JPH11207470A - Welded structural body between battery and lead material, and its manufacture - Google Patents
Welded structural body between battery and lead material, and its manufactureInfo
- Publication number
- JPH11207470A JPH11207470A JP10010772A JP1077298A JPH11207470A JP H11207470 A JPH11207470 A JP H11207470A JP 10010772 A JP10010772 A JP 10010772A JP 1077298 A JP1077298 A JP 1077298A JP H11207470 A JPH11207470 A JP H11207470A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- lead material
- welding
- welded
- lead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 100
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000003466 welding Methods 0.000 claims abstract description 73
- 229920002545 silicone oil Polymers 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 15
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 5
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 5
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 7
- 239000010959 steel Substances 0.000 claims description 7
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 239000011810 insulating material Substances 0.000 claims description 3
- 239000003112 inhibitor Substances 0.000 claims description 2
- 238000009413 insulation Methods 0.000 abstract description 8
- 229940057995 liquid paraffin Drugs 0.000 abstract description 4
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 abstract description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 3
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 abstract description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 239000005011 phenolic resin Substances 0.000 abstract description 3
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 abstract description 3
- 230000003449 preventive effect Effects 0.000 abstract description 2
- 239000004215 Carbon black (E152) Substances 0.000 abstract 1
- 150000002148 esters Chemical class 0.000 abstract 1
- 239000012774 insulation material Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 11
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 239000000470 constituent Substances 0.000 description 5
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 229920003216 poly(methylphenylsiloxane) Polymers 0.000 description 2
- -1 polymethylsiloxane Polymers 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000010985 glycerol esters of wood rosin Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Connection Of Batteries Or Terminals (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は電池とリード材の溶
接構造体とその製造方法に関し、更に詳しくは、電池と
リード材との溶接強度が高く、また強度ばらつきが小さ
く、各種の電池パック、とりわけ電気自動車の駆動源と
して好適な電池とリード材の溶接構造体とそれを製造す
る方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welded structure of a battery and a lead material and a method of manufacturing the same. More particularly, the present invention relates to a welded structure of a battery and a lead material suitable as a drive source of an electric vehicle and a method of manufacturing the same.
【0002】[0002]
【従来の技術】各種の電気・電子機器の普及に伴い、そ
の駆動源である電池の複数個をパッケージして電池パッ
クとし、その電池パックを、直接、当該機器の中に組み
込むケースが急増している。また、最近、環境に優しい
クリーンな自動車として電気自動車が注目を集めている
が、その駆動源も複数個の電池をパッケージしたもので
ある。2. Description of the Related Art With the spread of various electric and electronic devices, the number of cases in which a plurality of batteries as driving sources are packaged into a battery pack and the battery pack is directly incorporated into the device has been rapidly increasing. ing. Recently, an electric vehicle has been attracting attention as an environmentally friendly clean vehicle, and its driving source is a package in which a plurality of batteries are packaged.
【0003】このように、複数個の電池をパッケージに
して実使用する場合、電池の充電または放電のために、
各電池の間やパッケージ端子と電池の間はリード材で電
気的に接続することが必要である。すなわち、電池の外
側表面、例えば蓋の部分や底部など電池容器の一部表面
にリード材を固定することが必要になる。そして、電池
とリード材の接続に関しては、一般に、次に説明するよ
うなパラレル式抵抗溶接法が適用されている。[0003] As described above, when a plurality of batteries are packaged and actually used, the batteries must be charged or discharged.
It is necessary to electrically connect each battery or between the package terminal and the battery with a lead material. That is, it is necessary to fix the lead material to the outer surface of the battery, for example, to a part of the surface of the battery container such as the lid and the bottom. For connection between a battery and a lead material, generally, a parallel resistance welding method as described below is applied.
【0004】まず、図7で示したように、電池容器1の
表面1a(図の場合は、電池容器の底部表面)に溶接す
べきリード材2が配置される。なお、電池容器1は従来
から例えば低炭素鋼板の表面にNiめっきを施したNi
めっき鋼板で製造されており、また、リード材2として
は、従来から、Ni単体の小片や、電池容器1の場合と
同じようなNiめっき鋼板が広く使用されている。First, as shown in FIG. 7, a lead material 2 to be welded is arranged on a surface 1a of a battery container 1 (in the case of the figure, a bottom surface of the battery container). In addition, the battery case 1 has conventionally been made of, for example, Ni in which the surface of a low carbon steel plate is plated with Ni.
The lead material 2 is manufactured from a plated steel sheet, and a small piece of Ni alone or a Ni-plated steel sheet similar to that used in the battery case 1 is widely used as the lead material 2.
