JPH11206051A - Rotor structure of internal magnetic motor - Google Patents

Rotor structure of internal magnetic motor

Info

Publication number
JPH11206051A
JPH11206051A JP10003189A JP318998A JPH11206051A JP H11206051 A JPH11206051 A JP H11206051A JP 10003189 A JP10003189 A JP 10003189A JP 318998 A JP318998 A JP 318998A JP H11206051 A JPH11206051 A JP H11206051A
Authority
JP
Japan
Prior art keywords
magnet
rotor
caulking
rotor core
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10003189A
Other languages
Japanese (ja)
Inventor
Tadahiro Miyamoto
恭祐 宮本
Akihide Sato
明秀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP10003189A priority Critical patent/JPH11206051A/en
Publication of JPH11206051A publication Critical patent/JPH11206051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a reluctance torque large, without lowering the permeability of a q-axis magnetic flux path of rotor core, even under a loading conditions, and to improve motor output while keeping the tightening effect of the rotor core as it is. SOLUTION: In a rotor structure of an internal magnetic motor, in which a field permanent magnet 2 is inserted to a magnet inserting hole 1a formed at the inside of a rotor core 1 which is formed by laminating electromagnetic plates and then caulking them, the position of caulking part 3 of the laminated electromagnetic steel plate is located at an area which does not affect the repulsive operation of armature in the q-axis direction of the rotor. A bridge 5 is provided on the magnetic pole center axis dividing the magnet inserting hole 1a into two sections, and the caulking porting 3 is provided on the bridge 5. As a result, the reduction in the permeability of the upper part of magnet of rotor core can be set to a minute value and the magnetic characteristic (permeability) of this part can be reduced deliberately by providing the caulking portion of the bridge and amount of permanent magnet to be reduced by reducing leakage magnetic flux of magnet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内磁形モータのロ
ータ構造に関し、特にそのカシメの加工位置を限定した
ロータ構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotor structure of an inner magnet type motor, and more particularly to a rotor structure in which a swaging position is limited.

【0002】[0002]

【従来の技術】従来、内磁形モータのロータ積層電磁鋼
板締結方法は、図4、図5に示すようになっている。図
4は従来における4極、センタブリッジ有りの場合のロ
ータコア構造、図5は従来における6極、センタブリッ
ジ無しのロータコア構造を示すもので、1は積層ロータ
コア、1aは磁石挿入穴、2は界磁永久磁石、3はカシ
メ部、5はブリッジ部である。この内磁形モータのロー
タは、円筒形状であり、電磁鋼板を積層してカシメ部3
でかしめたロータコア1内部に形成された磁石挿入穴1
aに界磁永久磁石2を挿入した構造である。従来におい
ては、電磁鋼板1枚1枚のばらけを防止するためのカシ
メ部3を、界磁永久磁石2の外側(図4の場合)又は外
側と内側(図5の場合)に設定していた。
2. Description of the Related Art Conventionally, a method of fastening a rotor laminated electromagnetic steel sheet of an inner magnet type motor is as shown in FIGS. FIG. 4 shows a conventional rotor core structure with four poles and a center bridge, and FIG. 5 shows a conventional six pole rotor core structure without a center bridge. A permanent magnet 3 is a caulking portion, and 5 is a bridge portion. The rotor of the inner magnet type motor has a cylindrical shape, and is formed by laminating electromagnetic steel sheets and forming a caulking portion 3.
Magnet insertion hole 1 formed inside swaged rotor core 1
This is a structure in which the field permanent magnet 2 is inserted into a. Conventionally, the caulking portion 3 for preventing the magnetic steel sheets from being disintegrated is set outside (in the case of FIG. 4) or outside and inside (in the case of FIG. 5) of the field permanent magnet 2. Was.

【0003】[0003]

【発明が解決しようとする課題】ところが従来技術で
は、界磁永久磁石2の外側のコア中心部にカシメ加工を
行った場合、プレス加工時の加工ひずみにより磁気特性
劣化の履歴を受ける。無負荷時、つまり前記界磁永久磁
石外部のコアを通る磁束が磁石磁束のみの場合、この部
分の磁束分布は図6(a)に示すようになり、磁束密度
は0.5〜0.7[T]であり、加工ひずみによる磁気
特性の劣化があっても透磁率の低下はさほどのものでは
ない。しかし、負荷時においては磁束分布は図6(b)
に示すようになり、q軸方向の電機子反作用がある場
合、1.8〜2.0[T]の高磁束密度になり、著しく
透磁率の低下がある。このためこの電機子反作用磁束を
利用してリラクタンストルクを発生させる内磁形モータ
では、発生トルクの低下につながるという問題があっ
た。なお、図6中、4はステータである。そこで、本発
明の目的は、負荷時においても、ロータコアのq軸磁束
磁路の透磁率低下がなく、リラクタンストルクが大きく
でき、ロータコアの締結効果はそのままで、モータ出力
を向上させることにある。
However, in the prior art, when the central portion of the core outside the field permanent magnet 2 is caulked, a history of the deterioration of the magnetic properties is received due to the processing strain at the time of pressing. When there is no load, that is, when the magnetic flux passing through the core outside the field permanent magnet is only the magnet magnetic flux, the magnetic flux distribution in this portion is as shown in FIG. [T], and the magnetic permeability is not significantly reduced even if the magnetic properties are deteriorated due to the processing strain. However, under load, the magnetic flux distribution is shown in FIG.
When there is an armature reaction in the q-axis direction, a high magnetic flux density of 1.8 to 2.0 [T] is obtained, and the magnetic permeability is significantly reduced. For this reason, in the case of the internal magnet type motor that generates reluctance torque using the armature reaction magnetic flux, there is a problem that the generated torque is reduced. In FIG. 6, reference numeral 4 denotes a stator. Accordingly, it is an object of the present invention to improve the motor output without reducing the permeability of the q-axis magnetic flux path of the rotor core even under load, increasing the reluctance torque, and maintaining the effect of fastening the rotor core.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、本発明は、電磁鋼板を積層してかしめたロータコア
内部に形成した磁石挿入穴に界磁永久磁石を挿入した内
磁形モータのロータ構造において、積層電磁鋼板のカシ
メ部の位置をロータのq軸方向の電機子反作用に影響の
ない場所としたものである。この場合の実施の態様とし
て、次の構造が挙げられる。 (1)前記磁石挿入穴を2分する磁極中心軸上にブリッ
ジ部を設け、このブリッジ部に前記カシメ部を設ける。 (2)前記磁石挿入穴の両端にブリッジ部を設け、さら
にロータの円周方向への磁束漏洩を防止するための抜き
穴を設け、前記カシメ部を前記ブリッジ部と、磁束漏洩
防止用抜き穴に接近した位置に設ける。 (3)前記ロータコアの磁石挿入穴下部のヨーク部分
で、磁石挿入穴を2分する磁極中心軸上に、カシメ部を
設けた積層電磁鋼板のカシメの位置をロータのq軸方向
の電機子反作用に影響のない場所に施す。上記手段によ
り、加工ひずみによる磁気特性劣化が、モータの出力特
性上、磁気飽和を必要とするブリッジ部に生じること
で、次の作用を奏する。 (1)ロータコアの磁石上部の透磁率の低下を微少にす
る。 (2)ブリッジ部にカシメ部を設けることで、この部分
の磁気特性(透磁率)を意図的に低下させ磁石の漏洩磁
束を少なくすることで永久磁石投入量を低減できる。 (3)ブリッジ部のカシメ加工は、この部分の硬化作用
も同時に引き起こし、耐遠心力強度を上げる。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a rotor for an internal magnet type motor in which a field permanent magnet is inserted into a magnet insertion hole formed inside a rotor core formed by laminating and crimping electromagnetic steel sheets. In the structure, the position of the swaged portion of the laminated electromagnetic steel sheet is a place that does not affect the armature reaction in the q-axis direction of the rotor. An embodiment in this case includes the following structure. (1) A bridge portion is provided on the center axis of the magnetic pole that divides the magnet insertion hole into two, and the caulking portion is provided in the bridge portion. (2) Bridge portions are provided at both ends of the magnet insertion hole, and holes for preventing magnetic flux leakage in the circumferential direction of the rotor are provided. The caulking portion is connected to the bridge portion and a hole for preventing magnetic flux leakage. It is provided at a position close to. (3) At the yoke portion below the magnet insertion hole of the rotor core, the caulking position of the laminated electromagnetic steel sheet provided with the caulked portion on the magnetic pole center axis that divides the magnet insertion hole into two parts is used to determine the armature reaction of the rotor in the q-axis direction. Apply to a place that does not affect According to the above-described means, the magnetic characteristic degradation due to the processing strain occurs in the bridge portion that requires magnetic saturation in view of the output characteristics of the motor, so that the following operation is achieved. (1) A decrease in the magnetic permeability above the magnets of the rotor core is made very small. (2) By providing the caulking portion in the bridge portion, the magnetic properties (permeability) of this portion are intentionally reduced, and the leakage magnetic flux of the magnet is reduced, so that the input amount of the permanent magnet can be reduced. (3) The caulking process of the bridge portion also causes a hardening action of this portion, and increases the centrifugal force strength.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施の形態を、実
施例を参照して説明する。図1(a)及び(b)は本発
明の第1及び第2実施例を示すものであり、いずれも4
極、センタブリッジ有りの場合を示している。これらの
図において、1は積層ロータコア、1aは永久磁石挿入
穴、2は界磁永久磁石、3はカシメ部である。また、磁
石磁束の中心軸をd軸と称し、これと磁気的に直交する
方向をq軸とする。負荷時、つまりq軸電流Iqを流し
たとき、電機子反作用磁束Φqが流れる。この磁路にか
からないように、図1(a)の第1実施例では、カシメ
部3を、ブリッジ部3に設け、図1(b)の第2実施例
ではブリッジ部5の近辺(外側)に設けている。図2は
6極、センタブリッジ無しの場合である第3実施例を示
すものであり、本例では、ロータコア締結作用を向上す
るために、ロータコア1の磁石内側で、d軸上に位置す
る部分に、カシメ部3を設けている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below with reference to examples. FIGS. 1A and 1B show the first and second embodiments of the present invention.
It shows the case with poles and center bridge. In these figures, 1 is a laminated rotor core, 1a is a permanent magnet insertion hole, 2 is a field permanent magnet, and 3 is a swaged portion. The center axis of the magnet magnetic flux is referred to as a d-axis, and a direction magnetically perpendicular to the center axis is referred to as a q-axis. When a load is applied, that is, when the q-axis current Iq flows, the armature reaction magnetic flux Φq flows. In the first embodiment shown in FIG. 1A, the caulking portion 3 is provided on the bridge portion 3 so as not to cover the magnetic path. In the second embodiment shown in FIG. Is provided. FIG. 2 shows a third embodiment in which there are no six poles and no center bridge. In this embodiment, a portion located on the d axis inside the magnet of the rotor core 1 in order to improve the rotor core fastening action. Is provided with a caulking portion 3.

【0006】図3は、内磁形モータの電流相差角−トル
ク特性を示すものである。Tmは磁石磁束による発生ト
ルク、Trは、モータの電機子反作用磁束により生じる
リラクタンストルク、そしてTは、磁石トルクTmとリ
ラクタンストルクTrを足し合わせた内磁形モータのト
ルクである。前記電流相差角は、モータの誘起電圧ベク
トルと電流ベクトルの位相差であり、+側は、誘起電圧
ベクトルに対し、電流ベクトルが進んでいる場合であ
り、−側は、逆に遅れている場合である。リラクタンス
トルクTrは、磁石トルクTmに対して2倍の周期とな
っているので、合成トルクである内磁形モータトルクT
も、電流相差角γにより変化し、すすみ角45°近辺で
最大点(最適制御点)となる。そして図3は、磁気歪み
における透磁率の低下で、リラクタンストルクTrの低
下が起きれば、電流相差角の進み側でモータトルクTも
低下することを示している。
FIG. 3 shows a current phase difference angle-torque characteristic of the inner magnet type motor. Tm is the torque generated by the magnet magnetic flux, Tr is the reluctance torque generated by the armature reaction magnetic flux of the motor, and T is the torque of the inner magnet type motor obtained by adding the magnet torque Tm and the reluctance torque Tr. The current phase difference angle is a phase difference between the induced voltage vector and the current vector of the motor. The + side indicates a case where the current vector is ahead of the induced voltage vector, and the − side indicates a case where the current vector is delayed. It is. Since the reluctance torque Tr has a cycle twice that of the magnet torque Tm, the inner magnet type motor torque T
Also changes according to the current phase difference angle γ, and reaches a maximum point (optimum control point) near the advance angle of 45 °. FIG. 3 shows that if the reluctance torque Tr decreases due to the decrease in magnetic permeability due to magnetostriction, the motor torque T also decreases on the leading side of the current phase difference angle.

