JPH11205226A - Optical transmission system - Google Patents

Optical transmission system

Info

Publication number
JPH11205226A
JPH11205226A JP10005697A JP569798A JPH11205226A JP H11205226 A JPH11205226 A JP H11205226A JP 10005697 A JP10005697 A JP 10005697A JP 569798 A JP569798 A JP 569798A JP H11205226 A JPH11205226 A JP H11205226A
Authority
JP
Japan
Prior art keywords
wavelength
optical
signal light
dispersion
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10005697A
Other languages
Japanese (ja)
Other versions
JP3570193B2 (en
Inventor
Hirohito Tanaka
啓仁 田中
Noboru Edakawa
登 枝川
Shu Yamamoto
周 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDD Corp filed Critical KDD Corp
Priority to JP00569798A priority Critical patent/JP3570193B2/en
Publication of JPH11205226A publication Critical patent/JPH11205226A/en
Application granted granted Critical
Publication of JP3570193B2 publication Critical patent/JP3570193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress accumulated wavelength dispersion without a dispersion compensation fiber. SOLUTION: An optical transmission terminal station 10 outputs a signal light with a λ1 longer than a zero dispersion wavelength 20 of transmission optical fibers 16-1 to 16-3 to the transmission optical fiber 16-1. The signal light propagated through the transmission optical fiber 16-1 is made incident onto a wavelength converter 18-1. The wavelength converter 18-1 applies wavelength conversion to the incident signal light with the wavelength λ2 into a wavelength λ2 shorter than the zero dispersion wavelength λ1 and outputs it to the transmission optical fiber 16-2. The signal light propagated through the transmission optical fiber 16-2 is made incident onto a wavelength converter 18-2. The wavelength converter 18-2 applies wavelength conversion to the incident signal light with a wavelength λ2 into the signal with the wavelength λ2 conversely to the case with the wavelength converter 18-1 and outputs the resulting signal to the transmission optical fiber 16-3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光伝送システムに
関し、より具体的には、波長分散による伝送特性劣化を
抑圧した光伝送システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical transmission system, and more specifically, to an optical transmission system that suppresses deterioration of transmission characteristics due to chromatic dispersion.

【0002】[0002]

【従来の技術】従来の光ファイバ伝送システムでは、光
ファイバの非線形性による伝送特性の劣化を避けるため
に、信号波長をゼロ分散波長から少しずらした、少なか
らず波長分散を生じる波長に設定される。そして、正分
散ファイバ及び負分散ファイバを交互に組み合わせた分
散マップを用いるか、適宜の箇所に分散補償ファイバを
配置して、累積波長分散が所定値以下に収める方法が考
えられている。
2. Description of the Related Art In a conventional optical fiber transmission system, a signal wavelength is slightly shifted from a zero-dispersion wavelength, and is set to a wavelength that causes considerable chromatic dispersion in order to avoid deterioration of transmission characteristics due to nonlinearity of the optical fiber. . Then, a method of using a dispersion map in which positive dispersion fibers and negative dispersion fibers are alternately combined or disposing a dispersion compensating fiber at an appropriate position to keep the accumulated chromatic dispersion within a predetermined value has been considered.

【0003】[0003]

【発明が解決しようとする課題】実際には、正分散及び
負分散の2種類の伝送用光ファイバを交互に組み合わせ
た特殊な分散マップを用いる方法より、伝送用光ファイ
バが1種類でよい分散補償ファイバを用いる方法の方
が、システム構成の簡便性及びコストの面で望ましいの
で、通常は、後者の構成が採用される。
In practice, one type of transmission optical fiber can be used by a method using a special dispersion map in which two types of transmission optical fibers of positive dispersion and negative dispersion are alternately combined. Since the method using the compensating fiber is more preferable in terms of simplicity and cost of the system configuration, the latter configuration is usually adopted.

