addition, a polymer thin film can be efficiently produced by plasma polymerization.

【0014】[0014]

【実施例】次に、本発明を実施例によりさらに詳細に説
明するが、本発明は、これらの例によってなんら限定さ
れるものではない。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0015】実施例1 13.56MHzのラジオ波を用いる誘導結合方式のプ
ラズマ処理装置を使用して、内径4.4cm、長さ40
cmの反応管内に精密バルブを通してエタノール蒸気を
6.0Paの分圧になるように導入し、さらに別のバル
ブを通してヨウ素ガスを0.3Paの分圧になるように
供給した。次に、この混合系に50Wのパワーにてプラ
ズマ放電を発生させて反応を行った。その結果、20分
後には0.05mg/cm2、40分後には0.113
mg/cm2、60分後には0.165mg/cm2の重
合堆積物からなるフィルム状高分子生成物が得られた。
Example 1 An inductively coupled plasma processing apparatus using 13.56 MHz radio waves was used, having an inner diameter of 4.4 cm and a length of 40 cm.
Through a precision valve, ethanol vapor was introduced to a partial pressure of 6.0 Pa through a precision valve, and iodine gas was supplied through another valve to a partial pressure of 0.3 Pa. Next, a reaction was performed by generating plasma discharge at a power of 50 W in the mixed system. As a result, 0.05 mg / cm 2 after 20 minutes and 0.113 after 40 minutes.
The mg / cm 2, 60 minutes after the film-shaped polymer product comprising polymerized deposits 0.165 mg / cm 2 was obtained.

【0016】比較例1 ヨウ素ガスを供給せずに、実施例1を繰り返した。その
結果、60分間反応後の重合堆積物は0.02mg/c
2以下で、フィルム状生成物は得られなかった。
Comparative Example 1 Example 1 was repeated without supplying iodine gas. As a result, the polymerization deposit after the reaction for 60 minutes was 0.02 mg / c.
Below m 2 , no film-like product was obtained.

【0017】実施例2 実施例1において、エタノール蒸気の代わりにアセトン
蒸気を用いた以外は、実施例1と同様の方法を行った。
その結果、20分後には0.05mg/cm、40分
後には0.123mg/cm、60分後には0.20
6mg/cm2の重合堆積物からなるフィルム状高分子
生成物が得られた。
Example 2 A method was performed in the same manner as in Example 1 except that acetone vapor was used instead of ethanol vapor.
As a result, after after after 20 min 0.05 mg / cm 2, 40 minutes 0.123mg / cm 2, 60 minutes 0.20
A film-like polymer product consisting of a polymer deposit of 6 mg / cm 2 was obtained.

【0018】比較例2 ヨウ素ガスを供給せずに、実施例2を繰り返した。その
結果、60分間反応後の重合堆積物は0.03mg/c
2以下で、フィルム状生成物は得られなかった。
Comparative Example 2 Example 2 was repeated without supplying iodine gas. As a result, the polymerization deposit after the reaction for 60 minutes was 0.03 mg / c.
Below m 2 , no film-like product was obtained.

【0019】実施例3 実施例1において、エタノール蒸気の代わりにn‐ヘキ
サン蒸気を用いた以外は、実施例1と同様の方法を行っ
た。その結果、20分後には0.123mg/cm2
40分後には0.237mg/cm2、60分後には
0.370mg/cm2の重合堆積物からなるフィルム
状高分子生成物が得られた。
Example 3 A method was performed in the same manner as in Example 1 except that n-hexane vapor was used instead of ethanol vapor. As a result, after 20 minutes, 0.123 mg / cm 2 ,
After 40 minutes to 0.237mg / cm 2, 60 minutes after the film-shaped polymer product comprising polymerized deposits 0.370mg / cm 2 was obtained.

【0020】比較例3 ヨウ素ガスを供給せずに、実施例3を繰り返した。その
結果、20分後には0.02mg/cm2、40分後に
は0.04mg/cm2、60分後には0.072mg
/cm2の重合堆積物からなるフィルム状高分子生成物
の形成が認められたが、これらは、ヨウ素ガスを加えた
混合系の重合に比べてかなり少量であった。
Comparative Example 3 Example 3 was repeated without supplying iodine gas. As a result, after 20 minutes to 0.04 mg / cm 2, 60 minutes after the 0.02 mg / cm 2, 40 minutes after 0.072mg
/ Cm 2 , the formation of a film-like polymer product consisting of polymerized deposits was observed, but in a much smaller amount than in the polymerization of a mixed system to which iodine gas was added.