【0005】リード材2の表面2aには、先端3aが小
径になっている2本の溶接電極3,3が所定の間隔を置
いて平行配置される。そして、これら溶接電極3,3か
らリード材2に所定の加圧力を印加してリード材2の裏
面2bと電池容器1の表面1aを密着させる。この状態
で電源4から所定値の溶接電流を通電する。溶接電流は
一方の溶接電極からリード材2に入力し、その一部はリ
ード材2を通って他方の溶接電極から電源4に帰還し、
残余の溶接電流は溶接電極の先端3aの直下に位置する
箇所を中心にしてリード材2の厚み方向に流れて電池容
器1の表面1aに至り、ついで電池容器1を通って他方
の溶接電極の先端3aの直下に位置する箇所を中心にし
てリード材2の厚み方向に流れて他方の溶接電極から電
源に帰還していく。[0005] On the surface 2a of the lead material 2, two welding electrodes 3, 3 each having a small diameter at the tip 3a, are arranged in parallel at a predetermined interval. Then, a predetermined pressing force is applied to the lead material 2 from the welding electrodes 3 and 3 to bring the back surface 2b of the lead material 2 and the front surface 1a of the battery container 1 into close contact. In this state, a predetermined welding current is supplied from the power supply 4. The welding current is input to the lead material 2 from one of the welding electrodes, and a part of the current is returned from the other welding electrode to the power supply 4 through the lead material 2,
The remaining welding current flows in the thickness direction of the lead material 2 around the portion located immediately below the tip 3a of the welding electrode, reaches the surface 1a of the battery case 1, and then passes through the battery case 1 to the other welding electrode. It flows in the thickness direction of the lead material 2 around the portion located immediately below the tip 3a, and returns to the power source from the other welding electrode.
【0006】この過程で、各溶接電極の直下付近に位置
するリード材の裏面2bと電池容器1の表面1aとの接
触界面ではジュール熱が発生し、その接触界面近傍にお
ける両部材が一部溶融してナゲットを形成し、両部材が
点溶接される。その結果、電池容器1の表面にリード材
が溶接・固定された電池とリード材の溶接構造体が得ら
れる。In this process, Joule heat is generated at the contact interface between the back surface 2b of the lead material located immediately below each welding electrode and the front surface 1a of the battery container 1, and both members near the contact interface are partially melted. To form a nugget, and the two members are spot welded. As a result, a welded structure of the battery and the lead material in which the lead material is welded and fixed to the surface of the battery container 1 is obtained.
【0007】[0007]
【発明が解決しようとする課題】ところで、電池容器が
Niめっき鋼板から成り、またリード材がNi単体やN
iめっき鋼板から成る場合、両者を上記したパラレル式
抵抗溶接法で溶接すると、次のような問題の起こること
が指摘されている。すなわち、電池容器とリード材との
溶接強度はあまり高くならず、しかも溶接作業ごとに得
られる溶接強度がばらつくという問題である。The battery case is made of Ni-plated steel sheet and the lead material is made of Ni alone or N
It has been pointed out that the following problem occurs when both are made of the i-plated steel sheet and are welded by the above-mentioned parallel resistance welding method. That is, there is a problem that the welding strength between the battery container and the lead material is not so high, and the welding strength obtained for each welding operation varies.
【0008】この溶接強度が高くないということは、こ
の溶接構造体を収納する電池パックを電気・電子機器に
組み込んで実使用したときに、例えばそれら機器を落と
した場合、その衝撃で溶接箇所が破損して機器の機能喪
失を招くことにもなる。また、この溶接構造体を電気自
動車に搭載して実使用したときに、激しい振動などの外
力で溶接箇所が破損して走行停止を招くことにもなる。[0008] The fact that the welding strength is not high means that when a battery pack containing the welded structure is incorporated into an electric or electronic device and actually used, for example, when those devices are dropped, the impact is caused by the impact. The device may be damaged and the function of the device may be lost. Further, when the welded structure is mounted on an electric vehicle and actually used, the welded portion is damaged by external force such as violent vibration or the like, so that the traveling is stopped.
【0009】また、溶接強度がばらつくということは、
通常、溶接作業はライン工程で連続的に行われているこ
とを考えると、製造されてきた電池とリード材の溶接構
造体における溶接信頼性を低めることでもある。このよ
うなことから、溶接電流や溶接時間などの溶接条件の最
適化を企て高い溶接強度を安定して得るための努力がな
されているが、それでも満足すべき結果は得られていな
い。[0009] Also, that the welding strength varies,
Generally, considering that the welding operation is continuously performed in the line process, it also means reducing the welding reliability of the manufactured battery-lead material welded structure. For this reason, efforts have been made to optimize welding conditions such as welding current and welding time and to stably obtain high welding strength, but still satisfactory results have not been obtained.
【0010】本発明は、電池容器、とりわけ、Niめっ
き鋼板から成る電池容器にパラレル式抵抗溶接法でリー
ド材を抵抗溶接して成る電池とリード材の溶接構造体に
おける上記した問題を解決して、電池容器とリード材の
間では高い溶接強度が安定して実現している新規な電池
とリード材の溶接構造体とその製造方法の提供を目的と
する。The present invention solves the above-mentioned problems in a battery-lead material welded structure obtained by resistance-welding a lead material to a battery container, particularly a battery container made of a Ni-plated steel plate, by a parallel resistance welding method. It is another object of the present invention to provide a novel battery and lead material welded structure in which a high welding strength is stably realized between a battery container and a lead material, and a method of manufacturing the same.
【0011】[0011]
【課題を解決するための手段】本発明者らは、上記した
目的を達成するために鋭意研究を重ねた結果、パラレル
式抵抗溶接法の実施時に電池(容器)表面とリード材の
間に後述する有機絶縁皮膜を介在させると、電池とリー
ド材の間の溶接強度は高くかつ安定化するとの知見を
得、本発明の電池とリード材の溶接構造体およびその製
造方法を開発するに至った。Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above-mentioned object, and as a result, the following description has been made between the surface of the battery (container) and the lead material during the parallel resistance welding. It has been found that the interposition of the organic insulating film to be performed increases the welding strength between the battery and the lead material and stabilizes it, and has developed the battery and lead material welding structure of the present invention and the method for producing the same. .
【0012】すなわち、本発明の電池とリード材の溶接
構造体は、電池の表面とリード材とが、有機絶縁皮膜、
例えばシリコーンオイル,炭素数15〜20の直鎖炭化
水素の混合物,電気絶縁材料、または防錆剤のいずれか
1種から成る皮膜、とりわけ直鎖状シリコーンオイルの
皮膜を介して溶接されていることを特徴とする。また、
本発明においては、電池の表面にリード材を溶接する際
に、少なくとも溶接箇所の前記電池の表面または/およ
びリード材の表面に有機絶縁皮膜を成膜したのち、パラ
レル式抵抗溶接法で前記電池の表面にリード材を抵抗溶
接することを特徴とする電池とリード材の溶接構造体の
製造方法が提供される。That is, in the welded structure of a battery and a lead material according to the present invention, the surface of the battery and the lead material have an organic insulating film,
For example, it is welded through a film made of any one of silicone oil, a mixture of linear hydrocarbons having 15 to 20 carbon atoms, an electrical insulating material, or a rust inhibitor, especially a film of linear silicone oil. It is characterized by. Also,
In the present invention, when the lead material is welded to the surface of the battery, an organic insulating film is formed at least on the surface of the battery or / and the surface of the lead material at a welding location, and then the battery is subjected to a parallel resistance welding method. A method for manufacturing a welded structure of a battery and a lead material, wherein a lead material is resistance-welded to a surface of the battery.
【0013】[0013]
【発明の実施の形態】図1は、本発明の電池とリード材
の溶接構造体の1例Aを示す一部切欠断面図である。図
1において、電池1の容器表面1a(図では底部表面)
とリード材2の間には2つのナゲット5,5が形成され
ていることによって電池とリード材が溶接されている。
そして、前記した容器表面1aとリード材2の裏面2b
との間には、前記ナゲット5,5の箇所を除いては後述
する有機絶縁皮膜6が介在しており、このことが本発明
の溶接構造体Aにおける最大の特徴をなす。FIG. 1 is a partially cutaway sectional view showing an example A of a welded structure of a battery and a lead material according to the present invention. In FIG. 1, the container surface 1a of the battery 1 (the bottom surface in the figure).
A battery and a lead material are welded by forming two nuggets 5 and 5 between the lead material 2 and the lead material 2.
Then, the above-described container front surface 1a and the back surface 2b of the lead material 2
Except for the nuggets 5 and 5, an organic insulating film 6 to be described later is interposed therebetween, and this is the most significant feature of the welded structure A of the present invention.
【0014】有機絶縁皮膜6は、容器表面1aとリード
材2の裏面2bとの間に絶縁層として介在することによ
り、パラレル式抵抗溶接法の実施時に溶接電極直下の抵
抗値を高めて、通電時の発生ジュール熱をこの絶縁皮膜
6が存在しないときよりも大きくまたは適正化し、もっ
て容器表面1aとリード材2の間で形成されるナゲット
5,5を大きくし、その結果、高くかつ安定した溶接強
度の実現を可能にしているものと考えられる。The organic insulating film 6 is interposed as an insulating layer between the surface 1a of the container and the back surface 2b of the lead material 2 to increase the resistance immediately below the welding electrode during the parallel type resistance welding, thereby energizing. The generated Joule heat is made larger or more appropriate than when the insulating film 6 is not present, thereby increasing the nuggets 5, 5 formed between the container surface 1a and the lead material 2, and as a result, high and stable It is considered that the welding strength can be realized.
【0015】上記したような有機絶縁皮膜の効果は、当
該皮膜が容器表面とリード材の間に存在する限り発揮さ
れる。しかし、その厚みが過度に厚くなると、用いる皮
膜用材料の種類によっても異なるが、パラレル式抵抗溶
接法の実施時における絶縁抵抗が大きくなりすぎて良好
なナゲット形成は困難になり、溶接強度が高くならな
い。このようなことから、皮膜が例えば後述するシリコ
ーンオイル皮膜の場合には、当該皮膜の厚みは平均値で
100nm以下に設定することが好ましい。より好ましく
は60〜90nmである。The effect of the organic insulating film as described above is exerted as long as the film exists between the surface of the container and the lead material. However, when the thickness is excessively large, the insulation resistance when performing the parallel resistance welding method becomes too large, and it is difficult to form a good nugget, and the welding strength is high, although it differs depending on the type of coating material used. No. For this reason, when the film is, for example, a silicone oil film described later, the thickness of the film is preferably set to an average value of 100 nm or less. More preferably, it is 60 to 90 nm.
【0016】このような働きをする有機絶縁皮膜の構成
材料としては、シリコーンオイル,例えば流動パラフィ
ンのような炭素数15〜20の直鎖炭化水素の混合物、
例えばロジン,エステルガムで変性したフェノール樹脂
やアルキルフェノール樹脂のような電気絶縁材料、また
は各種の防錆剤などを好適例としてあげることができ
る。As a constituent material of the organic insulating film having such a function, silicone oil, for example, a mixture of linear hydrocarbons having 15 to 20 carbon atoms such as liquid paraffin,
For example, electric insulating materials such as phenol resin and alkylphenol resin modified with rosin and ester gum, or various rust preventives can be mentioned as preferable examples.
【0017】これらのうち、シリコーンオイルは、絶縁
性が良好で、しかも広い温度範囲で粘度変化が少なく取
り扱いが容易であるので好適である。とくに、ジメチル
シリコーンオイル,メチルフェニルシリコーンオイル,
ポリメチルシロキサンジオール,メチルハイドロジエン
シリコーンオイルなどの直鎖状シリコーンオイルは常温
で液体であり、後述する製造方法において電池容器やリ
ード材への塗布作業が容易に行えるので好適である。Of these, silicone oils are preferred because they have good insulation properties and have little change in viscosity over a wide temperature range and are easy to handle. In particular, dimethyl silicone oil, methylphenyl silicone oil,
Linear silicone oils such as polymethylsiloxane diol and methylhydrogen silicone oil are suitable because they are liquid at room temperature and can be easily applied to battery containers and lead materials in a manufacturing method described later.
【0018】この溶接構造体は次のようにして製造する
ことができる。まず、有機絶縁皮膜の構成材料を、電池
容器の表面または/およびリード材の表面に塗布する。
塗布は、電池容器やリード材の表面全体に行ってもよい
が、溶接すべき箇所にのみ部分的に行ってもよい。な
お、このとき、構成材料を適宜に溶媒で希釈することに
より、塗布作業を円滑に行えるように適正な粘度に調整
して塗布し、その後、塗膜に乾燥処理を施して溶媒を揮
散せしめることが好ましい。厚みが均一な塗膜の形成、
したがって厚みにばらつきのない有機絶縁皮膜の成膜が
可能になるからである。This welded structure can be manufactured as follows. First, the constituent material of the organic insulating film is applied to the surface of the battery container or / and the surface of the lead material.
The application may be performed on the entire surface of the battery container or the lead material, or may be performed only on a portion to be welded. In this case, by appropriately diluting the constituent materials with a solvent, the composition is adjusted to an appropriate viscosity so that the coating operation can be performed smoothly, and the coating is performed. Thereafter, the coating is subjected to a drying treatment to volatilize the solvent. Is preferred. Formation of a coating film with uniform thickness,
Therefore, an organic insulating film having a uniform thickness can be formed.
【0019】また、形成する有機絶縁皮膜の厚みは次の
ようにして変化させることができるからである。すなわ
ち、溶媒の量を変えて構成材料の濃度が異なる材料溶液
を調製してそれを塗布すればよい。例えば、構成材料が
高濃度である材料溶液を用いれば厚い皮膜を形成するこ
とができ、逆に低濃度の材料溶液を用いれば形成される
皮膜は薄くなるからである。The reason is that the thickness of the organic insulating film to be formed can be changed as follows. That is, a material solution having a different concentration of the constituent material may be prepared by changing the amount of the solvent, and then applied. For example, if a material solution having a high concentration of constituent materials is used, a thick film can be formed, and if a material solution having a low concentration is used, the formed film becomes thin.
【0020】その後、電池容器の所定の表面箇所にリー
ド材を配置したのち、前記したパラレル式抵抗溶接法で
両者を抵抗溶接すればよい。このとき、ナゲットが形成
される箇所では、有機絶縁皮膜は高熱により熱分解除去
されるが、それ以外の箇所では、電池の容器表面とリー
ド材との間に残存して、図1で示したような溶接構造体
となる。Thereafter, after the lead material is disposed on a predetermined surface of the battery container, the two members may be resistance-welded by the parallel resistance welding method described above. At this time, the organic insulating film is thermally decomposed and removed by the high heat at the location where the nugget is formed, but remains between the battery container surface and the lead material at other locations, as shown in FIG. It becomes such a welding structure.
【0021】[0021]
【実施例】実施例1 まず、TSF451(商品名、東芝シリコーン(株)製
のジメチルシリコーンオイル,粘度約1000cst)を
n−ヘキサンに溶解して前記ジメチルシリコーンオイル
の濃度が異なる複数種の希釈溶液を調製した。Example 1 First, TSF451 (trade name, dimethyl silicone oil manufactured by Toshiba Silicone Co., Ltd., viscosity: about 1000 cst) was dissolved in n-hexane to prepare a plurality of diluting solutions having different concentrations of the dimethyl silicone oil. Was prepared.
【0022】一方、厚み0.3mmの低炭素鋼板(炭素濃
度0.05〜0.1%)の表面に厚み約3μmのNiめっ
きが施されているNiめっき鋼板から成る電池容器のA
AAサイズ電池を用意し、また、厚み0.15mmの低炭
素鋼板(炭素濃度0.05〜0.1%)の表面に厚み約3
μmのNiめっきが施されているリード材を用意した。On the other hand, a battery container A made of a Ni-plated steel sheet having a thickness of about 3 μm and a low-carbon steel sheet (carbon concentration: 0.05 to 0.1%) having a thickness of 0.3 mm coated on its surface.
AA size battery is prepared, and a thickness of about 3 mm is applied on the surface of a low carbon steel sheet (carbon concentration: 0.05 to 0.1%) with a thickness of 0.15 mm.
A lead material plated with μm of Ni was prepared.
【0023】電池の底部表面の中央に、前記した希釈溶
液のそれぞれを10μL滴下したのち、ベンコットン紙
で底部表面の全体になじませ、余分な希釈溶液は拭き取
った。ついで、室温下に約2時間放置して溶媒のn−ヘ
キサンを揮散せしめ、底部表面に厚みが異なるジメチル
シリコーンオイル皮膜を形成した。得られた各皮膜の厚
みはフーリエ変換赤外吸光分析装置を用いて測定した。At the center of the bottom surface of the battery, 10 μL of each of the diluted solutions described above was dropped, and the entire bottom surface was spread with Bencotton paper, and excess diluted solution was wiped off. Then, the mixture was allowed to stand at room temperature for about 2 hours to evaporate the solvent n-hexane, thereby forming a dimethyl silicone oil film having a different thickness on the bottom surface. The thickness of each of the obtained films was measured using a Fourier transform infrared absorption spectrometer.
【0024】そして、図7で示したように、各電池の底
部表面1aに前記リード材2を配置し、溶接電極(先端
3aの直径1.5mm)で2.27kgfの加圧力を印加し、
溶接電流1.7kAで0.01秒分間のパラレル式抵抗溶
接を行ってリード材2を電池容器に溶接した。ついで、
図8で示したように、電池1の底部表面4aに溶接され
ているリード材2の一端2cをチャック7で把持し、こ
のチャック7を引張試験器8で引き上げて前記リード材
2を引き剥がす試験を行った。このとき、リード材2と
電池1の底部表面とがなす角度θは常に一定となるよう
にし、かつ試験器8による引張強さは一定の速さで増加
するようにして引き剥がし試験を行い、リード材2が電
池1の底部表面から完全に引き剥がされたときの引張強
さを測定しそれを溶接強度とした。Then, as shown in FIG. 7, the lead material 2 is arranged on the bottom surface 1a of each battery, and a pressure of 2.27 kgf is applied by a welding electrode (1.5 mm in diameter of the tip 3a).
The lead material 2 was welded to the battery container by performing parallel resistance welding at a welding current of 1.7 kA for 0.01 second. Then
As shown in FIG. 8, one end 2c of the lead material 2 welded to the bottom surface 4a of the battery 1 is gripped by a chuck 7, and the chuck 7 is pulled up by a tensile tester 8 to peel off the lead material 2. The test was performed. At this time, the peeling test was performed so that the angle θ formed between the lead material 2 and the bottom surface of the battery 1 was always constant, and the tensile strength by the tester 8 was increased at a constant speed. The tensile strength when the lead material 2 was completely peeled off from the bottom surface of the battery 1 was measured, and it was defined as the welding strength.
【0025】その結果を、電池容器の表面に形成されて
いる皮膜の厚みと溶接強度との関係図として図2に●印
で示した。なお、比較のために、皮膜を形成することな
く、直接、電池容器の表面にリード材を抵抗溶接したこ
とを除いては、実施例と同様の条件で両者を溶接し、そ
のときの溶接強度を測定した。その結果を図中では○と
して示した。The results are shown by a black circle in FIG. 2 as a relationship diagram between the thickness of the film formed on the surface of the battery container and the welding strength. For comparison, both were welded under the same conditions as in the example, except that the lead material was resistance-welded directly to the surface of the battery container without forming a film, and the welding strength at that time was obtained. Was measured. The results are shown as ○ in the figure.
【0026】実施例2 用いたシリコーンオイルが、TSF434(商品名、東
芝シリコーン(株)製のメチルフェニルシリコーンオイ
ル,粘度約200cst)であったことを除いては、実施
例1と同様の仕様で電池とリード材を溶接し、両者の溶
接強度を測定した。Example 2 The same specifications as in Example 1 were used except that the silicone oil used was TSF434 (trade name, methylphenyl silicone oil manufactured by Toshiba Silicone Co., Ltd., viscosity: about 200 cst). The battery and the lead material were welded, and the welding strength of both was measured.
【0027】その結果を●印として図3に示した。図3
中の○印は実施例1で説明した比較例の結果である。図
2および図3から次のことが明らかである。 (1)電池容器の表面にシリコーンオイル皮膜を形成し
てリード材を抵抗溶接すると、皮膜を形成しない場合に
比べて明確に、溶接強度の向上が実現されている。しか
も、その強度ばらつきは0.5〜1.5kgf程度になって
いる。The results are shown in FIG. FIG.
The circles in the table indicate the results of the comparative example described in Example 1. The following is clear from FIG. 2 and FIG. (1) When a silicone oil film is formed on the surface of the battery container and the lead material is resistance-welded, the welding strength is clearly improved as compared with the case where no film is formed. In addition, the variation in strength is about 0.5 to 1.5 kgf.
【0028】(2)皮膜の厚みが増加するにつれて溶接
強度は高くなって行くが、厚みが100nmを超えると逆
に溶接強度の低下していくことが認められる。これは、
皮膜の絶縁抵抗が大きくなりすぎてナゲットの形成に難
点が生じていることを示している。このようなことか
ら、皮膜の厚みは100nm以下、とくに、40〜80nm
程度にすることが好適であることがわかる。(2) As the thickness of the film increases, the welding strength increases. However, when the thickness exceeds 100 nm, the welding strength decreases. this is,
This indicates that the insulation resistance of the film has become too large and there is difficulty in forming the nugget. For this reason, the thickness of the film is 100 nm or less, particularly 40 to 80 nm.
It can be seen that it is preferable to set it to the degree.
【0029】実施例3 実施例1で用いた希釈溶液を用いて実施例1と同様にし
て実施例1で用いたリード材の両面に厚みが異なるジメ
チルシリコーンオイル皮膜を形成した。なお、各リード
材において、両面に形成されている皮膜の厚みは同じで
ある。電池容器の表面にはシリコーンオイル皮膜を形成
することなく、その電池容器の表面に上記したリード材
を実施例1の場合と同様の条件で抵抗溶接し、それぞれ
の場合の溶接強度を測定した。Example 3 Using the diluted solution used in Example 1, dimethyl silicone oil films having different thicknesses were formed on both surfaces of the lead material used in Example 1 in the same manner as in Example 1. The thickness of the film formed on both surfaces of each lead material is the same. The above-mentioned lead material was resistance-welded to the surface of the battery container under the same conditions as in Example 1 without forming a silicone oil film on the surface of the battery container, and the welding strength in each case was measured.
【0030】その結果をリード材の両面に形成されてい
る皮膜の厚みの合計厚みと溶接強度の関係として●印で
図4に示した。図4中の○印は実施例1で示した比較例
の結果である。 実施例4 用いたシリコーンオイルが、YF3057(商品名、東
芝シリコーン(株)製のポリメチルシロキサンジオー
ル、粘度約3000cst)であったことを除いては、実
施例3と同様にしてリード材の両面に皮膜を形成し、そ
れを、皮膜が形成されていない電池表面に抵抗溶接し、
両者の溶接強度を測定した。The results are shown in FIG. 4 by a black circle as a relationship between the total thickness of the coatings formed on both surfaces of the lead material and the welding strength. 4 indicate the results of the comparative example shown in Example 1. Example 4 Both surfaces of a lead material were the same as in Example 3 except that the silicone oil used was YF3057 (trade name, polymethylsiloxane diol manufactured by Toshiba Silicone Co., Ltd., viscosity: about 3000 cst). A film on the surface of the battery where the film is not formed,
The welding strength of both was measured.
【0031】その結果を●印として図5に示した。図5
中の○印は実施例1で説明した比較例の結果である。図
4および図5から明らかなように、リード材にシリコー
ンオイル皮膜を形成した場合であっても、その厚みが増
加するにつれて溶接強度は高くなる。しかし、両面の厚
みの合計が120nmを超えるようになると、逆に溶接強
度は低下している。このようなことから、リード材に形
成する皮膜の厚みは120nm以下、とりわけ60〜10
0nm程度に設定することが好適であることがわかる。The results are shown in FIG. FIG.
The circles in the table indicate the results of the comparative example described in Example 1. As is clear from FIGS. 4 and 5, even when a silicone oil film is formed on the lead material, the welding strength increases as the thickness increases. However, when the total thickness of both surfaces exceeds 120 nm, the welding strength decreases. For this reason, the thickness of the film formed on the lead material is 120 nm or less, particularly 60 to 10 nm.
It can be seen that setting to about 0 nm is preferable.
【0032】実施例5 ジメチルシリコーンオイルに代えて、JIS K 90
03試薬に準ずる流動パラフィン(炭素数15〜20の
直鎖炭化水素の混合物)を用い、これをアセトンで希釈
して各種の希釈溶液を調製し、そしてこの溶液を用いた
ことを除いては実施例1の場合と同様にして電池とリー
ド材を抵抗溶接し、両者の溶接強度を測定した。その結
果を図6に示した。Example 5 In place of dimethyl silicone oil, JIS K 90
Liquid paraffin (mixture of linear hydrocarbons having 15 to 20 carbon atoms) according to Reagent No. 03, which was diluted with acetone to prepare various dilute solutions, and the procedure was carried out except that this solution was used. In the same manner as in Example 1, the battery and the lead material were resistance-welded, and the welding strength of both was measured. FIG. 6 shows the result.
【0033】図6から明らかなように、皮膜材料として
流動パラフィンを用いた場合でも良好な溶接強度を得る
ことができる。As is clear from FIG. 6, good welding strength can be obtained even when liquid paraffin is used as the coating material.
【0034】[0034]
【発明の効果】以上の説明で明らかなように、本発明の
電池とリード材の溶接構造体は、電池表面とリード材と
の間にシリコーンオイル皮膜を好適例とする有機絶縁皮
膜を介装した状態でパラレル式抵抗溶接法によって製造
されるので、電池表面とリード材との間の溶接強度は、
従来に比べて大幅に高くなる。As is apparent from the above description, the welded structure of the battery and the lead material of the present invention has an organic insulating film, preferably a silicone oil film, interposed between the battery surface and the lead material. It is manufactured by the parallel resistance welding method in a state where it is, so the welding strength between the battery surface and the lead material,
It is much higher than before.
【0035】したがって、この溶接構造体に外力が加わ
っても溶接部の破損は起こりづらいため、例えば電気自
動車の駆動源として搭載することも可能になり、その工
業的な用途分野は広い。Accordingly, even if an external force is applied to the welded structure, it is difficult for the welded portion to be damaged. For example, the welded structure can be mounted as a drive source of an electric vehicle, and its industrial application field is wide.
【図1】本発明の電池とリード材の溶接構造体例Aを示
す一部切欠断面図である。FIG. 1 is a partially cutaway sectional view showing an example A of a welded structure of a battery and a lead material of the present invention.
【図2】実施例1における皮膜の厚みと溶接強度の関係
を示すグラフである。FIG. 2 is a graph showing a relationship between a coating thickness and a welding strength in Example 1.
【図3】実施例2における皮膜の厚みと溶接強度の関係
を示すグラフである。FIG. 3 is a graph showing the relationship between the thickness of a coating and welding strength in Example 2.
【図4】実施例3における皮膜の厚みと溶接強度の関係
を示すグラフである。FIG. 4 is a graph showing a relationship between a coating thickness and a welding strength in Example 3.
【図5】実施例4における皮膜の厚みと溶接強度の関係
を示すグラフである。FIG. 5 is a graph showing the relationship between the thickness of the coating and the welding strength in Example 4.
【図6】実施例5における皮膜の厚みと溶接強度の関係
を示すグラフである。FIG. 6 is a graph showing a relationship between a coating thickness and a welding strength in Example 5.
【図7】パラレル式抵抗溶接法を説明するための概略図
である。FIG. 7 is a schematic diagram for explaining a parallel resistance welding method.
【図8】溶接強度の測定法を説明するための概略図であ
る。FIG. 8 is a schematic diagram for explaining a method for measuring welding strength.
1 電池 1a 電池(容器)の表面 2 リード材 2a リード材2の表面 2b リード材2の裏面 2c リード材2の一端 3 溶接電極 3a 溶接電極3の先端 4 電源 5 ナゲット 6 シリコーンオイル皮膜(有機絶縁皮膜) 7 チャック 8 引張試験器 DESCRIPTION OF SYMBOLS 1 Battery 1a Battery (container) surface 2 Lead material 2a Surface of lead material 2b Back surface of lead material 2c One end of lead material 2 Welding electrode 3a Tip of welding electrode 3 4 Power supply 5 Nugget 6 Silicone oil film (organic insulation) 7) Chuck 8 Tensile tester
───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒井 佳代 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kayo Arai 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation
Claims (5)
膜を介して溶接されていることを特徴とする電池とリー
ド材の溶接構造体。1. A welded structure of a battery and a lead material, wherein the surface of the battery and the lead material are welded via an organic insulating film.
から成る請求項1の電池とリード材の溶接構造体。2. The welded structure of a battery and a lead material according to claim 1, wherein the battery case of the battery is made of Ni-plated steel sheet.
ル,炭素数15〜20の直鎖炭化水素の混合物,電気絶
縁材料、または防錆剤のいずれか1種から成る請求項1
の電池とリード材の溶接構造体。3. The organic insulating film according to claim 1, wherein the organic insulating film is made of one of silicone oil, a mixture of linear hydrocarbons having 15 to 20 carbon atoms, an electric insulating material, and a rust inhibitor.
Battery and lead material welded structure.
オイルから成る請求項1の電池とリード材の溶接構造
体。4. The welded structure of a battery and a lead material according to claim 1, wherein said organic insulating film comprises a linear silicone oil.
少なくとも溶接箇所の前記電池の表面または/およびリ
ード材の表面に有機絶縁皮膜を成膜したのち、パラレル
式抵抗溶接法で前記電池の表面にリード材を抵抗溶接す
ることを特徴とする電池とリード材の溶接構造体の製造
方法。5. When welding a lead material to a surface of a battery,
After forming an organic insulating film on at least the surface of the battery or / and the surface of the lead material at the welding location, the lead material is resistance-welded to the surface of the battery by a parallel resistance welding method. Method of manufacturing a welded structure of a material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10010772A JPH11207470A (en) | 1998-01-22 | 1998-01-22 | Welded structural body between battery and lead material, and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10010772A JPH11207470A (en) | 1998-01-22 | 1998-01-22 | Welded structural body between battery and lead material, and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11207470A true JPH11207470A (en) | 1999-08-03 |
Family
ID=11759633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10010772A Pending JPH11207470A (en) | 1998-01-22 | 1998-01-22 | Welded structural body between battery and lead material, and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11207470A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014040734A2 (en) * | 2012-09-13 | 2014-03-20 | Daimler Ag | Insulation of electrochemical energy storage devices |
JP2021501250A (en) * | 2017-10-26 | 2021-01-14 | サイド・タイムール・アフマド | Compositions containing non-Newtonian fluids for hydrophobic, oleophilic and lipophilic coatings, and how to use them |
-
1998
- 1998-01-22 JP JP10010772A patent/JPH11207470A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014040734A2 (en) * | 2012-09-13 | 2014-03-20 | Daimler Ag | Insulation of electrochemical energy storage devices |
WO2014040734A3 (en) * | 2012-09-13 | 2014-06-26 | Daimler Ag | Insulation of electrochemical energy storage devices |
JP2021501250A (en) * | 2017-10-26 | 2021-01-14 | サイド・タイムール・アフマド | Compositions containing non-Newtonian fluids for hydrophobic, oleophilic and lipophilic coatings, and how to use them |
JP2022106729A (en) * | 2017-10-26 | 2022-07-20 | サイド・タイムール・アフマド | Composition containing non-newtonian fluid for hydrophobic, oleophobic and lipophilic coating, and method for using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4870359B2 (en) | Degreasing method of aluminum foil | |
JP3580405B2 (en) | Manufacturing method of exterior material for secondary battery | |
JP6314832B2 (en) | Method for producing electrode / separator laminate and lithium ion secondary battery | |
KR900000886B1 (en) | Composite metal sheet | |
JP5598356B2 (en) | Conductive primer for lithium ion batteries | |
US9755194B2 (en) | Method for producing a battery with a metallic housing and an electrical insulation layer covering the outside of the housing, and battery produced by the method | |
JP2013519213A (en) | Soft package lithium battery tab material and electroplating method and application thereof | |
JP2019135690A (en) | Electrode collector, all-solid battery and manufacturing method of electrode collector | |
CN104160536A (en) | Aluminum foil for current collector and method for producing same | |
JP6686587B2 (en) | Battery packaging material, manufacturing method thereof, and battery | |
WO2016159190A1 (en) | Cell packaging material, method for manufacturing same, and cell | |
US8987631B2 (en) | Method and apparatus for welding to laminated metal | |
TW200401045A (en) | Carbon film-coated article and method of producing the same | |
JPH11207470A (en) | Welded structural body between battery and lead material, and its manufacture | |
US4427716A (en) | Method for predetermining peel strength at copper/aluminum interface | |
WO2002066705A1 (en) | Environmentally friendly surface treated steel sheet for electronic parts excellent in soldering wettability and resistance to rusting and formation of whisker | |
JP4058725B2 (en) | Battery container | |
JP5406229B2 (en) | Degreasing method of aluminum hard foil, aluminum hard foil, aluminum hard foil electrode material, and lithium ion secondary battery using the same | |
WO2022107603A1 (en) | Current collector | |
JP2579154B2 (en) | Non-aqueous secondary battery | |
JPWO2019188558A1 (en) | Electrodes for energy storage devices and energy storage devices | |
WO2022107605A1 (en) | Current collector | |
CN114583096A (en) | Electrode plate and secondary battery thereof | |
JP4437302B2 (en) | Battery container | |
US4756933A (en) | Process of applying an insulating layer |