【0004】しかし、伝送速度の更なる高速化を考慮す
ると、分散補償ファイバを用いる構成では次のような問
題点がある。即ち、分散補償ファイバの挿入間隔を長く
し、累積波長分散を一度に大きく補償すると、波形歪み
を生じる。逆に、分散補償ファイバの挿入間隔を短くし
て累積波長分散を頻繁に補償して、累積波長分散が常に
小さくなるように光伝送路を構成すると、4光子混合
(FWM)の影響が現われ、伝送特性が劣化する。更に
は、分散補償ファイバはコアの有効断面積が小さいの
で、非線形効果が大きくなり、これも伝送特性を劣化さ
せる。
However, in consideration of further increasing the transmission speed, the configuration using the dispersion compensating fiber has the following problems. That is, if the insertion interval of the dispersion compensating fiber is lengthened and the accumulated chromatic dispersion is greatly compensated at once, waveform distortion occurs. Conversely, if the optical transmission line is configured to shorten the insertion interval of the dispersion compensating fiber and frequently compensate for the accumulated chromatic dispersion so that the accumulated chromatic dispersion is always small, the effect of four-photon mixing (FWM) appears. Transmission characteristics deteriorate. Furthermore, since the effective area of the core of the dispersion compensating fiber is small, the nonlinear effect increases, which also deteriorates the transmission characteristics.

【0005】本発明は、累積波長分散を小さく抑圧でき
る新規な構成の光伝送システムを提示することを目的と
する。
An object of the present invention is to provide an optical transmission system having a novel configuration capable of suppressing accumulated chromatic dispersion to a small level.

【0006】[0006]

【課題を解決するための手段】本発明では、光伝送媒体
を伝送する信号光の波長を、当該光伝送媒体のゼロ分散
波長より長い波長に変換する第1の波長変換手段と、当
該光伝送媒体を伝送する信号光の波長を当該ゼロ分散波
長より短い波長に変換する第2の波長変換手段とを、光
伝送路の適宜の箇所に配置する。これにより、正常分散
領域と異常分散領域を適宜に配置(好ましくは、交互に
配置)でき、累積波長分散を小さく抑えることができ
る。また、累積波長分散を十分に残すこと、例えば、第
1及び第2の波長変換手段の配置間隔を十分に大きくと
ったり、伝送媒体上の信号光の波長をゼロ分散波長から
十分に離すことにより、4光子混合の影響を緩和でき
る。
According to the present invention, there is provided first wavelength conversion means for converting the wavelength of signal light transmitted through an optical transmission medium into a wavelength longer than the zero dispersion wavelength of the optical transmission medium; Second wavelength converting means for converting the wavelength of the signal light transmitted through the medium to a wavelength shorter than the zero dispersion wavelength is disposed at an appropriate position in the optical transmission line. Thereby, the normal dispersion region and the abnormal dispersion region can be appropriately arranged (preferably alternately), and the accumulated chromatic dispersion can be suppressed to a small value. Further, by leaving sufficient accumulated chromatic dispersion, for example, by taking a sufficiently large interval between the first and second wavelength conversion means, or by sufficiently separating the wavelength of the signal light on the transmission medium from the zero dispersion wavelength, The effect of four-photon mixing can be reduced.

【0007】波長変換手段を使用するので、全伝送媒体
上で信号光の波長が一定にならないが、信号光の波長が
特定値になる箇所に光増幅手段を配置することで、同じ
増幅帯域特性を持つ光増幅手段を用意すればよくなり、
施工及び保守が容易になり、それらのコストを低減でき
る。
Since the wavelength converting means is used, the wavelength of the signal light does not become constant on all transmission media, but by arranging the optical amplifying means at a position where the wavelength of the signal light becomes a specific value, the same amplification band characteristic can be obtained. It is enough to prepare optical amplification means with
Construction and maintenance are facilitated and their costs can be reduced.

【0008】また、2つの波長変換器の中間に光増幅手
段を配置する2段階の波長変換構造とすることで、光増
幅手段として所望の増幅帯域のものを利用でき、また、
光増幅手段の種類を1つ又は少数にでき、施工及び保守
が容易になり、それらのコストを低減できる。
[0008] Further, by adopting a two-stage wavelength conversion structure in which an optical amplifying means is disposed between two wavelength converters, an optical amplifying means having a desired amplification band can be used.
The number of types of optical amplification means can be reduced to one or a small number, construction and maintenance become easy, and their cost can be reduced.

【0009】[0009]

【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0010】図1(a)は、本発明の一実施例の光伝送
システムの概略構成ブロック図を示し、図1(b)は、
その累積波長分散の距離に対する変化を示す。図1
(b)の縦軸は累積波長分散、横軸は距離を示す。
FIG. 1A is a schematic block diagram of an optical transmission system according to an embodiment of the present invention, and FIG.
The change with respect to the distance of the accumulated chromatic dispersion is shown. FIG.
The vertical axis of (b) shows the accumulated chromatic dispersion, and the horizontal axis shows the distance.

【0011】光送信端局10と光受信端局12の間の光
ファイバ伝送路14において、伝送用光ファイバ16−
1〜16−3の間に波長変換器18−1,18−2が挿
入されている。伝送用光ファイバ16−1〜16−3は
全て同じ構造のものであり、そのゼロ分散波長をλ0と
する。伝送用光ファイバ16−1〜16−3の波長分散
特性を図2に示す。縦軸は波長分散、横軸は波長であ
る。
In the optical fiber transmission line 14 between the optical transmitting terminal 10 and the optical receiving terminal 12, a transmission optical fiber 16-
Wavelength converters 18-1 and 18-2 are inserted between 1 to 16-3. All of the transmission optical fibers 16-1 to 16-3 have the same structure, and the zero dispersion wavelength is λ0. FIG. 2 shows the wavelength dispersion characteristics of the transmission optical fibers 16-1 to 16-3. The vertical axis represents chromatic dispersion, and the horizontal axis represents wavelength.

【0012】光送信端局10は、ゼロ分散波長λ0より
長い波長λ1で信号光を伝送用光ファイバ16−1に出
力する。波長λ1では、図2に示すように伝送用光ファ
イバ16−1の波長分散はプラスであるので、図1
(b)に示すようbに累積波長分散がプラスで増加す
る。
The optical transmitting terminal 10 outputs a signal light to the transmission optical fiber 16-1 at a wavelength λ1 longer than the zero dispersion wavelength λ0. At the wavelength λ1, the chromatic dispersion of the transmission optical fiber 16-1 is positive as shown in FIG.
As shown in (b), the cumulative chromatic dispersion increases as b.

【0013】伝送用光ファイバ16−1を伝搬した信号
光は、波長変換器18−1に入射する。波長変換器18
−1は、入射した波長λ1の信号光を、ゼロ分散波長λ
0より短い波長λ2に波長変換して、伝送用光ファイバ
16−2に出力する。図2に示すように、波長λ2では
伝送用光ファイバ16−2の波長分散はマイナスになる
ので、累積波長分散は図1(b)に示すように、伝送用
光ファイバ16−2を伝送する間に減少していく。
The signal light propagating through the transmission optical fiber 16-1 enters the wavelength converter 18-1. Wavelength converter 18
-1 indicates that the incident signal light of wavelength λ1 is converted to zero dispersion wavelength λ.
The wavelength is converted to a wavelength λ2 shorter than 0 and output to the transmission optical fiber 16-2. As shown in FIG. 2, the chromatic dispersion of the transmission optical fiber 16-2 becomes negative at the wavelength λ2, so that the accumulated chromatic dispersion is transmitted through the transmission optical fiber 16-2 as shown in FIG. In the meantime.

【0014】伝送用光ファイバ16−2を伝搬した信号
光は、波長変換器18−2に入射する。波長変換器18
−2は、波長変換器18−1とは逆に、入射した波長λ
2の信号光を波長λ1に波長変換して、伝送用光ファイ
バ16−3に出力する。先に説明したように波長λ1で
は伝送用光ファイバ16−3の波長分散はプラスになる
ので、累積波長分散は図1(b)に示すように、伝送用
光ファイバ16−3を伝送する間に増加していく。
The signal light transmitted through the transmission optical fiber 16-2 enters the wavelength converter 18-2. Wavelength converter 18
-2 is the incident wavelength λ, contrary to the wavelength converter 18-1.
The signal light of No. 2 is converted into a wavelength λ1 and output to the transmission optical fiber 16-3. As described above, the chromatic dispersion of the transmission optical fiber 16-3 is positive at the wavelength λ1, and the accumulated chromatic dispersion is, as shown in FIG. 1B, during transmission of the transmission optical fiber 16-3. To increase.

【0015】このように、本実施例では、適宜の間隔で
信号光の波長を、ゼロ分散波長より長い波長λ1とゼロ
分散波長λ0より短い波長λ2に交互に変換すること
で、累積波長分散を所定範囲内に制限することができ
る。従来の分散補償ファイバは必要なくなる。
As described above, in this embodiment, the wavelength of the signal light is alternately converted into the wavelength λ1 longer than the zero-dispersion wavelength and the wavelength λ2 shorter than the zero-dispersion wavelength λ0 at appropriate intervals, thereby reducing the accumulated chromatic dispersion. It can be restricted within a predetermined range. Conventional dispersion compensating fibers are no longer needed.