【0021】実施例4 実施例1において、エタノール蒸気の代わりにシクロヘ
キサンガスを用いた以外は、実施例1と同様の方法を行
った。その結果、20分後には0.185mg/c
2、40分後には0.381mg/cm2、60分後に
は0.566mg/cm2の重合堆積物からなるフィル
ム状高分子生成物が得られた。
Example 4 The procedure of Example 1 was repeated except that cyclohexane gas was used instead of ethanol vapor. As a result, after 20 minutes, 0.185 mg / c
m 2, after 40 minutes to 0.381mg / cm 2, 60 minutes after the film-shaped polymer product comprising polymerized deposits 0.566mg / cm 2 was obtained.

【0022】比較例4 ヨウ素ガスを供給せずに、実施例4を繰り返した。その
結果、20分後には0.061mg/cm2、40分後
には0.134mg/cm2、60分後には0.236
mg/cm2の重合堆積物からなるフィルム状高分子生
成物の形成が認められたが、これらは、ヨウ素ガスを加
えた混合系の重合に比べてかなり少量であった。
Comparative Example 4 Example 4 was repeated without supplying iodine gas. As a result, after the 20 minutes after 0.061 mg / cm 2, 40 minutes after 0.134mg / cm 2, 60 minutes 0.236
The formation of a film-like polymer product consisting of a polymer deposit of mg / cm 2 was observed, but these were considerably smaller than in the polymerization of a mixed system to which iodine gas was added.

【0023】実施例5 実施例1において、エタノール蒸気の代わりにトルエン
ガスを用いた以外は、実施例1と同様の方法を行った。
その結果、20分後には0.319mg/cm2、40
分後には0.628mg/cm2、60分後には0.9
16mg/cm2の重合堆積物からなるフィルム状高分
子生成物が得られた。
Example 5 The procedure of Example 1 was repeated, except that toluene gas was used instead of ethanol vapor.
As a result, after 20 minutes, 0.319 mg / cm 2 , 40
0.628 mg / cm 2 after 60 minutes and 0.928 after 60 minutes.
A film-like polymer product consisting of a polymer deposit of 16 mg / cm 2 was obtained.

【0024】比較例5 ヨウ素ガスを供給せずに、実施例5を繰り返した。その
結果、20分後には0.267mg/cm2、40分後
には0.535mg/cm2、60分後には0.813
mg/cm2の重合堆積物からなるフィルム状高分子生
成物の形成が認められたが、これらは、ヨウ素ガスを加
えた混合系の重合に比べてかなり少量であった。
Comparative Example 5 Example 5 was repeated without supplying iodine gas. As a result, 0.267 mg / cm 2 after 20 minutes, 0.535 mg / cm 2 after 40 minutes, and 0.813 mg / cm 2 after 60 minutes.
The formation of a film-like polymer product consisting of a polymer deposit of mg / cm 2 was observed, but these were considerably smaller than in the polymerization of a mixed system to which iodine gas was added.

【0025】実施例6 実施例1において、エタノール蒸気の代わりにピロール
ガスを用いた以外は、実施例1と同様の方法を行った。
その結果、20分後には0.257mg/cm2、40
分後には0.566mg/cm2、60分後には0.8
74mg/cm2の重合堆積物からなるフィルム状高分
子生成物が得られた。
Example 6 The procedure of Example 1 was repeated, except that pyrrole gas was used instead of ethanol vapor.
As a result, after 20 minutes, 0.257 mg / cm 2 , 40
0.566 mg / cm 2 after 60 minutes, 0.8 after 60 minutes
A film-like polymer product consisting of a polymer deposit of 74 mg / cm 2 was obtained.

【0026】比較例6 ヨウ素ガスを供給せずに、実施例6を繰り返した。その
結果、20分後には0.175mg/cm2、40分後
には0.329mg/cm2、60分後には0.528
mg/cm2の重合堆積物からなるフィルム状高分子生
成物の形成が認められたが、これらは、ヨウ素ガスを加
えた混合系の重合に比べてかなり少量であった。
Comparative Example 6 Example 6 was repeated without supplying iodine gas. As a result, 0.175 mg / cm 2 after 20 minutes, 0.329 mg / cm 2 after 40 minutes, and 0.528 mg / cm 2 after 60 minutes.
The formation of a film-like polymer product consisting of a polymer deposit of mg / cm 2 was observed, but these were considerably smaller than in the polymerization of a mixed system to which iodine gas was added.

【0027】実施例7 実施例1において、エタノール蒸気の代わりにピリジン
ガスを用いた以外は、実施例1と同様の方法を行った。
その結果、20分後には0.278mg/cm2、40
分後には0.586mg/cm2、60分後には0.8
64mg/cm2の重合堆積物からなるフィルム状高分
子生成物が得られた。
Example 7 The procedure of Example 1 was repeated, except that pyridine gas was used instead of ethanol vapor.
As a result, after 20 minutes, 0.278 mg / cm 2 , 40
0.586 mg / cm 2 after 60 minutes, 0.8 after 60 minutes
A film-like polymer product consisting of a polymer deposit of 64 mg / cm 2 was obtained.

【0028】比較例7 ヨウ素ガスを供給せずに、実施例7を繰り返した。その
結果、20分後には0.144mg/cm2、40分後
には0.278mg/cm2、60分後には0.422
mg/cm2の重合堆積物からなるフィルム状高分子生
成物の形成が認められたが、これらは、ヨウ素ガスを加
えた混合系の重合に比べてかなり少量であった。
Comparative Example 7 Example 7 was repeated without supplying iodine gas. As a result, after the 20 minutes after 0.144 mg / cm 2, 40 minutes after 0.278mg / cm 2, 60 minutes 0.422
The formation of a film-like polymer product consisting of a polymer deposit of mg / cm 2 was observed, but these were considerably smaller than in the polymerization of a mixed system to which iodine gas was added.

【0029】実施例8 実施例1において、エタノール蒸気の代わりにヘキサメ
チルジシロキサンガスを3.0Paで用いた以外は、実
施例1と同様の方法を行った。その結果、20分後には
0.174mg/cm2、40分後には0.309mg
/cm2、60分後には0.432mg/cm2の重合堆
積物からなるフィルム状高分子生成物が得られた。
Example 8 The same method as in Example 1 was used except that hexamethyldisiloxane gas was used at 3.0 Pa instead of ethanol vapor. As a result, 0.174 mg / cm 2 after 20 minutes and 0.309 mg after 40 minutes.
/ Cm 2, after 60 minutes the film-shaped polymer product comprising polymerized deposits 0.432mg / cm 2 was obtained.

【0030】比較例8 ヨウ素ガスを供給せずに、実施例8を繰り返した。その
結果、20分後には0.113mg/cm2、40分後
には0.216mg/cm2、60分後には0.34m
g/cm2の重合堆積物からなるフィルム状高分子生成
物の形成が認められたが、これらは、ヨウ素ガスを加え
た混合系の重合に比べてかなり少量であった。
Comparative Example 8 Example 8 was repeated without supplying iodine gas. As a result, after 20 minutes to 0.216mg / cm 2, 60 minutes after the 0.113mg / cm 2, 40 minutes after 0.34m
The formation of film-like polymeric products consisting of g / cm 2 polymer deposits was observed, but in considerably smaller amounts than in a mixed system polymerization with the addition of iodine gas.

【0031】実施例9 実施例1において、エタノール蒸気の代わりにヘキサメ
チルジシラザンガスを3.0Paで用いた以外は、実施
例1と同様の方法を行った。その結果、20分後には
0.165mg/cm2、40分後には0.36mg/
cm2、60分後には0.535mg/cm2の重合堆積
物からなるフィルム状高分子生成物が得られた。
Example 9 A method was performed in the same manner as in Example 1, except that hexamethyldisilazane gas was used at 3.0 Pa instead of ethanol vapor. As a result, 0.165 mg / cm 2 after 20 minutes and 0.36 mg / cm 2 after 40 minutes.
After 60 minutes in cm 2 , a film-like polymer product consisting of a polymerized deposit of 0.535 mg / cm 2 was obtained.

【0032】比較例9 ヨウ素ガスを供給せずに、実施例9を繰り返した。その
結果、20分後には0.123mg/cm2、40分後
には0.247mg/cm2、60分後には0.34m
g/cm2の重合堆積物からなるフィルム状高分子生成
物の形成が認められたが、これらは、ヨウ素ガスを加え
た混合系の重合に比べてかなり少量であった。
Comparative Example 9 Example 9 was repeated without supplying iodine gas. As a result, after 20 minutes to 0.247mg / cm 2, 60 minutes after the 0.123mg / cm 2, 40 minutes after 0.34m
The formation of film-like polymeric products consisting of g / cm 2 polymer deposits was observed, but in considerably smaller amounts than in a mixed system polymerization with the addition of iodine gas.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年1月19日[Submission date] January 19, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 プラズマ重合による高分子薄膜の製造
方法
Patent application title: Method for producing polymer thin film by plasma polymerization

【特許請求の範囲】[Claims]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はプラズマ重合による
高分子薄膜の製造方法の改良に関するものである。さら
に詳しくは、本発明は、ガス状有機化合物をプラズマ放
電により重合させるに際し、重合を促進させて高分子薄
膜を効率よく製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for producing a polymer thin film by plasma polymerization. More specifically, the present invention relates to a method for efficiently producing a polymer thin film by promoting polymerization when a gaseous organic compound is polymerized by plasma discharge.

【0002】[0002]

【従来の技術】グロー放電を使用したプラズマ重合は、
極く一部の化合物を除いて、ほとんどすべての化合物に
対して適用が可能である。そして、この重合は、原料の
重合用モノマーについて、連鎖重合におけるビニル基や
縮合重合における酸などの重合性活性基を必ずしも必要
としないという特徴を有し、一般の鎖状ポリマーと異な
り、分岐性の高い架橋構造の高分子薄膜を形成すること
ができるという長所がある。
2. Description of the Related Art Plasma polymerization using glow discharge
It can be applied to almost all compounds except a few compounds. In addition, this polymerization has a feature that the polymerization monomer of the raw material does not necessarily require a polymerizable active group such as a vinyl group in chain polymerization or an acid in condensation polymerization. It is advantageous in that a polymer thin film having a high cross-linked structure can be formed.

【0003】このようなプラズマ重合方法は、機能性薄
膜の形成方法として広く知られており、実用化も進めら
れている。このプラズマ重合によって形成される薄膜に
所望の機能をもたせるには、その機能を発揮する官能基
を膜中に導入する必要があるが、官能基を有する原料モ
ノマーは、すべてが効率的に重合できるわけではなく、
分子設計的に膜形成を行うのは困難であった。
[0003] Such a plasma polymerization method is widely known as a method for forming a functional thin film, and its practical use is being promoted. In order for a thin film formed by this plasma polymerization to have a desired function, it is necessary to introduce a functional group exhibiting that function into the film, but all the raw material monomers having a functional group can be efficiently polymerized. But not
It was difficult to form a film by molecular design.

【0004】すなわち、原料化合物の重合活性について
は、化合物の構造や組成に応じて重合しやすさに違いが
あり、一部の化合物は機能性官能基をもち、機能性高分
子薄膜を作製する上から、利用価値があると期待される
にもかかわらず、プラズマ重合に供しえないものがあっ
た。
[0004] That is, regarding the polymerization activity of the starting compounds, there is a difference in easiness of polymerization depending on the structure and composition of the compounds, and some of the compounds have a functional functional group to prepare a functional polymer thin film. From the above, there were some that were not useful for plasma polymerization, although they were expected to be useful.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
事情のもとで、これまでプラズマ重合に用いられていた
有機化合物はもちろん、通常のプラズマ重合法では実質
上重合しない有機化合物についてもプラズマ重合させる
ことができ、高分子薄膜を効率よく製造する方法を提供
することを目的としてなされたものである。
Under the above circumstances, the present invention relates to not only organic compounds which have been used in plasma polymerization but also organic compounds which are not substantially polymerized by ordinary plasma polymerization. An object of the present invention is to provide a method of efficiently producing a polymer thin film that can be plasma-polymerized.

【0006】[0006]

【課題を解決するための手段】本発明者は、プラズマ重
合による高分子薄膜の製造について鋭意研究を重ねた結
果、反応系に触媒量のヨウ素ガスを添加することによ
り、これまでのプラズマ重合を著しく促進することがで
き、しかもこれまでプラズマ重合することができなかっ
た有機化合物もプラズマ重合させうることを見出し、こ
の知見に基づいて本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies on the production of a polymer thin film by plasma polymerization, the present inventor has succeeded in adding a catalytic amount of iodine gas to the reaction system, thereby reducing the conventional plasma polymerization. It has been found that organic compounds that can significantly accelerate the polymerization and that can not be plasma-polymerized can also be plasma-polymerized, and based on this finding, have completed the present invention.

【0007】すなわち、本発明は、ガス状有機化合物を
プラズマ重合させて、高分子薄膜を製造するに当り、反
応系に触媒として有機化合物に対して1/10容量以下
のヨウ素ガスを添加することを特徴とする高分子薄膜の
製造方法を提供するものである。この際、反応系に添加
するヨウ素ガスの分圧は0.1〜0.6Paであるのが
好ましい。
That is, according to the present invention, when a gaseous organic compound is subjected to plasma polymerization to produce a polymer thin film, the reaction system contains 1/10 or less volume of iodine gas relative to the organic compound as a catalyst. And a method for producing a polymer thin film, characterized by adding At this time, the partial pressure of the iodine gas added to the reaction system is preferably 0.1 to 0.6 Pa.

【0008】[0008]

【発明の実施の形態】本発明方法において原料として用
いられる有機化合物としては、従来プラズマ重合用原料
として用いられていたもののほか、ヨウ素存在下でのプ
ラズマ重合が可能であって、高真空下にて室温から50
℃程度の温度で蒸発し、気体になるものであればよく、
特に制限されない。本発明方法においては、この原料の
有機化合物として、通常の条件でプラズマ重合可能なも
のを用いた場合には、プラズマ重合が著しく促進され、
また、通常のプラズマ重合条件では、これまで実質上重
合不可能であった有機化合物、例えばエタノールやアセ
トンなどを用いても、プラズマ重合が可能となる。
DETAILED DESCRIPTION OF THE INVENTION As the organic compound used as a raw material in the method of the present invention, in addition to those conventionally used as a raw material for plasma polymerization, plasma polymerization in the presence of iodine is possible. From room temperature to 50
It only has to evaporate at a temperature of about ℃ and become a gas,
There is no particular limitation. In the method of the present invention, when a material that can be plasma-polymerized under ordinary conditions is used as the organic compound as the raw material, plasma polymerization is remarkably promoted,
In addition, under ordinary plasma polymerization conditions, plasma polymerization can be performed even when an organic compound which has been practically impossible to polymerize, such as ethanol or acetone, is used.

【0009】本発明方法におけるプラズマ重合は、従来
公知のプラズマ重合装置を用いて行うことができる。プ
ラズマ重合の条件については特に制限はないが、原料の
有機化合物ガスは、分圧が、好ましくは1〜10Paの
範囲になるように導入されるとともに、ヨウ素ガスは、
触媒的な作用をなす物質として上記有機化合物に対し、
容量基準で1/10以下になるように添加する。また、
反応系に添加するヨウ素ガスの分圧が0.1〜0.6P
aの範囲になるような量で反応系に添加するのが好まし
い。
The plasma polymerization in the method of the present invention can be carried out using a conventionally known plasma polymerization apparatus. The conditions of the plasma polymerization are not particularly limited, but the organic compound gas as the raw material is introduced such that the partial pressure is preferably in the range of 1 to 10 Pa, and the iodine gas is
For the above organic compound as a substance that acts as a catalyst ,
It is added so as to be 1/10 or less on a volume basis . Also,
The partial pressure of iodine gas added to the reaction system is 0.1-0.6P
It is preferable to add to the reaction system in such an amount as to fall within the range of a.

【0010】このようなガスの高真空条件下において、
通常13.56MHz(ラジオ波)の高周波を印加して
プラズマ放電させ、プラズマ重合反応が行われるが、高
周波として、上記ラジオ波よりも低いキロヘルツオーダ
ーのオーディオ波を用いることもできる。また、反応系
にヘリウムガスを存在させ、その常圧雰囲気下にプラズ
マ放電を発生させて、プラズマ重合反応を行っても差し
つかえない。
Under the high vacuum conditions of such a gas,
Usually, a plasma polymerization reaction is performed by applying a high frequency of 13.56 MHz (radio wave) to cause plasma discharge. As the high frequency, an audio wave on the order of kilohertz lower than the above radio wave can be used. Further, the reaction system in the presence of helium gas, the under atmosphere pressure by generating a plasma <br/> Ma discharge, may safely be subjected to plasma polymerization reaction.

【0011】さらに、放電出力は、重合装置により異な
るが、一般には2〜200Wの範囲で放電が発生し、プ
ラズマ重合が可能となる。重合時間は特に制限はなく、
形成される高分子薄膜の所望膜厚に応じて、適宜選定す
ればよい。
Further, although the discharge output varies depending on the polymerization apparatus, generally, a discharge is generated in a range of 2 to 200 W, and plasma polymerization can be performed. The polymerization time is not particularly limited,
What is necessary is just to select suitably according to the desired film thickness of the formed polymer thin film.

【0012】本発明方法におけるプラズマ重合反応は、
プラズマで活性化されたラジカル種が成長種となって反
応が開始される。すなわち、放電のもとで発生した電子
が有機化合物に衝突し、これが炭素−水素結合などの化
学結合を解離してラジカルを生成させ、この生成した気
相ラジカルが再結合することによって、架橋構造の重合
体が形成される。
[0012] The plasma polymerization reaction in the method of the present invention comprises:
The radical species activated by the plasma become growth species and the reaction starts. In other words, electrons generated under discharge collide with an organic compound, which dissociates chemical bonds such as carbon-hydrogen bonds to generate radicals, and the generated gas-phase radicals recombine to form a crosslinked structure. Is formed.

【0013】[0013]

【発明の効果】本発明方法によれば、有機化合物のプラ
ズマ重合反応を促進させるとともに、通常のプラズマ重
合条件下では、これまで実質上重合が不可能であった有
機化合物のプラズマ重合を可能とし、高分子薄膜をプラ
ズマ重合により、効率よく製造することができる。
According to the method of the present invention, the plasma polymerization reaction of an organic compound can be promoted, and the plasma polymerization of an organic compound which has been practically impossible under ordinary plasma polymerization conditions can be performed. In addition, a polymer thin film can be efficiently produced by plasma polymerization.

【0014】[0014]

【実施例】次に、本発明を実施例によりさらに詳細に説
明するが、本発明は、これらの例によってなんら限定さ
れるものではない。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0015】実施例1 13.56MHzのラジオ波を用いる誘導結合方式のプ
ラズマ処理装置を使用して、内径4.4cm、長さ40
cmの反応管内に精密バルブを通してエタノール蒸気を
6.0Paの分圧になるように導入し、さらに別のバル
ブを通してヨウ素ガスを0.3Paの分圧になるように
供給した。次に、この混合系に50Wのパワーにてプラ
ズマ放電を発生させて反応を行った。その結果、20分
後には0.05mg/cm、40分後には0.113
mg/cm、60分後には0.165mg/cm
重合堆積物からなるフィルム状高分子生成物が得られ
た。
Example 1 An inductively coupled plasma processing apparatus using 13.56 MHz radio waves was used, having an inner diameter of 4.4 cm and a length of 40 cm.
Through a precision valve, ethanol vapor was introduced to a partial pressure of 6.0 Pa through a precision valve, and iodine gas was supplied through another valve to a partial pressure of 0.3 Pa. Next, a reaction was performed by generating plasma discharge at a power of 50 W in the mixed system. As a result, 0.05 mg / cm 2 after 20 minutes and 0.113 mg after 40 minutes.
The mg / cm 2, 60 minutes after the film-shaped polymer product comprising polymerized deposits 0.165 mg / cm 2 was obtained.

【0016】比較例1 ヨウ素ガスを供給せずに、実施例1を繰り返した。その
結果、60分間反応後の重合堆積物は0.02mg/c
以下で、フィルム状生成物は得られなかった。
Comparative Example 1 Example 1 was repeated without supplying iodine gas. As a result, the polymerization deposit after the reaction for 60 minutes was 0.02 mg / c.
m 2 or less, the film-like product was obtained.

【0017】実施例2 実施例1において、エタノール蒸気の代わりにアセトン
蒸気を用いた以外は、実施例1と同様の方法を行った。
その結果、20分後には0.05mg/cm、40分
後には0.123mg/cm、60分後には0.20
6mg/cmの重合堆積物からなるフィルム状高分子
生成物が得られた。
Example 2 A method was performed in the same manner as in Example 1 except that acetone vapor was used instead of ethanol vapor.
As a result, after after after 20 min 0.05 mg / cm 2, 40 minutes 0.123mg / cm 2, 60 minutes 0.20
A film-like polymer product consisting of a polymer deposit of 6 mg / cm 2 was obtained.

【0018】比較例2 ヨウ素ガスを供給せずに、実施例2を繰り返した。その
結果、60分間反応後の重合堆積物は0.03mg/c
以下で、フィルム状生成物は得られなかった。
Comparative Example 2 Example 2 was repeated without supplying iodine gas. As a result, the polymerization deposit after the reaction for 60 minutes was 0.03 mg / c.
m 2 or less, the film-like product was obtained.

【0019】実施例3 実施例1において、エタノール蒸気の代わりにn‐ヘキ
サン蒸気を用いた以外は、実施例1と同様の方法を行っ
た。その結果、20分後には0.123mg/cm
40分後には0.237mg/cm、60分後には
0.370mg/cmの重合堆積物からなるフィルム
状高分子生成物が得られた。
Example 3 A method was performed in the same manner as in Example 1 except that n-hexane vapor was used instead of ethanol vapor. As a result, after 20 minutes, 0.123 mg / cm 2 ,
After 40 minutes to 0.237mg / cm 2, 60 minutes after the film-shaped polymer product comprising polymerized deposits 0.370mg / cm 2 was obtained.

【0020】比較例3 ヨウ素ガスを供給せずに、実施例3を繰り返した。その
結果、20分後には0.02mg/cm、40分後に
は0.04mg/cm、60分後には0.072mg
/cmの重合堆積物からなるフィルム状高分子生成物
の形成が認められ たが、これらは、ヨウ素ガスを加え
た混合系の重合に比べてかなり少量であった。
Comparative Example 3 Example 3 was repeated without supplying iodine gas. As a result, after 20 minutes to 0.04 mg / cm 2, 60 minutes after the 0.02 mg / cm 2, 40 minutes after 0.072mg
The formation of a film-like polymer product consisting of a polymerized deposit of / cm 2 was observed, but in a much smaller amount than in a mixed type polymerization in which iodine gas was added.

【0021】実施例4 実施例1において、エタノール蒸気の代わりにシクロヘ
キサンガスを用いた以外は、実施例1と同様の方法を行
った。その結果、20分後には0.185mg/c
、40分後には0.381mg/cm、60分後
には0.566mg/cmの重合堆積物からなるフィ
ルム状高分子生成物が得られた。
Example 4 The procedure of Example 1 was repeated except that cyclohexane gas was used instead of ethanol vapor. As a result, after 20 minutes, 0.185 mg / c
m 2, after 40 minutes to 0.381mg / cm 2, 60 minutes after the film-shaped polymer product comprising polymerized deposits 0.566mg / cm 2 was obtained.

【0022】比較例4 ヨウ素ガスを供給せずに、実施例4を繰り返した。その
結果、20分後には0.061mg/cm、40分後
には0.134mg/cm、60分後には0.236
mg/cmの重合堆積物からなるフィルム状高分子生
成物の形成が認め られたが、これらは、ヨウ素ガスを
加えた混合系の重合に比べてかなり少量であった。
Comparative Example 4 Example 4 was repeated without supplying iodine gas. As a result, after the 20 minutes after 0.061 mg / cm 2, 40 minutes after 0.134mg / cm 2, 60 minutes 0.236
The formation of a film-like polymer product consisting of a polymer deposit of mg / cm 2 was observed, but in a much smaller amount than in the case of a mixed system polymerization containing iodine gas.

【0023】実施例5 実施例1において、エタノール蒸気の代わりにトルエン
ガスを用いた以外は、実施例1と同様の方法を行った。
その結果、20分後には0.319mg/cm、40
分後には0.628mg/cm、60分後には0.9
16mg/cmの重合堆積物からなるフィルム状高分
子生成物が得られた。
Example 5 The procedure of Example 1 was repeated, except that toluene gas was used instead of ethanol vapor.
As a result, after 20 minutes, 0.319 mg / cm 2 , 40
0.628 mg / cm 2 after 60 minutes and 0.928 after 60 minutes.
A film-like polymer product consisting of a polymer deposit of 16 mg / cm 2 was obtained.

【0024】比較例5 ヨウ素ガスを供給せずに、実施例5を繰り返した。その
結果、20分後には0.267mg/cm、40分後
には0.535mg/cm、60分後には0.813
mg/cmの重合堆積物からなるフィルム状高分子生
成物の形成が認め られたが、これらは、ヨウ素ガスを
加えた混合系の重合に比べてかなり少量であった。
Comparative Example 5 Example 5 was repeated without supplying iodine gas. As a result, 0.267 mg / cm 2 after 20 minutes, 0.535 mg / cm 2 after 40 minutes, and 0.813 mg / cm 2 after 60 minutes.
The formation of a film-like polymer product consisting of a polymer deposit of mg / cm 2 was observed, but in a much smaller amount than in the case of a mixed system polymerization containing iodine gas.

【0025】実施例 実施例1において、エタノール蒸気の代わりにヘキサメ
チルジシロキサンガスを3.0Paで用いた以外は、実
施例1と同様の方法を行った。その結果、20分後には
0.174mg/cm、40分後には0.309mg
/cm、60分後には0.432mg/cmの重合
堆積物からなるフィルム状高分子生成物が得られた。
Example 6 The same method as in Example 1 was used except that hexamethyldisiloxane gas was used at 3.0 Pa instead of ethanol vapor. As a result, 0.174 mg / cm 2 after 20 minutes and 0.309 mg after 40 minutes.
/ Cm 2, after 60 minutes the film-shaped polymer product comprising polymerized deposits 0.432mg / cm 2 was obtained.

【0026】比較例 ヨウ素ガスを供給せずに、実施例6を繰り返した。その
結果、20分後には0.113mg/cm、40分後
には0.216mg/cm、60分後には0.34m
g/cmの重合堆積物からなるフィルム状高分子生成
物の形成が認めら れたが、これらは、ヨウ素ガスを加
えた混合系の重合に比べてかなり少量であった。
Comparative Example 6 Example 6 was repeated without supplying iodine gas. As a result, after 20 minutes to 0.216mg / cm 2, 60 minutes after the 0.113mg / cm 2, 40 minutes after 0.34m
The formation of film-like polymer products consisting of polymerized deposits of g / cm 2 was observed, but these were considerably smaller than those of the mixed polymerization in which iodine gas was added.

【0027】実施例 実施例1において、エタノール蒸気の代わりにヘキサメ
チルジシラザンガスを3.0Paで用いた以外は、実施
例1と同様の方法を行った。その結果、20分後には
0.165mg/cm、40分後には0.36mg/
cm、60分後には0.535mg/cmの重合堆
積物からなるフィルム状高分子生成物が得られた。
Example 7 A method was performed in the same manner as in Example 1, except that hexamethyldisilazane gas was used at 3.0 Pa instead of ethanol vapor. As a result, 0.165 mg / cm 2 after 20 minutes and 0.36 mg / cm 2 after 40 minutes.
After 60 minutes at cm 2 , a film-like polymer product consisting of a polymerized deposit of 0.535 mg / cm 2 was obtained.

【0028】比較例 ヨウ素ガスを供給せずに、実施例7を繰り返した。その
結果、20分後には0.123mg/cm、40分後
には0.247mg/cm、60分後には0.34m
g/cmの重合堆積物からなるフィルム状高分子生成
物の形成が認めら れたが、これらは、ヨウ素ガスを加
えた混合系の重合に比べてかなり少量であった。
Comparative Example 7 Example 7 was repeated without supplying iodine gas. As a result, after 20 minutes to 0.247mg / cm 2, 60 minutes after the 0.123mg / cm 2, 40 minutes after 0.34m
The formation of film-like polymer products consisting of polymerized deposits of g / cm 2 was observed, but these were considerably smaller than those of the mixed polymerization in which iodine gas was added.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガス状有機化合物をプラズマ重合させ
て、高分子薄膜を製造するに当り、反応系に触媒量のヨ
ウ素ガスを添加することを特徴とする高分子薄膜の製造
方法。
1. A method for producing a polymer thin film, which comprises adding a catalytic amount of iodine gas to a reaction system in producing a polymer thin film by plasma-polymerizing a gaseous organic compound.
【請求項2】 反応系に添加するヨウ素ガスの分圧が
0.1〜0.6Paである請求項1記載の製造方法。
2. The method according to claim 1, wherein the partial pressure of the iodine gas added to the reaction system is 0.1 to 0.6 Pa.
JP1019398A 1998-01-22 1998-01-22 Method for producing polymer thin film by plasma polymerization Expired - Lifetime JP2942821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1019398A JP2942821B2 (en) 1998-01-22 1998-01-22 Method for producing polymer thin film by plasma polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1019398A JP2942821B2 (en) 1998-01-22 1998-01-22 Method for producing polymer thin film by plasma polymerization

Publications (2)

Publication Number Publication Date
JPH11209416A true JPH11209416A (en) 1999-08-03
JP2942821B2 JP2942821B2 (en) 1999-08-30

Family

ID=11743464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1019398A Expired - Lifetime JP2942821B2 (en) 1998-01-22 1998-01-22 Method for producing polymer thin film by plasma polymerization

Country Status (1)

Country Link
JP (1) JP2942821B2 (en)

Also Published As

Publication number Publication date
JP2942821B2 (en) 1999-08-30

Similar Documents

Publication Publication Date Title
AU4042799A (en) A process to produce a homogeneous polyethylene material
US4212719A (en) Method of plasma initiated polymerization
Oehr et al. Plasma grafting—a method to obtain monofunctional surfaces
Wu et al. Non-fouling surfaces produced by gas phase pulsed plasma polymerization of an ultra low molecular weight ethylene oxide containing monomer
US5013338A (en) Plasma-assisted polymerization of monomers onto polymers and gas separation membranes produced thereby
MY132302A (en) Vapor phase synthesis of rubbery polymers
MY110349A (en) Process for the gas-phase polymerization of olefins
AU4438296A (en) Polymerisable composition, process for producing cross-linked polymers, and cross-linkable polymers
KR20080030621A (en) Method of producing functional fluorocarbon polymer layers by means of plasma polymerization of perfluorocycloalkanes
GB2068352A (en) Large pore volume olefin polymerization catalysts
JP2942821B2 (en) Method for producing polymer thin film by plasma polymerization
ATE166075T1 (en) METHOD FOR PRODUCING POLYPROPYLENE
JPH0561297B2 (en)
US4794130A (en) Method for graft polymerization of acetylene compound on a shaped polymer article
WO2012007466A1 (en) Method for polymer plasma deposition
TW366351B (en) Production process of acrylonitrile (co)polymers
Bosselmann et al. Plasma deposited stability enhancement coating for amorphous ketoprofen
CA2374031C (en) Functionalised solid surfaces
SU405371A1 (en) Polyethylene producing method
JP4002965B2 (en) Method for producing porous silicon oxide thin film
Mommer et al. Light‐Controlled Radical Polymerization of Functional Methacrylates Prepared by Enzymatic Transacylation
NIÞÃ et al. POSSIBILITIES OF VINYL POLYMERS OBTAINMENT IN COLD PLASMA★
JP2000084398A (en) Carbon dioxide immobilization in organic thin film by atmospheric pressure plasma and atmospheric pressure plasma generating device
SU1399307A1 (en) Method of producing cis-butadiene rubber
SU1752737A1 (en) Method for catalyst preparation for synthesis of isotactic polystyrene

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term