【0007】[0007]

【発明の効果】以上述べたように、本発明によれば、 (1)負荷時においても、ロータコアのq軸磁束磁路の
透磁率低下がなく、リラクタンストルクが大きくできる
ので、ロータコアの締結効果はそのままで、モータ出力
を向上できる。 (2)ブリッジ部の硬化により、ロータコアの耐遠心力
強度が向上し、従来以上の高速回転が可能になる。 (3)ブリッジ部の透磁率低下の効果により、高価な永
久磁石の有効利用(磁石投入量の低減)ができ、モータ
のコストダウンができる。
As described above, according to the present invention, (1) even under load, the permeability of the q-axis magnetic flux path of the rotor core does not decrease and the reluctance torque can be increased, so that the fastening effect of the rotor core can be increased. , The motor output can be improved. (2) Due to the hardening of the bridge portion, the centrifugal force strength of the rotor core is improved, and higher-speed rotation than before becomes possible. (3) Due to the effect of lowering the magnetic permeability of the bridge portion, expensive permanent magnets can be effectively used (reduction of the magnet input), and the cost of the motor can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1及び第2実施例を示すロータコ
ア構造の平面図である。
FIG. 1 is a plan view of a rotor core structure showing first and second embodiments of the present invention.

【図2】 本発明の第3実施例を示すロータコア構造の
平面図である。
FIG. 2 is a plan view of a rotor core structure showing a third embodiment of the present invention.

【図3】 内磁形モータの発生トルク特性図である。FIG. 3 is a diagram showing a generated torque characteristic of an inner magnet type motor.

【図4】 従来におけるロータコア構造を示す平面図で
ある。
FIG. 4 is a plan view showing a conventional rotor core structure.

【図5】 従来におけるロータコア構造の他の例を示す
平面図である。
FIG. 5 is a plan view showing another example of a conventional rotor core structure.

【図6】 内磁形モータ磁界の解析図であり、(a)は
無負荷時、(b)は負荷時を示すものである。
6A and 6B are diagrams illustrating the analysis of the magnetic field of the internal magnet type motor, in which FIG. 6A shows a state when no load is applied, and FIG.

【符号の説明】[Explanation of symbols]

1 積層ロータコア、1a 磁石挿入穴、2 界磁永久
磁石、3 カシメ部、4ステータ、5 ブリッジ部
1 laminated rotor core, 1a magnet insertion hole, 2 field permanent magnet, 3 caulking section, 4 stator, 5 bridge section

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電磁鋼板を積層してかしめたロータコア
内部に形成した磁石挿入穴に界磁永久磁石を挿入した内
磁形モータのロータ構造において、 積層電磁鋼板のカシメ部の位置をロータのq軸方向の電
機子反作用に影響のない場所としたことを特徴とする内
磁形モータのロータ構造。
In a rotor structure of an internal magnet type motor in which a field permanent magnet is inserted into a magnet insertion hole formed in a rotor core formed by laminating and caulking electromagnetic steel sheets, a position of a caulked portion of the laminated electromagnetic steel sheet is determined by q of the rotor. A rotor structure for an internal magnet type motor, wherein the rotor structure does not affect the armature reaction in the axial direction.
【請求項2】 前記磁石挿入穴を2分する磁極中心軸
上にブリッジ部を設け、このブリッジ部に前記カシメ部
を設けたことを特徴とする請求項1記載の内磁形モータ
のロータ構造。
2. A rotor structure for an internal magnet type motor according to claim 1, wherein a bridge portion is provided on a center axis of a magnetic pole that divides the magnet insertion hole into two, and the caulking portion is provided in the bridge portion. .
【請求項3】 前記磁石挿入穴の両端にブリッジ部を設
け、さらにロータの円周方向への磁束漏洩を防止するた
めの抜き穴を設け、前記カシメ部を前記ブリッジ部と、
磁束漏洩防止用抜き穴に接近した位置に設けたことを特
徴とする請求項1記載の内磁形モータのロータ構造。
3. A bridge portion is provided at both ends of the magnet insertion hole, and a hole for preventing leakage of magnetic flux in a circumferential direction of the rotor is provided, and the caulking portion is provided with the bridge portion.
2. A rotor structure for an internal magnet type motor according to claim 1, wherein said rotor structure is provided at a position close to a hole for preventing magnetic flux leakage.
【請求項4】 前記ロータコアの磁石挿入穴下部のヨー
ク部分で、磁石挿入穴を2分する磁極中心軸上に、カシ
メ部を設けたことを特徴とする請求項1記載の内磁形モ
ータのロータ構造。
4. The internal magnetic motor according to claim 1, wherein a caulking portion is provided at a yoke portion below the magnet insertion hole of the rotor core, on a center axis of a magnetic pole that bisects the magnet insertion hole. Rotor structure.
JP10003189A 1998-01-09 1998-01-09 Rotor structure of internal magnetic motor Pending JPH11206051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10003189A JPH11206051A (en) 1998-01-09 1998-01-09 Rotor structure of internal magnetic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10003189A JPH11206051A (en) 1998-01-09 1998-01-09 Rotor structure of internal magnetic motor

Publications (1)

Publication Number Publication Date
JPH11206051A true JPH11206051A (en) 1999-07-30

Family

ID=11550468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10003189A Pending JPH11206051A (en) 1998-01-09 1998-01-09 Rotor structure of internal magnetic motor

Country Status (1)

Country Link
JP (1) JPH11206051A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005094959A (en) * 2003-09-19 2005-04-07 Hitachi Ltd Permanent magnet rotary electric machine
JP2005160133A (en) * 2003-11-20 2005-06-16 Nissan Motor Co Ltd Electromagnetic steel plate forming object, rotor for rotating machine with built-in permanent magnet using it, rotating machine with built-in permanent magnet, and vehicle using this rotating machine with built-in permanent magnet
KR100511272B1 (en) * 2002-10-26 2005-08-31 엘지전자 주식회사 Structure of rotor for magnetic type motor
US7098569B2 (en) * 2004-07-30 2006-08-29 Ballard Power Systems Corporation Rotor assembly for a permanent magnet power electric machine
JP2006311772A (en) * 2005-05-02 2006-11-09 Nissan Motor Co Ltd Dynamo-electric motor
DE102006011738A1 (en) * 2006-03-14 2007-09-20 Siemens Ag Electrical machine e.g. permanent magnet synchronize motor, has rotor supported around rotary axis in rotatable manner, where rotor has permanent magnets that are arranged within rotor and magnetic coating layer of magnetic pole
WO2007136041A1 (en) * 2006-05-24 2007-11-29 Daikin Industries, Ltd. Core for field element
JP2008148482A (en) * 2006-12-12 2008-06-26 Nippon Densan Corp Motor
JP2008271622A (en) * 2007-04-16 2008-11-06 Daikin Ind Ltd Rotor
WO2009069718A1 (en) * 2007-11-28 2009-06-04 Daikin Industries, Ltd. Field element core
WO2009093380A1 (en) * 2008-01-22 2009-07-30 Kabushiki Kaisha Yaskawa Denki Laminated wound core and rotor equipped with the core, dynamo-electric machine
WO2009116384A1 (en) * 2008-03-17 2009-09-24 株式会社小松製作所 Electric motor rotor structure
JP2011125163A (en) * 2009-12-11 2011-06-23 Toyota Motor Corp Motor rotor
CN102593987A (en) * 2012-03-20 2012-07-18 中科盛创(青岛)电气有限公司 From-the-two-ends insertion type permanent magnet motor rotor
JP2013099047A (en) * 2011-10-31 2013-05-20 Toyota Industries Corp Rotor of permanent magnet rotary electric machine and permanent magnet rotary electric machine
JP2013162548A (en) * 2012-02-01 2013-08-19 Daikin Ind Ltd Rotor and compressor
JP2014036456A (en) * 2012-08-07 2014-02-24 Nippon Densan Corp Rotor and motor
KR101448647B1 (en) * 2008-07-08 2014-10-08 엘지전자 주식회사 Motor
KR20150131081A (en) * 2013-03-14 2015-11-24 에머슨 일렉트릭 컴파니 Rotors and stators for dynamoelectric machines
JP2016220514A (en) * 2015-05-25 2016-12-22 株式会社豊田自動織機 Rotary electric machine
JP2020078177A (en) * 2018-11-07 2020-05-21 株式会社ミツバ Rotor, motor and brushless wiper motor
JPWO2019198138A1 (en) * 2018-04-10 2020-10-22 三菱電機株式会社 Electric motors, compressors and air conditioners
WO2024057837A1 (en) * 2022-09-13 2024-03-21 株式会社デンソー Rotary electric machine core and rotary electric machine

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100511272B1 (en) * 2002-10-26 2005-08-31 엘지전자 주식회사 Structure of rotor for magnetic type motor
JP2005094959A (en) * 2003-09-19 2005-04-07 Hitachi Ltd Permanent magnet rotary electric machine
JP4491211B2 (en) * 2003-09-19 2010-06-30 日立アプライアンス株式会社 Permanent magnet rotating electric machine
JP2005160133A (en) * 2003-11-20 2005-06-16 Nissan Motor Co Ltd Electromagnetic steel plate forming object, rotor for rotating machine with built-in permanent magnet using it, rotating machine with built-in permanent magnet, and vehicle using this rotating machine with built-in permanent magnet
US7098569B2 (en) * 2004-07-30 2006-08-29 Ballard Power Systems Corporation Rotor assembly for a permanent magnet power electric machine
JP4715291B2 (en) * 2005-05-02 2011-07-06 日産自動車株式会社 Electric motor
JP2006311772A (en) * 2005-05-02 2006-11-09 Nissan Motor Co Ltd Dynamo-electric motor
DE102006011738A1 (en) * 2006-03-14 2007-09-20 Siemens Ag Electrical machine e.g. permanent magnet synchronize motor, has rotor supported around rotary axis in rotatable manner, where rotor has permanent magnets that are arranged within rotor and magnetic coating layer of magnetic pole
WO2007136041A1 (en) * 2006-05-24 2007-11-29 Daikin Industries, Ltd. Core for field element
JP2007318880A (en) * 2006-05-24 2007-12-06 Daikin Ind Ltd Core for field magneton
AU2007252541B2 (en) * 2006-05-24 2011-01-20 Daikin Industries, Ltd. Field Element Core
US7863793B2 (en) 2006-05-24 2011-01-04 Daikin Industries, Ltd. Field element core
KR100990313B1 (en) 2006-05-24 2010-10-26 다이킨 고교 가부시키가이샤 Core for field element
JP2008148482A (en) * 2006-12-12 2008-06-26 Nippon Densan Corp Motor
JP2008271622A (en) * 2007-04-16 2008-11-06 Daikin Ind Ltd Rotor
WO2009069718A1 (en) * 2007-11-28 2009-06-04 Daikin Industries, Ltd. Field element core
AU2008330537B2 (en) * 2007-11-28 2011-07-28 Daikin Industries, Ltd. Field element core
US8373324B2 (en) 2007-11-28 2013-02-12 Daikin Industries, Ltd. Field element core
JP5418837B2 (en) * 2008-01-22 2014-02-19 株式会社安川電機 Laminated winding core, rotor provided with the same, and rotating electric machine
WO2009093380A1 (en) * 2008-01-22 2009-07-30 Kabushiki Kaisha Yaskawa Denki Laminated wound core and rotor equipped with the core, dynamo-electric machine
US7915780B2 (en) 2008-01-22 2011-03-29 Kabushiki Kaisha Yaskawa Denki Laminated spiral core, dynamo-electric-machine rotor provided therewith, and dynamo-electric machine
WO2009116384A1 (en) * 2008-03-17 2009-09-24 株式会社小松製作所 Electric motor rotor structure
KR101448647B1 (en) * 2008-07-08 2014-10-08 엘지전자 주식회사 Motor
JP2011125163A (en) * 2009-12-11 2011-06-23 Toyota Motor Corp Motor rotor
JP2013099047A (en) * 2011-10-31 2013-05-20 Toyota Industries Corp Rotor of permanent magnet rotary electric machine and permanent magnet rotary electric machine
JP2013162548A (en) * 2012-02-01 2013-08-19 Daikin Ind Ltd Rotor and compressor
CN102593987A (en) * 2012-03-20 2012-07-18 中科盛创(青岛)电气有限公司 From-the-two-ends insertion type permanent magnet motor rotor
JP2014036456A (en) * 2012-08-07 2014-02-24 Nippon Densan Corp Rotor and motor
KR20150131081A (en) * 2013-03-14 2015-11-24 에머슨 일렉트릭 컴파니 Rotors and stators for dynamoelectric machines
JP2016220514A (en) * 2015-05-25 2016-12-22 株式会社豊田自動織機 Rotary electric machine
JPWO2019198138A1 (en) * 2018-04-10 2020-10-22 三菱電機株式会社 Electric motors, compressors and air conditioners
US11888353B2 (en) 2018-04-10 2024-01-30 Mitsubishi Electric Corporation Motor, compressor, and air conditioner
JP2020078177A (en) * 2018-11-07 2020-05-21 株式会社ミツバ Rotor, motor and brushless wiper motor
WO2024057837A1 (en) * 2022-09-13 2024-03-21 株式会社デンソー Rotary electric machine core and rotary electric machine

Similar Documents

Publication Publication Date Title
JPH11206051A (en) Rotor structure of internal magnetic motor
US8269390B2 (en) Permanent-magnet-type rotating electrical machine and permanent magnet motor drive system
US7919900B2 (en) Motor apparatus including Lundell motor having Lundell-type rotor
US8330404B2 (en) Permanent-magnet-type rotating electrical machine
US8334667B2 (en) Permanent magnet rotating electrical machine and permanent magnet motor drive system
EP2600499B1 (en) Rotating electric machine rotor
EP3329577B1 (en) Permanent magnet synchronous motor
US20140283374A1 (en) Permanent magnet electric motor
CN102957239A (en) Interior permanent magnet motor
JP2008245367A (en) Permanent magnet type rotating electrical machine and permanent magnet motor drive system
JP2000333389A (en) Permanent magnet motor
JP2000050546A (en) Rotor of permanent magnet motor
JP2001197694A (en) Rotor for synchronous machine, synchronous motor and synchronous generator
JP3703907B2 (en) Brushless DC motor
JP2001211582A (en) Permanent magnet motor
JP2012139068A (en) Rotor for embedded magnet type motor
JPH09163648A (en) Inner magnet type synchronous motor
JP2001086673A (en) Permanent magnet motor
JP3776171B2 (en) Magnet rotor
JP5904188B2 (en) Multi-gap rotating electric machine
JP6428458B2 (en) Embedded magnet type motor
JPH10164784A (en) Magnet rotor
JPH10136595A (en) Magnet rotor
JPH0720050U (en) Permanent magnet type synchronous motor rotor
JP5130679B2 (en) Forward salient pole motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080314