【0016】光増幅が必要な場合には、適宜の箇所に光
増幅器を挿入することになる。その場合、波長λ1と波
長λ2の両方をカバーする光増幅帯域を具備する光増幅
器を使用すればよいが、そのように広い光増幅帯域を有
する光増幅器を入手できないとき、又は入手するのが困
難な場合には、波長λ1を光増幅できる光増幅器を波長
変換器18−1の入力側と波長変換器18−2の出力側
に配置しても良いし、波長λ2を光増幅できる光増幅器
を波長変換器18−2の出力側と波長変換器18−2の
入力側に配置しても良い。
When optical amplification is required, an optical amplifier is inserted at an appropriate place. In that case, an optical amplifier having an optical amplification band covering both the wavelength λ1 and the wavelength λ2 may be used. However, when an optical amplifier having such a wide optical amplification band is not available or is difficult to obtain. In such a case, an optical amplifier capable of optically amplifying the wavelength λ1 may be arranged on the input side of the wavelength converter 18-1 and the output side of the wavelength converter 18-2. It may be arranged on the output side of the wavelength converter 18-2 and the input side of the wavelength converter 18-2.

【0017】より一般的には、波長変換器18−1,1
8−2内での波長変換を2段階構成とし、中間に光増幅
器を組み込んでもよい。その場合の波長変換器18−
1,18−2の概略構成ブロック図を図3に示す。20
は波長λ1(又はλ2)の入力光の波長を波長λpに波
長変換する波長変換器、22は波長λpを光増幅帯域内
に具備し、波長変換器20の出力光を光増幅する光増幅
器、24は光増幅器22から出力される信号光を波長λ
pから波長λ2(又はλ1)に波長変換する波長変換器
である。この構成では、光増幅器22として、伝送用光
ファイバ16−1〜16−3上での信号光の波長λ1,
λ2とは無関係に好ましい光増幅帯域のものを使用でき
るという利点がある。
More generally, the wavelength converters 18-1 and 18-1
The wavelength conversion in 8-2 may have a two-stage configuration, and an optical amplifier may be incorporated in the middle. The wavelength converter 18 in that case
FIG. 3 shows a schematic block diagram of the components 1 and 18-2. 20
Is a wavelength converter that converts the wavelength of the input light having the wavelength λ1 (or λ2) into the wavelength λp, 22 is an optical amplifier that has the wavelength λp in the optical amplification band and optically amplifies the output light of the wavelength converter 20; Reference numeral 24 denotes a signal light output from the optical amplifier 22 having a wavelength λ.
This is a wavelength converter that converts the wavelength from p to wavelength λ2 (or λ1). In this configuration, as the optical amplifier 22, the wavelength λ1 of the signal light on the transmission optical fibers 16-1 to 16-3 is used.
There is an advantage that a preferable optical amplification band can be used irrespective of λ2.

【0018】波長変換器18−1では、波長変換器20
は入力光の波長λ1を波長λpに変換する。光増幅器2
2は波長変換器20の出力光を光増幅し、波長変換器2
4は光増幅器22から出力される波長λpの信号光を波
長λ2に波長変換する。
In the wavelength converter 18-1, the wavelength converter 20
Converts the wavelength λ1 of the input light into the wavelength λp. Optical amplifier 2
2 optically amplifies the output light of the wavelength converter 20,
Reference numeral 4 converts the wavelength of the signal light having the wavelength λp output from the optical amplifier 22 into the wavelength λ2.

【0019】波長変換器18−2では、波長変換器20
は入力光の波長λ2を波長λpに変換する。光増幅器2
2は波長変換器20の出力光を光増幅し、波長変換器2
4は光増幅器22から出力される波長λpの信号光を波
長λ1に波長変換する。
In the wavelength converter 18-2, the wavelength converter 20
Converts the wavelength λ2 of the input light into the wavelength λp. Optical amplifier 2
2 optically amplifies the output light of the wavelength converter 20,
Reference numeral 4 converts the wavelength of the signal light having the wavelength λp output from the optical amplifier 22 into the wavelength λ1.

