JPH11209397A - Production of soluble gamma-livetin complex - Google Patents
Production of soluble gamma-livetin complexInfo
- Publication number
- JPH11209397A JPH11209397A JP2390198A JP2390198A JPH11209397A JP H11209397 A JPH11209397 A JP H11209397A JP 2390198 A JP2390198 A JP 2390198A JP 2390198 A JP2390198 A JP 2390198A JP H11209397 A JPH11209397 A JP H11209397A
- Authority
- JP
- Japan
- Prior art keywords
- solution
- complex
- libetin
- soluble
- livetin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Peptides Or Proteins (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、可溶性γ−リベチ
ン複合体の製造法に関する。更に詳しくは、従来の免疫
反応性を高めた可溶性γ−リベチン複合体の製造法に関
する。TECHNICAL FIELD The present invention relates to a method for producing a soluble γ-libetine complex. More specifically, the present invention relates to a conventional method for producing a soluble γ-libetin complex having enhanced immunoreactivity.
【0002】[0002]
【従来の技術】従来のγ−リベチンは抗原結合部位が1
箇所しか存在しないため分子間架橋が作りにくく、検査
薬として使用する際、測定する抗原の種類によっては満
足する沈降反応が得られない欠点があった。架橋を作り
やすくする方法として、1.5Mの塩化ナトリウムを添
加する事が開示されている(大谷、日本畜産学会北陸支
部会報、57、p16-25(1988))。この方法は、1.5Mの
塩化ナトリウム存在下ではγ−リベチンは2量体として
存在することにより4価となり格子を作りやすく、沈降
反応の判定が行いやすくなる性質を利用したものである
が、大量の塩化ナトリウムを必要とする為、測定する抗
原の種類によっては沈降反応判定を困難とする欠点があ
った。2. Description of the Related Art Conventional γ-libetin has one antigen binding site.
Since there is only one site, it is difficult to form an intermolecular cross-link, and when used as a test agent, there is a drawback that a satisfactory precipitation reaction cannot be obtained depending on the type of the antigen to be measured. As a method for facilitating cross-linking, addition of 1.5 M sodium chloride is disclosed (Otani, Bulletin of the Japan Society of Animal Science, Hokuriku Branch, 57, p16-25 (1988)). This method utilizes the property that in the presence of 1.5 M sodium chloride, γ-libetine is present as a dimer and becomes tetravalent, making it easy to form a lattice and making it easy to determine a sedimentation reaction. Since a large amount of sodium chloride is required, there is a disadvantage that it is difficult to determine a sedimentation reaction depending on the type of the antigen to be measured.
【0003】[0003]
【発明が解決しようとしている課題】本発明は、高い凝
集反応性を有する可溶性γ−リベチン複合体の製造法を
提供することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a soluble γ-libetin complex having high agglutinating reactivity.
【0004】[0004]
【課題を解決しようとする手段】本発明者等は上記課題
を解決するために鋭意研究を行った結果、γ−リベチン
に不可逆な反応を施すことにより高い凝集反応性を有す
る可溶性複合体が得られることを見い出し、本発明を完
成させるに至った。すなわち、本発明は、不可逆反応を
用いることを特徴とするγ−リベチンを主構成成分とす
る可溶性γ−リベチン複合体の製造法である。Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, a soluble complex having high aggregation reactivity was obtained by subjecting γ-libetin to an irreversible reaction. And found that the present invention was completed. That is, the present invention is a method for producing a soluble γ-libetin complex containing γ-libetin as a main component, characterized by using an irreversible reaction.
【0005】[0005]
【発明の実施の形態】本発明における不可逆な反応と
は、γ−リベチン間もしくはγ−リベチンと夾雑する蛋
白質との間における共有結合を形成する反応のことをい
い、少なくともγ−リベチンが2分子以上共有結合する
反応のことをいう。特に限定するものではないが、共有
結合を判定する方法として例えばSDS-PAGE法が挙げられ
る。本発明の可溶性γ−リベチン複合体はこの方法にお
いて測定される分子量が360kDa以上の蛋白質複合体であ
る。高塩濃度下で生じるγ−リベチン同士の二量体や塩
析物である多重合体は疎水結合又はイオン結合でありSD
S-PAGEでは単量体として存在するものであり、本発明の
可溶性γ−リベチン複合体とは異なる。本発明における
不可逆反応法は、特に限定するものではないが加熱反応
法、超高圧反応法、還元剤を用いた反応法が挙げられ、
好ましくは加熱反応法である。加熱反応法における加熱
条件は、γ−リベチンの活性が90%以上残存する条件
が選ばれる。具体的にはγ−リベチン含有溶液を60〜
80℃、10〜120分間加熱することが好ましく、そ
の際のγ−リベチン含有溶液の濃度は、1mg/mlか
ら50mg/ml未満の濃度が好ましい。更に好ましく
は、5mg/mlから30mg/mlの濃度が好まし
い。濃度が1mg/mlより低いと可溶性複合体を形成
しにくくなり、又50mg/ml以上の濃度ではγ−リ
ベチンが不溶性の凝集体の割合が多くなってしまう。BEST MODE FOR CARRYING OUT THE INVENTION The irreversible reaction in the present invention refers to a reaction that forms a covalent bond between γ-libetin or between γ-libetin and a contaminating protein. This refers to a covalent bond reaction. Although not particularly limited, a method for determining a covalent bond includes, for example, the SDS-PAGE method. The soluble γ-libetin complex of the present invention is a protein complex having a molecular weight of 360 kDa or more measured by this method. Polymers that are dimers or salted-out products of γ-libetin generated under high salt concentration are hydrophobic bonds or ionic bonds and SD
S-PAGE exists as a monomer and is different from the soluble γ-libetin complex of the present invention. Irreversible reaction method in the present invention is not particularly limited, heating reaction method, ultra-high pressure reaction method, a reaction method using a reducing agent, and the like.
Preferably, a heating reaction method is used. The heating conditions in the heating reaction method are selected so that the activity of γ-libetin remains at 90% or more. Specifically, the γ-libetin-containing solution is 60 to
The heating is preferably performed at 80 ° C. for 10 to 120 minutes, and the concentration of the γ-libetine-containing solution at that time is preferably 1 mg / ml to less than 50 mg / ml. More preferably, a concentration of 5 mg / ml to 30 mg / ml is preferred. When the concentration is lower than 1 mg / ml, it is difficult to form a soluble complex, and when the concentration is higher than 50 mg / ml, the proportion of aggregates in which γ-libetin is insoluble increases.
【0006】本発明における加熱処理前のγ−リベチン
含有溶液のpHは、pH5.0からpH11.0が好まし
く、さらに好ましくは、pH7.0からpH9.0であ
る。pHがpH5.0より酸性側、又はpH11.0よ
りアルカリ性側に傾くとγ−リベチンの持つ活性が失活
する恐れがある。本発明において主構成成分とは、γ−
リベチン複合体中に占めるγ−リベチンの割合が50%
以上を占める事を言う。本発明において可溶性とは、水
に対する溶解性を言う。本発明の可溶性のγ−リベチン
複合体はさらに精製して使用してもよく、その精製法と
しては、特に限定するものではないが膜分離法、塩析
法、クロマトグラフィー法、超遠心法等が挙げられ、特
に、膜分離法、塩析法は好適に使用できる。The pH of the γ-libetine-containing solution before the heat treatment in the present invention is preferably from pH 5.0 to pH 11.0, more preferably from pH 7.0 to pH 9.0. If the pH is inclined toward an acidic side from pH 5.0 or toward an alkaline side from pH 11.0, the activity of γ-libetine may be inactivated. In the present invention, the main component is γ-
The proportion of γ-libetin in the rivetine complex is 50%
Say that occupies the above. In the present invention, “soluble” means solubility in water. The soluble γ-libetin complex of the present invention may be further purified and used, and the purification method is not particularly limited, but includes membrane separation, salting out, chromatography, ultracentrifugation and the like. In particular, a membrane separation method and a salting-out method can be suitably used.
【0007】膜分離法とは、特に限定するものではない
が限外濾過膜、精密濾過膜、逆浸透膜もしくは濾紙、濾
板、ガラスフィルターより選ばれた1種類以上の膜を使
用して分離する方法が挙げられ、特に限外濾過膜は好適
に使用できる。また塩析法に使用する塩とはNaCl、
KCl、CaCl2 、MgCl2 、NaH2 PO4 、N
a2 HPO4 、Na2 SO4 、(NH4)2 SO4 、Mg
SO4より選ばれる1種又は2種以上の塩であり、濃度
はそれぞれの塩の種類によっても異なるが2〜12%が
好ましく、更に好ましくは5〜10%、最も好ましくは
8〜10%である。以下、本発明を実施例により詳細に
説明する。ただし、これらによって発明を制限するもの
ではない。[0007] The membrane separation method is not particularly limited, but is performed by using one or more types of membranes selected from ultrafiltration membranes, microfiltration membranes, reverse osmosis membranes, or filter papers, filter plates, and glass filters. In particular, an ultrafiltration membrane can be suitably used. The salt used in the salting out method is NaCl,
KCl, CaCl 2 , MgCl 2 , NaH 2 PO 4 , N
a 2 HPO 4 , Na 2 SO 4 , (NH 4 ) 2 SO 4 , Mg
One or two or more salts selected from SO 4. The concentration varies depending on the type of each salt, but is preferably 2 to 12%, more preferably 5 to 10%, and most preferably 8 to 10%. is there. Hereinafter, the present invention will be described in detail with reference to examples. However, these do not limit the invention.
【0008】[0008]
【実施例】実施例1 抗S.mutans γ−リベチン含有卵黄水溶性蛋白質溶液の
調製 特定抗原として、ストレプトコッカス・ミュータンス
MT8148(以下S.mutansという)菌体を含む菌溶液(CFU 1
08)を調製し、産卵鶏を免疫した。得られた卵より卵黄
を分離し均質化した溶液を卵黄液とした。得られた卵黄
液1kgに対し1kgの水を加え均質化し、そこに0.
15%のλ−カラギーナン水溶液を4kg加え撹拌し
た。静置後、吸引濾過を行い濾液を分取した。このとき
得られた濾液を卵黄水溶性蛋白質溶液とした。Example 1 Preparation of Anti-S. Mutans γ-Libetin-Containing Egg Yolk Water-Soluble Protein Solution Streptococcus mutans was used as a specific antigen.
A bacterial solution (CFU 1) containing MT8148 (hereinafter referred to as S. mutans) cells
0 8 ) was prepared and laying hens were immunized. The yolk was separated from the obtained eggs and the homogenized solution was used as a yolk solution. 1 kg of water was added to 1 kg of the obtained egg yolk liquid to homogenize, and 0.1 g of the mixture was added thereto.
4 kg of a 15% aqueous solution of λ-carrageenan was added and stirred. After standing, suction filtration was performed to separate the filtrate. The filtrate obtained at this time was used as an egg yolk water-soluble protein solution.
【0009】実施例2 抗S.mutans γ−リベチン含有粉末の調製 実施例1で得られた卵黄水溶性蛋白質溶液1Lに硫酸ナ
トリウム 150gを少しずつ加え溶解した後、30分
間静置し遠心(常温、8000rpm ×15分間)する。上清を
捨て、沈殿物に10mM Na2 HPO4 バッファー2
00mlを加え溶解する。得られた溶液を用い上記同様
の方法にて再度塩析法を行った。本溶液を10mM N
a2 HPO4 バッファーを用い一晩透析を行う。得られ
た溶液を凍結乾燥し、特異的γ−リベチン含有粉末を得
た。得られた粉末は、ゲル濾過法(”蛋白質I”、日本
生化学会編、第11章、東京化学同人(1990))により全蛋
白質に対するγ−リベチンの割合が90%以上であるこ
とを確認した。Example 2 Preparation of Powder Containing Anti-S. Mutans γ-Libetin 150 g of sodium sulfate was added little by little to 1 L of the egg yolk water-soluble protein solution obtained in Example 1, and the mixture was allowed to stand for 30 minutes and centrifuged (at room temperature). , 8000 rpm for 15 minutes). The supernatant is discarded, and the precipitate is added with 10 mM Na 2 HPO 4 buffer 2
Add 00 ml and dissolve. The salting out method was performed again using the obtained solution in the same manner as described above. This solution was added to 10 mM N
Perform dialysis overnight using a 2 HPO 4 buffer. The obtained solution was freeze-dried to obtain a specific γ-libetine-containing powder. The obtained powder was confirmed by gel filtration ("Protein I", edited by The Biochemical Society of Japan, Chapter 11, Tokyo Kagaku Dojin (1990)) to have a ratio of γ-libetin to all proteins of 90% or more. .
【0010】実施例3 可溶性抗S.mutans γ−リベチン複合体の調製 実施例2で得られた抗S.mutansγ−リベチン含有粉末を
純水を用い10mg/mlの濃度に調製した。調製した
溶液200mlを耐熱性の容器に封入し70℃の恒温層
にて30分間加熱し可溶性の複合体とγ−リベチン単体
の混合溶液を得た。この混合溶液を膜分離法(日本ポー
ル:500kDa cut off)によるダイアフィルトレーション
法を用いてγ−リベチン単量体を分離し、可溶性γ−リ
ベチン複合体を凍結乾燥機にて乾燥させ粉末を得た。Example 3 Preparation of soluble anti-S. Mutans γ-libetin complex The anti-S. Mutans γ-libetin-containing powder obtained in Example 2 was prepared to a concentration of 10 mg / ml using pure water. 200 ml of the prepared solution was sealed in a heat-resistant container and heated in a thermostat at 70 ° C. for 30 minutes to obtain a mixed solution of a soluble complex and γ-libetine alone. The mixed solution was subjected to diafiltration by a membrane separation method (Nihon Pole: 500 kDa cut off) to separate γ-libetin monomer, and the soluble γ-libetin complex was dried with a freeze dryer to obtain a powder. Obtained.
【0011】試験例1 特異的γ−リベチン複合体の不可逆反応の確認 実施例3で得られた粉末を用いSDS-PAGEにて泳動させ、
本複合体の結合様式を確認した。使用したポリアクリル
アミドゲルはパジェル( AE-6000 NPG-310L :アトー株
式会社)(分画分子量40〜500kDa)を用い泳動を行った。
泳動サンプルは実施例3又は4で得られた粉末を1mg
/mlの濃度で溶かし本溶液5μlをゲルにアプライし
た。その結果実施例3又は4で得られたサンプルは、ほ
とんど泳動されず上端部分で止っていた。このことより
本サンプルは共有的な結合を有し、もとの単量体には戻
ることのない500kDa以上の蛋白質であることが確
認された。Test Example 1 Confirmation of Irreversible Reaction of Specific γ-Libetin Complex The powder obtained in Example 3 was electrophoresed by SDS-PAGE.
The binding mode of this complex was confirmed. The used polyacrylamide gel was subjected to electrophoresis using a gel (AE-6000 NPG-310L: ATTO Co., Ltd.) (fraction molecular weight: 40 to 500 kDa).
The electrophoresis sample was 1 mg of the powder obtained in Example 3 or 4.
/ Ml and applied to the gel by 5 μl of this solution. As a result, the sample obtained in Example 3 or 4 hardly migrated and stopped at the upper end portion. This confirmed that this sample was a protein having 500 kDa or more, which had a covalent bond and did not return to the original monomer.
【0012】試験例2 特異抗体活性回収率の比較 実施例3により得られた特異的γ−リベチン複合体粉末
のS.mutansに対する特異的抗体力価を、酵素免疫測定法
(以下 ELISA法という)により測定し特異抗体活性回収
率の比較を行った。各試料液を100μl/ウエルの割
合で、抗原として用いたS.mutansを固相へコーティング
した ELISAプレート(96穴, ヌンク社製)へ添加し、
25℃、2時間静置することにより、抗原と特異的抗体
の反応を行った。各ウエルをPBS-Tween で充分洗浄した
後、抗ニワトリIgGウサギIgG−アルカリホスファ
ターゼコンジュゲート(ザイメット社)のPBS-Tween 希
釈液(2000倍)を100μl/ウエルの割合で添加し
た。25℃で1時間放置することにより、抗原と反応し
た特異的抗体と上記コンジュゲートの反応を行った。各
ウエルをPBS-Tween で充分洗浄した後、0.1% P−
フェニルジソジウムホスフェート溶液(0.1M炭酸ナ
トリウム緩衝液pH9.6に溶解)を基質として100
μl/ウエルの割合で添加し、25℃、15分間酵素反
応を行った。反応の停止は2M水酸化ナトリウム溶液を
50μl /ウエル添加することにより行い、405nmに
おける各ウエルの吸光度をプレートリーダーにより測定
した。なお、対照としては試料の代わりにPBS-Tween を
用いた。各試料につき、4ウエルを用いた。各試料の示
す吸光度の平均値から対照の示す吸光度を引き、それぞ
れの試料重量を乗じた値(総吸光度)を各試料の総抗体
活性とした。総抗体活性を測定した結果、実施例2によ
り得られた特異的γ−リベチン粉末と実施例3により得
られた特異的γ−リベチン複合体粉末を比較すると、特
異的γ−リベチン粉末を100%として特異的γ−リベ
チン複合体粉末は約90%抗体活性回収率が得られた。Test Example 2 Comparison of recovery rate of specific antibody activity The specific antibody titer of the specific γ-libetin complex powder obtained in Example 3 against S. mutans was determined by enzyme immunoassay (hereinafter referred to as ELISA method). And the specific antibody activity recovery rates were compared. Each sample solution was added at a rate of 100 μl / well to an ELISA plate (96-well, manufactured by Nunc) having S. mutans used as an antigen coated on a solid phase.
The reaction between the antigen and the specific antibody was performed by allowing the mixture to stand at 25 ° C. for 2 hours. After each well was sufficiently washed with PBS-Tween, a PBS-Tween diluted solution (2000-fold) of anti-chicken IgG rabbit IgG-alkaline phosphatase conjugate (Zymet) was added at a ratio of 100 μl / well. By leaving the mixture at 25 ° C. for 1 hour, the specific antibody reacted with the antigen was reacted with the conjugate. After washing each well with PBS-Tween, 0.1% P-
Phenyl disodium phosphate solution (dissolved in 0.1 M sodium carbonate buffer pH 9.6)
The mixture was added at a rate of μl / well, and an enzyme reaction was performed at 25 ° C. for 15 minutes. To stop the reaction, add 2M sodium hydroxide solution
This was performed by adding 50 μl / well, and the absorbance of each well at 405 nm was measured using a plate reader. As a control, PBS-Tween was used instead of the sample. Four wells were used for each sample. The absorbance of the control was subtracted from the average value of the absorbance of each sample, and the value obtained by multiplying each sample weight (total absorbance) was defined as the total antibody activity of each sample. As a result of measuring the total antibody activity, the specific γ-libetin powder obtained in Example 2 and the specific γ-libetin complex powder obtained in Example 3 were compared. As a result, the specific γ-libetin complex powder obtained an antibody activity recovery rate of about 90%.
【0013】実施例4 可溶性特異的γ−リベチン複合体のSRID法への応用 ヒト口腔内に存在するS.mutans菌量を定量する手段とし
てSRID(一元放射免疫拡散)法(G.Mancini et al., Im
munochemistry , 2 , 235 (1965) )を用いた。人ボラ
ンティアを募り純水にて口腔内を洗浄した。この口腔内
の洗浄液を測定サンプルとした。測定用のプレートとし
て、実施例2で得られた抗S.mutans γ−リベチンを1
%加えた2%寒天プレート(プレートA)、プレートA
に1.5Mになるように塩化ナトリウムを添加したプレ
ート(プレートB)及び実施例4で得られた可溶性の抗
S.mutans γ−リベチン複合体を用いプレートAと同様
に調製した(プレートC)上にできる沈降輪の大きさか
ら菌量を求めることを試みた。その結果、プレートA,
B上にできた沈降輪は不明瞭であり、菌量を求めること
はできなかったのに対しプレートC上にできた沈降輪は
明瞭であり、この大きさよりγ−リベチン濃度を求め、
その値に溶液の体積量を乗じてS.mutans菌量を求めるこ
とができた。このことより、従来SRID法では沈降輪がは
っきりしないことから測定することが困難であった抗原
も測定が可能になった。本発明の実施態様ならびに目的
生成物を挙げれば以下の通りである。Example 4 Application of Soluble Specific γ-Libetin Complex to SRID Method As a means for quantifying the amount of S. mutans bacteria present in human oral cavity, SRID (one-way radiation immunodiffusion) method (G. Mancini et al. ., Im
munochemistry, 2, 235 (1965)) was used. Human volunteers were recruited and the mouth was washed with pure water. This mouthwash was used as a measurement sample. As a plate for measurement, the anti-S. Mutans γ-libetin obtained in Example 2 was used for 1 plate.
2% agar plate (plate A), plate A
(Plate B) containing 1.5 M of sodium chloride added thereto and the soluble antibody obtained in Example 4.
An attempt was made to determine the amount of bacteria from the size of the sedimentation ring formed on plate (plate C) prepared in the same manner as plate A using the S. mutans γ-libetin complex. As a result, plate A,
The sedimentation ring formed on B was unclear, and the amount of bacteria could not be determined. On the other hand, the sedimentation ring formed on plate C was clear.
The value was multiplied by the volume of the solution to obtain the amount of S. mutans bacteria. As a result, it has become possible to measure antigens, which were difficult to measure by the conventional SRID method because the sedimentation rings were not clear. Embodiments of the present invention and the target product are as follows.
【0014】(1)不可逆な反応を用いることを特徴と
するγ−リベチンを主構成成分とする可溶性γ−リベチ
ン複合体の製造法。 (2)不可逆な反応が加熱処理である前記1記載の可溶
性γ−リベチン複合体の製造法。 (3)加熱反応が60〜80℃、10〜120分、γ−
リベチン溶液濃度が1〜50mg/ml未満であり、且
つ反応生成物から不溶成分を取り除くことを特徴とする
前記1記載の可溶性γ−リベチン複合体の製造法。 (4)不可逆な反応が超高圧処理である前記1記載のγ
−リベチン複合体の製造法。(1) A method for producing a soluble γ-libetin complex containing γ-libetin as a main component, characterized by using an irreversible reaction. (2) The method for producing a soluble γ-libetin complex according to the above 1, wherein the irreversible reaction is heat treatment. (3) Heating reaction is performed at 60 to 80 ° C for 10 to 120 minutes, γ-
2. The method for producing a soluble γ-libetin complex according to the above 1, wherein the concentration of the livetin solution is 1 to less than 50 mg / ml, and insoluble components are removed from the reaction product. (4) The γ according to the above 1, wherein the irreversible reaction is an ultra-high pressure treatment.
-A method for producing the rivetine complex.
【0015】(5)不可逆な反応が還元剤を用いること
を特徴とする前記1記載のγ−リベチン複合体の製造
法。 (6)2量体以上の可溶性γ−リベチン複合体を膜を使
って精製することを特徴とする前記1記載のγ−リベチ
ン複合体の製造法。 (7)膜が限外濾過膜、精密濾過膜、逆浸透膜であるこ
とを特徴とする前記1記載のγ−リベチン複合体の製造
法。 (8)2量体以上の可溶性γ−リベチン複合体を塩を使
って精製することを特徴とする前記1記載のγ−リベチ
ン複合体の製造法。(5) The method for producing a γ-libetin complex as described in (1) above, wherein the irreversible reaction uses a reducing agent. (6) The method for producing a γ-libetin complex according to the above 1, wherein the soluble γ-libetin complex of dimer or more is purified using a membrane. (7) The method for producing a γ-libetin complex according to (1) above, wherein the membrane is an ultrafiltration membrane, a microfiltration membrane, or a reverse osmosis membrane. (8) The method for producing a γ-libetin complex according to the above 1, wherein the soluble γ-libetin complex of dimer or more is purified using a salt.
【0016】(9)塩がNaCl、KCl、CaC
l2 、MgCl2 、NaH2 PO4 、Na2 HPO4 、
Na2 SO4 、(NH4)2 SO4 、MgSO4 より選ば
れる1種又は2種以上を10%以下添加して精製するこ
とを特徴とする請求項4記載の分子量が500kDaよ
り大きいγ−リベチン複合体ならびにその分離法。 (10)2量体以上の可溶性γ−リベチン複合体をクロ
マトグラフィー法を使って精製することを特徴とする前
記1記載のγ−リベチン複合体の製造法。(9) The salt is NaCl, KCl, CaC
l 2 , MgCl 2 , NaH 2 PO 4 , Na 2 HPO 4 ,
The γ-molecule according to claim 4, wherein one or more selected from the group consisting of Na 2 SO 4 , (NH 4 ) 2 SO 4 and MgSO 4 is purified by adding 10% or less. Libetin complex and its separation method. (10) The method for producing a γ-libetin complex according to the above 1, wherein the soluble γ-libetin complex of dimer or more is purified by chromatography.
【0017】[0017]
【発明の効果】本発明は、γ−リベチンを不可逆な反応
を使って可溶性の複合体にすることにより、従来のγ−
リベチンが持つ機能を飛躍的に高める効果があり、更に
γ−リベチンの応用範囲を広げ産業上への貢献も大であ
る。According to the present invention, the conventional γ-libetin is converted into a soluble complex by using an irreversible reaction.
It has the effect of dramatically increasing the functions of Libetin, and further expands the application range of γ-Libetin and greatly contributes to industry.
Claims (3)
−リベチンを主構成成分とする可溶性γ−リベチン複合
体の製造法。1. γ characterized by using an irreversible reaction
-A method for producing a soluble γ-libetin complex containing rivetine as a main component.
載の可溶性γ−リベチン複合体の製造法。2. The method for producing a soluble γ-libetin complex according to claim 1, wherein the irreversible reaction is a heating reaction.
分、γ−リベチン溶液濃度が1〜50mg/ml未満で
あり、且つ反応生成物から不溶成分を取り除くことを特
徴とする請求項1記載の可溶性γ−リベチン複合体の製
造法。3. A heating reaction at 60 to 80 ° C. and 10 to 120.
2. The method for producing a soluble γ-libetin complex according to claim 1, wherein the γ-libetin solution concentration is less than 1 to 50 mg / ml, and insoluble components are removed from the reaction product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02390198A JP4194681B2 (en) | 1998-01-20 | 1998-01-20 | Method for producing soluble γ-libetin complex |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02390198A JP4194681B2 (en) | 1998-01-20 | 1998-01-20 | Method for producing soluble γ-libetin complex |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11209397A true JPH11209397A (en) | 1999-08-03 |
JP4194681B2 JP4194681B2 (en) | 2008-12-10 |
Family
ID=12123380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02390198A Expired - Fee Related JP4194681B2 (en) | 1998-01-20 | 1998-01-20 | Method for producing soluble γ-libetin complex |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4194681B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009108040A (en) * | 2001-11-13 | 2009-05-21 | Genentech Inc | Apo-2 LIGAND/TRAIL FORMULATION |
JP2022501375A (en) * | 2018-09-20 | 2022-01-06 | ウニベルシダージ デ アベイロUniversidade De Aveiro | Process of purifying antibody from egg yolk, its product and use |
-
1998
- 1998-01-20 JP JP02390198A patent/JP4194681B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009108040A (en) * | 2001-11-13 | 2009-05-21 | Genentech Inc | Apo-2 LIGAND/TRAIL FORMULATION |
JP2022501375A (en) * | 2018-09-20 | 2022-01-06 | ウニベルシダージ デ アベイロUniversidade De Aveiro | Process of purifying antibody from egg yolk, its product and use |
Also Published As
Publication number | Publication date |
---|---|
JP4194681B2 (en) | 2008-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Abe et al. | Heat stability of bovine lactoferrin at acidic pH | |
Dogon et al. | Characterization of an antibacterial factor in human parotid secretions, active against Lactobacillus casei | |
GB1563839A (en) | Stabilized erythrocytes and their use | |
US3553317A (en) | Ig-a antibody from lacteal fluids | |
Crimmins et al. | Physical properties of a soluble form of the glycoprotein of vesicular stomatitis virus at neutral and acidic pH | |
US3646193A (en) | Iga antibody from lacteal fluids | |
Watanabe et al. | Peculiar secretory IgA system identified in chickens: II. Identification and distribution of free secretory component and immunoglobulins of IgA, IgM, and IgG in chicken external secretions | |
Taubman et al. | Induction and properties of rabbit secretory γA antibody directed to group A streptococcal carbohydrate | |
Silver et al. | Preparation of fibrin glue: a study of chemical and physical methods | |
JPH11209397A (en) | Production of soluble gamma-livetin complex | |
JP2022501375A (en) | Process of purifying antibody from egg yolk, its product and use | |
Sahu et al. | Characterization of a high-molecular-weight glycoprotein isolated from the pulmonary secretions of patients with alveolar proteinosis | |
JP3072353B2 (en) | Food for preventing gastritis, stomach or duodenal ulcer | |
JPS60104015A (en) | Novel protein pp20 and method of obtaining same | |
JPH0118080B2 (en) | ||
CN105753982B (en) | The immune chromatography reagent kit of anti-human streptococcus pneumonia fam1 family PspA protein antibodies and the application antibody | |
Orlans et al. | Clostridium welchii: Epsilon-Toxin and Antitoxin | |
Lisowski et al. | Immunoglobulins of colostrum—III: Comparative studies of ovine serum and colostral IgG1 and IgG2 | |
US2369111A (en) | Blood clotting accelerator | |
JPH0664065B2 (en) | Immunological assay for outer membrane-bearing bacteria | |
Felton et al. | The immunological characteristics of a water-insoluble protein in type I antipneumococcus sera | |
Marquardt et al. | Immunoprecipitating soluble vaccinia virus antigens | |
JP4194682B2 (en) | Method for producing insoluble γ-ribetine complex | |
CN109593129A (en) | A kind of Yolk antibody for pre- anti-caries and preparation method thereof and yolk antibody preparation | |
JPH06116297A (en) | Separation of water-soluble protein in egg york |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071002 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080325 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080526 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080826 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080924 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121003 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131003 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |