JPH11209123A - Production of lithium oxide granule - Google Patents

Production of lithium oxide granule

Info

Publication number
JPH11209123A
JPH11209123A JP10021598A JP2159898A JPH11209123A JP H11209123 A JPH11209123 A JP H11209123A JP 10021598 A JP10021598 A JP 10021598A JP 2159898 A JP2159898 A JP 2159898A JP H11209123 A JPH11209123 A JP H11209123A
Authority
JP
Japan
Prior art keywords
particles
heating step
temperature
heating
thermal decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10021598A
Other languages
Japanese (ja)
Other versions
JP4039646B2 (en
Inventor
Hiroshi Kawamura
河村  弘
Kunihiko Tsuchiya
邦彦 土谷
Hiroshi Sawada
博司 澤田
Katsuhiro Fuchinoue
克宏 淵之上
Junpei Ohashi
準平 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Nuclear Fuel Industries Ltd filed Critical Japan Atomic Energy Research Institute
Priority to JP02159898A priority Critical patent/JP4039646B2/en
Publication of JPH11209123A publication Critical patent/JPH11209123A/en
Application granted granted Critical
Publication of JP4039646B2 publication Critical patent/JP4039646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce high density lithium oxide granules with high thermal decomposition efficiency. SOLUTION: When a polymer resin compd. is removed from Li2 CO3 dispersed granules in a primary heating process at <600 deg.C and the resultant Li2 CO3 granules are thermally decomposed to Li2 in a secondary heating process at 600-700 deg.C in vacuum, the rise of heating temp. is controlled during shift from the primary heating process to the secondary heating process so as to attain >=3.0 deg.C/min heating rate up to 600 deg.C and <=1.0 deg.C/min heating rate in the range from >600 deg.C to 700 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化リチウム粒の
製造方法に関するものである。
[0001] The present invention relates to a method for producing lithium oxide particles.

【0002】[0002]

【従来の技術】特定の条件で固化すると共に特定の温度
で熱分解する担体溶液にリチウム(Li)化合物を均一に分
散させて原液とし、この原液を前記条件中に滴下してLi
化合物の分散粒を生成し、得られた分散粒を焼結するこ
とにより粒径1mm程度のLi2O粒を得ることが検討されて
いる。
2. Description of the Related Art A lithium (Li) compound is uniformly dispersed in a carrier solution which solidifies under a specific condition and thermally decomposes at a specific temperature to form a stock solution.
It has been studied to produce dispersed particles of a compound and sinter the resulting dispersed particles to obtain Li 2 O particles having a particle diameter of about 1 mm.

【0003】例えば、担体溶液としてポリビニルアルコ
ール、Li化合物としてLi2CO3の粉末を用い、ポリビニル
アルコール中にLi2CO3の粉末を均一に分散させて原液と
し、この原液をアセトンの液浴中に滴下してゲル化する
ことによりLi化合物の分散粒を生成し、この分散粒を加
熱することにより高分子樹脂化合物を除去してLi2CO3
とし、さらにこのLi2CO3粒を、例えば400〜700℃の温度
で60時間以上かけて加熱してLi2Oに熱分解し、最終的に
これを焼結することが提案されている。
For example, using a polyvinyl alcohol as a carrier solution and a powder of Li 2 CO 3 as a Li compound, a powder of Li 2 CO 3 is uniformly dispersed in polyvinyl alcohol to form a stock solution. generates dispersed particles of Li compound by gelling dropwise, to remove the polymer resin compound and Li 2 CO 3 grains by heating the dispersed particle, further the Li 2 CO 3 grains to, For example, it has been proposed to heat at a temperature of 400 to 700 ° C. for 60 hours or more to thermally decompose to Li 2 O and finally sinter it.

【0004】[0004]

【発明が解決しようとする課題】ところで、従来の方法
では、600 ℃未満の加熱温度で分散粒から高分子樹脂化
合物を取り除く一次加熱工程が終了した後、加熱温度を
上昇してLi2CO3をLi2Oに熱分解するための二次加熱工程
を600℃以上700℃以下の加熱温度で行うが、一次加熱工
程から二次加熱工程へ移行する間の昇温速度は、加熱温
度が600 ℃を超えてからも3.0℃/min以上としていた。
これは、600 ℃以上における昇温速度を単に大きく(速
く)設定することによって工程時間の短縮を図ったこと
による。
However, in the conventional method, after the primary heating step of removing the polymer resin compound from the dispersed particles at a heating temperature of less than 600 ° C., the heating temperature is increased to increase the Li 2 CO 3 the is carried out in the secondary heating process of 600 ° C. or higher 700 ° C. or less of the heating temperature for thermal decomposition to Li 2 O, heating rate during the transition from the primary heating process to the secondary heating process, the heating temperature is 600 The temperature was kept at 3.0 ° C./min or more even after exceeding the temperature.
This is because the process time was shortened by simply setting the heating rate at 600 ° C. or higher to be large (fast).

【0005】しかしながら、本発明者らの知見によれ
ば、1mm程度の粒径の酸化リチウム粒の製造において
も、一次加熱工程が終了した後のLi2CO3粒では、二次加
熱工程への移行に伴って加熱温度が600 ℃以上になると
表面からLi2Oへの熱分解反応が始まり、このときに昇温
速度が速すぎると、Li2CO3粒の表面領域と中心領域とで
熱分解反応が完了するまでの時間に無視できない差が生
じることが確認された。
However, according to the findings of the present inventors, even in the production of lithium oxide particles having a particle size of about 1 mm, the Li 2 CO 3 particles after the completion of the primary heating step require the secondary heating step. When the heating temperature rises to 600 ° C or higher with the transition, a thermal decomposition reaction from the surface to Li 2 O starts, and if the heating rate is too fast at this time, heat is generated between the surface region and the central region of the Li 2 CO 3 particles. It was confirmed that there was a considerable difference in the time to complete the decomposition reaction.

【0006】すなわち、Li2CO3粒の表面領域では二次加
熱工程の初期段階で熱分解反応が終了するが、中心領域
ではその後も熱分解反応が続いている状態となる。これ
は、Li2CO3からLi2Oへの熱分解反応が進行するためには
反応領域から熱分解生成物であるCO2 が除去される必要
があり、Li2CO3粒の中心領域ほどCO2 が粒外へ抜けるの
に時間がかかるためである。
That is, in the surface region of the Li 2 CO 3 grains, the thermal decomposition reaction is completed in the initial stage of the secondary heating process, but in the central region, the thermal decomposition reaction continues thereafter. This is because in order for the thermal decomposition reaction from Li 2 CO 3 to Li 2 O to proceed, it is necessary to remove the thermal decomposition product CO 2 from the reaction region, and the central region of the Li 2 CO 3 particles This is because it takes time for CO 2 to escape from the grains.

【0007】二次加熱工程の初期段階でLi2CO3粒の表面
領域の熱分解反応が先に終了した場合、Li2CO3粒の表面
に生成したLi2O粒子は、Li2CO3粒の内部で熱分解反応が
進行している間に二次粒子を形成し始める。
[0007] Secondary early in the heating step when the heat decomposition reaction of Li 2 CO 3 grain of the surface region is completed earlier, Li 2 O particles produced in Li 2 CO 3 grain surfaces, Li 2 CO 3 While the pyrolysis reaction is proceeding inside the grains, secondary particles begin to form.

【0008】この二次粒子の形成はLi2CO3粒の表面領域
を緻密化し、表面が緻密化されると粒内部からのCO2
除去が阻害され、これが熱分解反応の進行を妨げるの
で、結果的に従来では二次加熱工程に60時間もの長時間
を要していたのである。
The formation of the secondary particles densifies the surface area of the Li 2 CO 3 particles, and when the surface is densified, removal of CO 2 from the inside of the particles is hindered, which hinders the progress of the thermal decomposition reaction. As a result, conventionally, the secondary heating step required as long as 60 hours.

【0009】以上のことから、本発明は、従来よりも短
い時間でLi2CO3粒の熱分解反応を進めることができ、し
かも高密度の酸化リチウム粒を得ることのできる酸化リ
チウム粒の製造方法を提供することを主目的としてい
る。
[0009] From the above, the present invention provides a method for producing lithium oxide particles capable of promoting the thermal decomposition reaction of Li 2 CO 3 particles in a shorter time than conventional ones and obtaining high density lithium oxide particles. Its main purpose is to provide a method.

【0010】また、従来よりも更に高純度で高密度のL
2O粒を得ることのできる酸化リチウム粒の製造方法
を提供することも本発明の別の目的である。
[0010] Further, L having a higher purity and a higher density
It is another object of the present invention to provide a method for producing lithium oxide particles from which i 2 O particles can be obtained.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
め、請求項1の発明による酸化リチウム粒の製造方法
は、高分子樹脂化合物中にLi2CO3粒子が分散したLi2CO3
分散粒を加熱して高分子樹脂化合物を取り除く600 ℃未
満での一次加熱工程と、その後、Li2CO3粒を真空中600
℃以上700℃以下の温度で加熱してLi2CO3をLi2Oに熱分
解する二次加熱工程と、二次加熱工程で形成されたLi2O
粒を焼結するための三次加熱工程とを備え、更に一次加
熱工程と二次加熱工程との間に、加熱温度が600 ℃まで
は3.0℃/min以上の昇温速度に、加熱温度が600 ℃を越
えてからは1.0℃/min以下の昇温速度に昇温を制御する
移行段階を含むことを特徴としている。
To achieve the above object, according to an aspect of method for producing a lithium oxide particle according to the invention of claim 1, Li 2 CO 3 to Li 2 CO 3 particles are dispersed in a polymer resin compound
A primary heating step at less than 600 ° C. for removing the polymer resin compound by heating the dispersed particles, and then Li 2 CO 3 particles are removed
A secondary heating step in which Li 2 CO 3 is thermally decomposed into Li 2 O by heating at a temperature of not less than 700 ° C. and Li 2 O formed in the secondary heating step
A tertiary heating step for sintering the grains, and between the primary heating step and the secondary heating step, a heating rate of at least 3.0 ° C./min up to 600 ° C. It is characterized by including a transition stage of controlling the temperature rise to a temperature rise rate of 1.0 ° C./min or less after exceeding the temperature.

【0012】即ち、本発明では、Li2CO3分散粒から高分
子樹脂化合物を取り除いた後、加熱雰囲気及び昇温速度
を調節することにより粒子中におけるLi2CO3の熱分解反
応を均一同時的に進行させるものである。
That is, in the present invention, after removing the polymer resin compound from the Li 2 CO 3 dispersed particles, the heating atmosphere and the rate of temperature rise are adjusted so that the thermal decomposition reaction of Li 2 CO 3 in the particles can be performed simultaneously. It is something that progresses.

【0013】本発明では、Li2CO3を熱分解するための二
次加熱工程を真空中で行うものとしているが、これは、
Li2CO3の熱分解反応により発生したCO2 を速やかに除去
して効率よく反応を進めるだけでなく、雰囲気中の水分
を取り除くことにより、生成された粒中のLi2Oを潮解さ
せずに保持するためである。
In the present invention, the secondary heating step for thermally decomposing Li 2 CO 3 is performed in a vacuum.
In addition to quickly removing CO 2 generated by the thermal decomposition reaction of Li 2 CO 3 to promote the reaction efficiently, by removing the moisture in the atmosphere, the Li 2 O in the generated particles is not deliquescent In order to keep it.

【0014】また、一次加熱工程で高分子樹脂化合物を
除去した後のLi2CO3粒に対し、600℃までは3.0℃/min
以上の昇温速度で加熱することにより、600 ℃よりも低
い温度にさらされる時間をなるべく短くして、Li2CO3
粒成長を抑えている。なお、3.0℃/minよりも遅い昇温
速度にすると、Li2CO3の粒成長が起こり、焼結密度に悪
影響を与えるため好ましくない。
Further, the Li 2 CO 3 particles after the removal of the polymer resin compound in the primary heating step, 3.0 ° C./min up to 600 ° C.
By heating at the above-mentioned heating rate, the exposure time to a temperature lower than 600 ° C. is made as short as possible to suppress the grain growth of Li 2 CO 3 . If the heating rate is lower than 3.0 ° C./min, it is not preferable because grain growth of Li 2 CO 3 occurs and adversely affects the sintered density.

【0015】また、600 ℃を越えてからは、1.0℃/min
以下の昇温速度で加熱することにより、Li2CO3粒に対す
る熱の伝わり方をその表面と内部とでほぼ等しくして粒
内全体における熱分解反応をほぼ同時的に均一に進行さ
せ、不都合な結合や粒成長を極力抑えている。好ましく
は0.2℃/min以下の昇温速度としたとき、最も高密度の
Li2O微小粒が得られる。
After 600 ° C., 1.0 ° C./min.
By heating at the following heating rate, the heat transfer to the Li 2 CO 3 particles is almost equal between the surface and the inside, and the thermal decomposition reaction in the whole of the particles progresses almost simultaneously and uniformly. Minimized bonding and grain growth are minimized. When the heating rate is preferably 0.2 ° C / min or less, the highest density
Li 2 O fine particles are obtained.

【0016】又、二次加熱工程において熱分解温度の上
限を700 ℃としているが、これは、熱分解温度が700 ℃
を越えると、早い段階の反応により生成されたLi2Oが、
微小粒の収縮が進まないうちに二次粒子を形成して粒の
形を固定することが多くなるため、焼結時の微小粒の収
縮を阻害して内部に空洞を生じた低密度のLi2O焼結粒の
生成率が高くなるという理由から決定されている。
In the secondary heating step, the upper limit of the thermal decomposition temperature is set at 700 ° C.
Is exceeded, the Li 2 O produced by the earlier reaction is
Since the secondary particles are often formed and the shape of the particles is fixed before the contraction of the fine particles progresses, the low-density Li It is determined because the generation rate of 2 O sintered grains increases.

【0017】このように、請求項1の発明では、Li2CO3
粒の熱分解反応の開始時における昇温速度を600 ℃まで
は比較的速くすることによってLi2CO3の粒成長を抑え、
600℃を越えてからは比較的緩慢にすることによって粒
子内全体を同時的に均一加熱するようにしたので、熱分
解後の焼結による収縮が阻害されず、高密度のLi2O粒を
得ることができる。また、Li2CO3の熱分解反応も効率よ
く進行するため、高純度のLi2O粒を得ることができる。
Thus, according to the first aspect of the present invention, Li 2 CO 3
The grain growth of Li 2 CO 3 is suppressed by increasing the temperature rising rate at the beginning of the thermal decomposition reaction of the grains up to 600 ° C,
After the temperature exceeds 600 ° C, the whole inside of the particles is heated simultaneously and uniformly by making it relatively slow, so that shrinkage due to sintering after thermal decomposition is not hindered, and high-density Li 2 O particles are Obtainable. Further, since the thermal decomposition reaction of Li 2 CO 3 also proceeds efficiently, high-purity Li 2 O particles can be obtained.

【0018】また、Li2CO3の粒成長が抑えられるので、
Li2CO3の熱分解効率が向上し、二次加熱工程での熱分解
時間を30時間程度と、従来の約半分にまで短くすること
ができる。そのため、Li2O微小粒の製造に要する時間を
短縮でき、作業効率を高めることができる。
Further, since the grain growth of Li 2 CO 3 is suppressed,
The thermal decomposition efficiency of Li 2 CO 3 is improved, and the thermal decomposition time in the secondary heating step can be reduced to about 30 hours, which is about half of the conventional value. Therefore, the time required for producing Li 2 O fine particles can be reduced, and the working efficiency can be increased.

【0019】更に、請求項2の発明では、請求項1によ
る酸化リチウム粒の製造方法において、二次加熱工程を
1.0×10-2 Torr以下の減圧雰囲気中で行うことを特徴と
している。
Further, in the invention according to claim 2, in the method for producing lithium oxide particles according to claim 1, the secondary heating step is performed.
The process is performed in a reduced pressure atmosphere of 1.0 × 10 −2 Torr or less.

【0020】即ち、Li2CO3を熱分解する二次加熱工程に
おける雰囲気を1.0×10-2 Torr以下の減圧雰囲気とする
ことにより、Li2CO3の熱分解反応により発生したCO2
速やかに除去して効率よく反応を進めることができる。
更に好ましくは、1.0×10-4Torr以下の減圧雰囲気中と
することにより、更に効率よくLi2CO3の熱分解反応を進
めることができる。勿論、そのような減圧雰囲気とする
ことで熱分解により生成したLi2Oが潮解することもな
い。
That is, by setting the atmosphere in the secondary heating step of thermally decomposing Li 2 CO 3 to a reduced pressure atmosphere of 1.0 × 10 −2 Torr or less, CO 2 generated by the thermal decomposition reaction of Li 2 CO 3 can be quickly removed. And the reaction can proceed efficiently.
More preferably, the thermal decomposition reaction of Li 2 CO 3 can be more efficiently performed in a reduced pressure atmosphere of 1.0 × 10 −4 Torr or less. Of course, by setting such a reduced pressure atmosphere, Li 2 O generated by thermal decomposition does not deliquesce.

【0021】[0021]

【実施例】図1は本発明の1実施例を示す工程図であ
る。尚、本実施例では湿式造粒法によりLi2CO3分散粒を
得ているが、転動造粒によりLi2CO3分散粒を得てもよ
い。
FIG. 1 is a process drawing showing one embodiment of the present invention. In the present embodiment, Li 2 CO 3 dispersed particles are obtained by wet granulation, but Li 2 CO 3 dispersed particles may be obtained by tumbling granulation.

【0022】ここで用いた湿式造粒法は、Li2CO3を原料
粉末として用い、ポリビニルアルコール(完全鹸化物、
重合度約2000)の水溶液に原料粉末を分散させて原液と
し、得られた原液をアセトン液浴中に滴下してポリビニ
ルアルコールをゲル化し、その後、ゲル球を乾燥してLi
2CO3分散粒とする方法である。
In the wet granulation method used here, Li 2 CO 3 is used as a raw material powder, and polyvinyl alcohol (completely saponified,
The raw material powder is dispersed in an aqueous solution having a degree of polymerization of about 2000) to give a stock solution, and the obtained stock solution is dropped into an acetone solution bath to gel polyvinyl alcohol.
In this method, 2 CO 3 is dispersed.

【0023】本実施例では、まず、ポリビニルアルコー
ルを純水(H2O) に入れ、撹拌しながら90〜100 ℃で30分
から1時間加熱した。完全にポリビニルアルコールが純
水に溶解したら常温まで自然冷却し、ポリビニルアルコ
ールの水溶液を調製した(図1(a))。
In this embodiment, first, polyvinyl alcohol was put into pure water (H 2 O) and heated at 90 to 100 ° C. for 30 minutes to 1 hour with stirring. When polyvinyl alcohol was completely dissolved in pure water, it was naturally cooled to room temperature to prepare an aqueous solution of polyvinyl alcohol (FIG. 1 (a)).

【0024】得られた水溶液にLi2CO3粉末を入れて撹拌
し、Li2CO3がポリビニルアルコール水溶液中に均一に分
散した原液を得た(図1(b))。この時の原液に含まれ
ているLi2CO3粉末とポリビニルアルコールの割合は、Li
2CO3粉末が26wt%、ポリビニルアルコールが5wt%であ
った。
Li 2 CO 3 powder was added to the obtained aqueous solution and stirred to obtain a stock solution in which Li 2 CO 3 was uniformly dispersed in an aqueous polyvinyl alcohol solution (FIG. 1 (b)). At this time, the ratio of Li 2 CO 3 powder and polyvinyl alcohol contained in the stock solution was Li
2 CO 3 powder was 26 wt% and polyvinyl alcohol was 5 wt%.

【0025】得られた原液を振動ノズルによって約−20
℃のアセトン中に滴下し、しばらく放置した(図1
(c))。これにより原液の液滴はアセトン中でゲル化
し、内部にLi2CO3が分散したゲル粒体となった。
The obtained undiluted solution was added to the vibrating nozzle by about -20.
The solution was dropped into acetone at ℃ and left for a while (Fig. 1
(c)). As a result, the droplets of the undiluted solution gelled in acetone to form gel particles in which Li 2 CO 3 was dispersed.

【0026】次に、アセトン中からゲル粒体を取り出し
て、空気中、常温(約25℃)下で24時間乾燥させ、乾燥
ゲル粒体とした(図1(d))。この乾燥ゲル粒体を、空
気中にて400 ℃で6時間加熱した(図1(e):一次加熱
工程)。これにより、担体であるポリビニルアルコール
が除去され、Li2CO3粒となった。
Next, the gel particles were taken out of acetone and dried in air at room temperature (about 25 ° C.) for 24 hours to obtain dried gel particles (FIG. 1 (d)). The dried gel particles were heated in air at 400 ° C. for 6 hours (FIG. 1E: primary heating step). As a result, the polyvinyl alcohol as a carrier was removed, and Li 2 CO 3 particles were obtained.

【0027】一次加熱工程に引き続いて、1.0×10-4 To
rrの減圧雰囲気中において700 ℃で30時間加熱してLi2C
O3の熱分解を行った。このときの加熱温度の変化の様子
を図2にグラフで示す。図2において縦軸は温度
(℃)、横軸は時間(分)を示し、Li2Co3粒の加熱温度
は400℃から700℃へ向かって上昇しているが、400℃か
ら600℃までは3.3℃/min、600℃から700℃までは0.2
℃/minの昇温速度で上昇している(図1(f))。
Following the primary heating step, 1.0 × 10 -4 To
In a reduced pressure atmosphere of rr and heated at 700 ° C. 30 hours Li 2 C
Thermal decomposition of O 3 was performed. FIG. 2 is a graph showing how the heating temperature changes at this time. In FIG. 2, the vertical axis indicates temperature (° C.), and the horizontal axis indicates time (minutes). The heating temperature of Li 2 Co 3 grains increases from 400 ° C. to 700 ° C., but from 400 ° C. to 600 ° C. Is 3.3 ° C / min, from 600 ° C to 700 ° C is 0.2
It rises at a rate of temperature rise of ° C./min (FIG. 1 (f)).

【0028】加熱温度が700 ℃に達したら、その温度を
維持して30時間にわたり加熱を継続した(図1(g):二
次加熱工程)。これにより、Li2CO3が熱分解されてLi2O
となり、その後、1100℃まで急速に昇温し、1100℃で4
時間保持してLi2Oを焼結させることにより平均粒径約1
mmのLi2O焼結粒を得た(図1(h))。
When the heating temperature reached 700 ° C., the temperature was maintained and heating was continued for 30 hours (FIG. 1 (g): secondary heating step). Thereby, Li 2 CO 3 is thermally decomposed and Li 2 O
Then, the temperature rapidly rises to 1100 ° C,
Sintering of Li 2 O with holding for an average particle size of about 1
mm sintered Li 2 O particles were obtained (FIG. 1 (h)).

【0029】このようにして得られたLi2O焼結粒の1000
粒について調べた。これらは全て粒子中における表面層
領域と中心領域とで反応の進行に殆ど差がなく、均一な
組織構造を備えていた。また、内部には空洞が存在せ
ず、密度平均は81.2%T.D.であった。
The thus obtained Li 2 O sintered particles of 1000
The grains were examined. All of these had almost no difference in the progress of the reaction between the surface layer region and the central region in the particles, and had a uniform structure. There were no cavities inside, and the average density was 81.2% TD.

【0030】なお、比較例として、上記湿式造粒法にお
いて得られた同様のLi2CO3粒を熱分解する際に、400℃
から700℃まで3.3℃/minの一律の昇温速度で昇温し、7
00 ℃に達したらその温度を維持して30時間加熱した。
これにより得られたLi2O粒1000粒について調べたとこ
ろ、これらは粒子中における表面層領域と中心領域とで
組織構造が異なっていた。更に、内部には熱分解直後の
粒子直径比70%の空洞が生じており、密度平均値は71.5
%T.D.であった。
As a comparative example, when the same Li 2 CO 3 particles obtained in the above wet granulation method were thermally decomposed, 400 ° C.
From 700 to 700 ° C at a uniform rate of 3.3 ° C / min.
When the temperature reached 00 ° C., the temperature was maintained for 30 hours.
Examination of 1000 Li 2 O particles obtained as a result revealed that the microstructures were different between the surface layer region and the central region in the particles. In addition, voids with a particle diameter ratio of 70% immediately after pyrolysis are formed inside, and the average density is 71.5%.
% TD.

【0031】これは、400℃から700℃に亘って一定の昇
温速度とした場合に比べ、本発明の方法によれば格段に
均質で高密度のLi2O粒が得られることを実証している。
This demonstrates that the method of the present invention can provide much more uniform and high-density Li 2 O particles, compared to a case where the heating rate is constant from 400 ° C. to 700 ° C. ing.

【0032】[0032]

【発明の効果】このように、本発明の酸化リチウム粒の
製造方法によれば、粒子中における表面層領域と中心領
域とで反応の進行に殆ど差がなく、均質な組織構造の酸
化リチウム粒が得られる。
As described above, according to the method for producing lithium oxide particles of the present invention, there is almost no difference in the progress of the reaction between the surface layer region and the central region in the particles, and the lithium oxide particles having a uniform structure structure. Is obtained.

【0033】また、Li2CO3粒を熱分解する際の昇温速度
を600 ℃までは比較的速くすることによってLi2CO3の粒
成長を抑え、600 ℃を越えてからは比較的緩慢とするこ
とによって粒子内の熱分解反応を全体で同時的に行わせ
ているため、熱分解後の焼結による粒の収縮が阻害され
ず、これにより、高密度のLi2O焼結粒を得ることができ
る。また、Li2CO3の熱分解反応も効率よく進行するた
め、高純度のLi2O粒を得ることができる。
Further, the rate of temperature rise during thermal decomposition of Li 2 CO 3 particles is relatively high up to 600 ° C. to suppress the growth of Li 2 CO 3 particles, and is relatively slow after exceeding 600 ° C. and since the whole was simultaneously carried out thermal decomposition of the particle by particle shrinkage due to sintering after thermal decomposition is not inhibited, thereby, the density of the Li 2 O sintered grains Obtainable. Further, since the thermal decomposition reaction of Li 2 CO 3 also proceeds efficiently, high-purity Li 2 O particles can be obtained.

【0034】更に、Li2CO3の粒成長が抑えられることか
ら、Li2CO3の熱分解効率が向上し、二次加熱工程での熱
分解保持温度を従来よりも大幅に短縮することができ、
そのため、酸化リチウム粒の製造に要する時間を短縮で
き、作業効率を高めることができる。
Furthermore, since the grain growth of Li 2 CO 3 is suppressed, the thermal decomposition efficiency of Li 2 CO 3 is improved, and the thermal decomposition holding temperature in the secondary heating step can be significantly shortened as compared with the conventional method. Can,
Therefore, the time required for producing lithium oxide particles can be reduced, and the working efficiency can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例の工程を示す工程図である。FIG. 1 is a process chart showing the steps of one embodiment of the present invention.

【図2】本発明の一実施例の加熱条件を示した線図であ
る。
FIG. 2 is a diagram showing heating conditions according to one embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 澤田 博司 茨城県那珂郡東海村村松1220−496 (72)発明者 淵之上 克宏 茨城県那珂郡東海村村松1220−496 (72)発明者 大橋 準平 茨城県ひたちなか市勝田本町18−12−102 ──────────────────────────────────────────────────続 き Continued on the front page (72) Hiroshi Sawada, Inventor 1220-496, Muramatsu, Tokai-mura, Naka-gun, Ibaraki Prefecture (72) Inventor Katsuhiro Fukuno 1220-496, Muramatsu, Tokai-mura, Naka-gun, Ibaraki Prefecture 18-12-102 Katsuta Honcho, Hitachinaka City, Ibaraki Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高分子樹脂化合物中にLi2CO3粒子が分散
したLi2CO3分散粒を加熱して高分子樹脂化合物を取り除
く600 ℃未満での一次加熱工程と、 その後、Li2CO3粒を真空中600℃以上700℃以下の温度で
加熱してLi2CO3をLi2Oに熱分解する二次加熱工程と、 二次加熱工程で形成されたLi2O粒を焼結するための三次
加熱工程とを備え、 一次加熱工程と二次加熱工程との間に、加熱温度が600
℃までは3.0℃/min以上の昇温速度に、加熱温度が600
℃を越えてからは1.0℃/min以下の昇温速度に昇温を制
御する移行段階を含むことを特徴とする酸化リチウム粒
の製造方法。
1. A primary heating step at less than 600 ° C. to remove the polymer resin compound and heating the Li 2 CO 3 dispersed grains Li 2 CO 3 particles are dispersed in a polymer resin compound, then, Li 2 CO A secondary heating step in which three grains are heated at a temperature of 600 ° C. or more and 700 ° C. or less in a vacuum to thermally decompose Li 2 CO 3 into Li 2 O; and to sinter the Li 2 O grains formed in the secondary heating step. Tertiary heating step, the heating temperature is 600 between the primary heating step and the secondary heating step.
Up to 3.0 ° C / min and up to 600 ° C
A method for producing lithium oxide particles, comprising a step of controlling the temperature rise to a temperature rise rate of 1.0 ° C./min or less after the temperature exceeds 100 ° C.
【請求項2】 二次加熱工程を 1.0×10-2Torr以下の減
圧雰囲気中で行うことを特徴とする請求項1に記載の酸
化リチウム粒の製造方法。
2. The method for producing lithium oxide particles according to claim 1, wherein the secondary heating step is performed in a reduced pressure atmosphere of 1.0 × 10 −2 Torr or less.
JP02159898A 1998-01-20 1998-01-20 Method for producing lithium oxide particles Expired - Lifetime JP4039646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02159898A JP4039646B2 (en) 1998-01-20 1998-01-20 Method for producing lithium oxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02159898A JP4039646B2 (en) 1998-01-20 1998-01-20 Method for producing lithium oxide particles

Publications (2)

Publication Number Publication Date
JPH11209123A true JPH11209123A (en) 1999-08-03
JP4039646B2 JP4039646B2 (en) 2008-01-30

Family

ID=12059483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02159898A Expired - Lifetime JP4039646B2 (en) 1998-01-20 1998-01-20 Method for producing lithium oxide particles

Country Status (1)

Country Link
JP (1) JP4039646B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101723086B1 (en) * 2015-11-17 2017-04-05 한국원자력연구원 A producing method of metal oxide and apparatus of it
CN107055575A (en) * 2017-06-08 2017-08-18 成都开飞高能化学工业有限公司 A kind of production technology of LITHIUM BATTERY lithium hydroxide
WO2018114760A1 (en) * 2016-12-21 2018-06-28 Albemarle Germany Gmbh Method for producing lithium oxide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101723086B1 (en) * 2015-11-17 2017-04-05 한국원자력연구원 A producing method of metal oxide and apparatus of it
WO2018114760A1 (en) * 2016-12-21 2018-06-28 Albemarle Germany Gmbh Method for producing lithium oxide
CN110062746A (en) * 2016-12-21 2019-07-26 雅宝德国有限责任公司 Method for generating lithia
US11180377B2 (en) 2016-12-21 2021-11-23 Albemarle Germany Gmbh Method for producing lithium oxide
CN110062746B (en) * 2016-12-21 2022-05-24 雅宝德国有限责任公司 Method for producing lithium oxide
CN107055575A (en) * 2017-06-08 2017-08-18 成都开飞高能化学工业有限公司 A kind of production technology of LITHIUM BATTERY lithium hydroxide

Also Published As

Publication number Publication date
JP4039646B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
CN1297514C (en) Method for producing ceramic foams
JP2012508151A (en) Method for preparing a melt of silicon powder for crystal growth of silicon
JP2608721B2 (en) Method for producing calcium phosphate-based material
JP2000281433A (en) Production of lithium titanate minute sintered particle
JPH11209123A (en) Production of lithium oxide granule
US2726487A (en) Method for making fused vitreous quartz
JP3013297B2 (en) Method for producing lithium titanate fine sintered particles
JPH02289446A (en) Production of complete and dense half- solid parts from appropriate sol-gel induction powder as ring laser gyro parts
JP3926021B2 (en) Method for producing lithium oxide particles
CN112045190A (en) Sintering method of aluminum electrolytic capacitor anode foil based on nano aluminum powder
JP4914125B2 (en) Method for producing lithium titanate fine sintered grains
JP4898014B2 (en) Method for producing synthetic quartz powder and method for producing quartz glass crucible
JP2639114B2 (en) Method for producing porous spherical alumina particles
JP2530225B2 (en) Method for manufacturing crucible for pulling Si single crystal
KR100722377B1 (en) A method of preparing transparent silica glass
KR100722379B1 (en) A method of preparing transparent silica glass
JP2001278623A (en) Method of preparing microsphere of lithium titanate
KR100722378B1 (en) A method of preparing transparent silica glass
CN109173945B (en) Carbon aerogel composite material and preparation method thereof
JP3213384B2 (en) Manufacturing method of quartz glass
JPH06135776A (en) Foamed porous ceramic and its production
JP4236100B2 (en) Method for producing lithium titanate fine sintered grains
JPH1121139A (en) Production of foamed quartz glass
JPH01197307A (en) Silicon nitride fine powder having a low oxygen content and its production
CN117682869A (en) Preparation method of silicon nitride classifying wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050523

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term