【0020】このようにして、本実施例では、分散補償
ファイバを使用しなくても、累積波長分散を所定値以内
に制限することができ、分散補償ファイバを使用するこ
とによる問題点を完全に解決できる。しかし、本発明
は、分散補償ファイバを部分的に使用することまで排除
するものではなく、分散補償ファイバの利用を低減する
ものも、本発明の範囲に含まれる。
As described above, in this embodiment, the accumulated chromatic dispersion can be limited within a predetermined value without using the dispersion compensating fiber, and the problem caused by using the dispersion compensating fiber is completely eliminated. Solvable. However, the present invention does not exclude the partial use of the dispersion compensating fiber, and also includes the use of the dispersion compensating fiber in the scope of the present invention.

【0021】また、本実施例では、各伝送用光ファイバ
16−1〜16−3上での信号光の波長λ1,λ2は、
適宜に選択できる。例えば、伝送用光ファイバ16−1
上での信号光の波長は、伝送用光ファイバ16−3上で
の信号光の波長と同じである必要は無い。これにより、
各伝送用光ファイバ16−1〜16−3における分散ス
ロープを適当に選択でき、例えば、光伝送路全体の分散
スロープをゼロにできる。いうまでもないが、伝送用光
ファイバ16−1〜16−3の伝送距離は同じでなくて
も良い。
In this embodiment, the wavelengths λ1 and λ2 of the signal light on the transmission optical fibers 16-1 to 16-3 are:
It can be selected as appropriate. For example, the transmission optical fiber 16-1
The wavelength of the signal light above does not need to be the same as the wavelength of the signal light on the transmission optical fiber 16-3. This allows
The dispersion slope in each of the transmission optical fibers 16-1 to 16-3 can be appropriately selected. For example, the dispersion slope of the entire optical transmission line can be made zero. Needless to say, the transmission distances of the transmission optical fibers 16-1 to 16-3 need not be the same.

【0022】波長変換器18−1,18−2,20,2
4は、例えば、DFG(Difference Fre
quency Generation)及び4光子混合
(FWM)などの非線形光学効果素子、電気音響周波数
シフタ、電気吸収変調器及び半導体レーザ増幅器を使用
しても実現でき、更には、これらを組み合わせても良
い。20〜30nmの波長シフトを実現できる。伝送シ
ステムを敷設した後でも、非線形光学効果素子のポンプ
光波長を変更することなどにより、波長変換後の波長を
変更することで、伝送システム全体の波長分散特性を調
整できる。
Wavelength converters 18-1, 18-2, 20, 2
4 is, for example, a DFG (Difference Frequency
The present invention can be realized by using a nonlinear optical effect element such as frequency generation and four-photon mixing (FWM), an electroacoustic frequency shifter, an electroabsorption modulator, and a semiconductor laser amplifier, or a combination thereof. A wavelength shift of 20 to 30 nm can be realized. Even after the transmission system is laid, the chromatic dispersion characteristics of the entire transmission system can be adjusted by changing the wavelength after wavelength conversion, for example, by changing the pump light wavelength of the nonlinear optical effect element.

【0023】単一波長の信号光を伝送する場合を例に説
明したが、本実施例は、波長分割多重伝送システムにも
適用できることは明かである。本実施例では、伝送路全
体の分散スロープをゼロにできるので、波長分割多重伝
送システムにおける伝送特性の波長依存性を低減でき、
波長多重度と伝送特性の向上を図れる。
Although the case of transmitting signal light of a single wavelength has been described as an example, it is obvious that the present embodiment can be applied to a wavelength division multiplex transmission system. In this embodiment, the dispersion slope of the entire transmission line can be made zero, so that the wavelength dependence of the transmission characteristics in the wavelength division multiplex transmission system can be reduced,
The degree of wavelength multiplexing and transmission characteristics can be improved.

【0024】[0024]

【発明の効果】以上の説明から容易に理解できるよう
に、本発明によれば、非常に簡単な構成で累積波長分散
を小さく抑えることができる。分散補償ファイバを使用
しない又は少なくできるので、伝送システム全体の非線
形効果を抑制できる、分散補償ファイバによる波形劣化
も少なくなる。伝送システムを敷設した後でも、波長変
換手段の交換又は特性変更により、伝送システム全体の
波長分散特性を変更できる。
As can be easily understood from the above description, according to the present invention, the accumulated chromatic dispersion can be suppressed with a very simple structure. Since the dispersion compensating fiber is not used or can be reduced, the nonlinear effect of the entire transmission system can be suppressed, and the waveform deterioration due to the dispersion compensating fiber also decreases. Even after the transmission system is laid, the chromatic dispersion characteristics of the entire transmission system can be changed by replacing the wavelength conversion means or changing the characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例の概略構成ブロック図
(a)と、累積波長分散の模式図(b)である。
FIG. 1 is a schematic block diagram of an embodiment of the present invention (a) and a schematic diagram of accumulated chromatic dispersion (b).

【図2】 伝送用光ファイバ16−1〜16−3の波長
分散特性の模式図である。
FIG. 2 is a schematic diagram of the wavelength dispersion characteristics of the transmission optical fibers 16-1 to 16-3.

【図3】 波長変換器18−1,18−2の構成例であ
る。
FIG. 3 is a configuration example of wavelength converters 18-1 and 18-2.

【符号の説明】[Explanation of symbols]

10:光送信端局 12:光受信端局 14:光ファイバ伝送路 16−1〜16−3:伝送用光ファイバ 18−1,18−2:波長変換器 20:波長変換器 22:光増幅器 24:波長変換器 10: Optical transmitting terminal 12: Optical receiving terminal 14: Optical fiber transmission line 16-1 to 16-3: Transmission optical fiber 18-1, 18-2: Wavelength converter 20: Wavelength converter 22: Optical amplifier 24: wavelength converter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H04B 10/12 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H04B 10/12

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の光伝送媒体と、 当該光伝送媒体を伝送する信号光の波長を、当該光伝送
媒体のゼロ分散波長より長い波長に変換する1以上の第
1の波長変換手段と、 当該光伝送媒体を伝送する信号光の波長を当該ゼロ分散
波長より短い波長に変換する1以上の第2の波長変換手
段と、とからなることを特徴とする光伝送システム。
1. A plurality of optical transmission media, one or more first wavelength converting means for converting the wavelength of signal light transmitted through the optical transmission medium into a wavelength longer than the zero dispersion wavelength of the optical transmission medium, An optical transmission system, comprising: one or more second wavelength converting means for converting a wavelength of signal light transmitted through the optical transmission medium into a wavelength shorter than the zero dispersion wavelength.
【請求項2】 当該第1の波長変換手段及び当該第2の
波長変換手段が交互に配置されている請求項1に記載の
光伝送システム。
2. The optical transmission system according to claim 1, wherein said first wavelength converting means and said second wavelength converting means are arranged alternately.
【請求項3】 当該第1の波長変換手段及び当該第2の
波長変換手段の少なくとも一方が、入力する信号光を光
増幅する光増幅手段と、当該光増幅手段から出力される
信号光を所定の波長に波長変換する波長変換器とからな
る請求項1又は2に記載の光伝送システム。
3. A method according to claim 1, wherein at least one of said first wavelength converting means and said second wavelength converting means performs optical amplification on an input signal light, and outputs a signal light output from said optical amplification means on a predetermined basis. The optical transmission system according to claim 1, further comprising a wavelength converter that converts the wavelength to the wavelength of the wavelength.
【請求項4】 当該第1の波長変換手段及び当該第2の
波長変換手段の少なくとも一方が、入力する信号光を所
定波長に波長変換する波長変換器と、当該波長変換器か
ら出力される信号光を光増幅する光増幅手段とからなる
請求項1又は2に記載の光伝送システム。
4. A wavelength converter for converting the wavelength of an input signal light into a predetermined wavelength, and a signal output from the wavelength converter, wherein at least one of the first wavelength conversion unit and the second wavelength conversion unit converts the wavelength of the input signal light into a predetermined wavelength. The optical transmission system according to claim 1, further comprising an optical amplification unit configured to amplify light.
【請求項5】 当該第1の波長変換手段及び当該第2の
波長変換手段の少なくとも一方が、光増幅手段と、入力
する信号光を当該光増幅手段の光増幅帯域に含まれる波
長帯に変換する第1の波長変換器と、当該光増幅手段か
ら出力される信号光を所定波長に波長変換する第2の波
長変換器とからなる請求項1又は2に記載の光伝送シス
テム。
5. At least one of said first wavelength converting means and said second wavelength converting means converts an optical amplifying means and an input signal light into a wavelength band included in an optical amplifying band of said optical amplifying means. 3. The optical transmission system according to claim 1, comprising: a first wavelength converter that converts the signal light output from the optical amplifying unit to a predetermined wavelength.
JP00569798A 1998-01-14 1998-01-14 Optical transmission system Expired - Fee Related JP3570193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00569798A JP3570193B2 (en) 1998-01-14 1998-01-14 Optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00569798A JP3570193B2 (en) 1998-01-14 1998-01-14 Optical transmission system

Publications (2)

Publication Number Publication Date
JPH11205226A true JPH11205226A (en) 1999-07-30
JP3570193B2 JP3570193B2 (en) 2004-09-29

Family

ID=11618305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00569798A Expired - Fee Related JP3570193B2 (en) 1998-01-14 1998-01-14 Optical transmission system

Country Status (1)

Country Link
JP (1) JP3570193B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084259A (en) * 2000-09-05 2002-03-22 Hitachi Ltd Optical multiplex transmission method, optical network, and optical transmission apparatus
JP2007300679A (en) * 2007-08-01 2007-11-15 Mitsubishi Electric Corp Optical wavelength multiplex transmission system
JP2008203757A (en) * 2007-02-22 2008-09-04 National Institute Of Advanced Industrial & Technology Variable dispersion compensating device and optical network using the same
KR100941983B1 (en) 2002-09-04 2010-02-16 피텔 유.에스.에이. 코포레이션 Adjustable dispersion compensator with few mode fibers and switchable mode converters
WO2021156932A1 (en) * 2020-02-04 2021-08-12 日本電信電話株式会社 Cyclic wavelength band replacement device, multiband transmission system, and cyclic wavelength band replacement method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084259A (en) * 2000-09-05 2002-03-22 Hitachi Ltd Optical multiplex transmission method, optical network, and optical transmission apparatus
JP4598934B2 (en) * 2000-09-05 2010-12-15 株式会社日立製作所 Optical transmission device and optical transmission system
KR100941983B1 (en) 2002-09-04 2010-02-16 피텔 유.에스.에이. 코포레이션 Adjustable dispersion compensator with few mode fibers and switchable mode converters
JP2008203757A (en) * 2007-02-22 2008-09-04 National Institute Of Advanced Industrial & Technology Variable dispersion compensating device and optical network using the same
JP2007300679A (en) * 2007-08-01 2007-11-15 Mitsubishi Electric Corp Optical wavelength multiplex transmission system
WO2021156932A1 (en) * 2020-02-04 2021-08-12 日本電信電話株式会社 Cyclic wavelength band replacement device, multiband transmission system, and cyclic wavelength band replacement method

Also Published As

Publication number Publication date
JP3570193B2 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
US7489880B2 (en) Apparatus and method for measuring the dispersion of a fiber span
JP3302310B2 (en) Optical amplification transmission system and optical amplifier
US6021245A (en) Method and optical transmission system for compensating dispersion in optical transmission paths
JP2007006500A (en) Multi-band hybrid soa-raman amplifier for cwdm
US6580861B2 (en) Dispersion map for slope compensating fibers
JP4294153B2 (en) WDM optical transmission system
EP1076428B1 (en) Optical fiber communication system employing wavelength converter for broadband transmission
US6483633B2 (en) Raman amplifier
EP1133031A2 (en) Optical transmission system with reduced kerr effect nonlinearities
JP3570193B2 (en) Optical transmission system
JP4540886B2 (en) Method and apparatus for shaping waveform of optical signal
US7068876B1 (en) Method and system for optical transmission adopting dispersion compensation
JP3199106B2 (en) Multi-wavelength light source and optical wavelength multiplex signal generation circuit using the same
JP2991105B2 (en) Optical transmitter
US20040042067A1 (en) Apparatus and method for duplex optical transport using a co-directional optical amplifier
JP4567830B2 (en) Optical wavelength division multiplexing transmission system
Diaz et al. Double Raman amplified bus networks for wavelength-division multiplexing of fiber-optic sensors
JP3233269B2 (en) Four-wave mixing suppression method
JP2002303900A (en) Hybrid wavelength converter
JP3570247B2 (en) Optical transmission system
JPH0758699A (en) Waveform shaping device and optical relay transmission system using the waveform shaping device
US7565083B1 (en) Wavelength shifting in an optical network route to mitigate distortion in different types of fiber
JP2000357992A (en) Optical transmission line and optical transmission system
JP2001036468A (en) Wavelength multiplex transmission system
JP2005064776A (en) Optical transmission system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees