JPH11205204A - Demoduiator - Google Patents

Demoduiator

Info

Publication number
JPH11205204A
JPH11205204A JP149798A JP149798A JPH11205204A JP H11205204 A JPH11205204 A JP H11205204A JP 149798 A JP149798 A JP 149798A JP 149798 A JP149798 A JP 149798A JP H11205204 A JPH11205204 A JP H11205204A
Authority
JP
Japan
Prior art keywords
signal
intermediate frequency
filter
characteristic
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP149798A
Other languages
Japanese (ja)
Inventor
Masaru Adachi
勝 安達
Hirotake Wakai
洋丈 若井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Original Assignee
Hitachi Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK filed Critical Hitachi Denshi KK
Priority to JP149798A priority Critical patent/JPH11205204A/en
Publication of JPH11205204A publication Critical patent/JPH11205204A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a narrow band inexpensively by securing necessary adjacent channel selectivity by using an intermediate frequency filter of a band that is narrower than a receiving band width and performing amplitude compensation so as to be a root square cosine characteristic by using an equalizer. SOLUTION: A signal that is received by a high frequency amplifier 3 is amplified and sent to a 1st mixer 4 and converted into a 1st intermediate frequency signal by a signal of a 1st local oscillator 5. After a 1st intermediate frequency filter 6 eliminates an unnecessary component from the signal, an AGC amplifier 7 amplifies it so that the level of an output signal may be constant. Next, a 2nd mixer 2 converts it into a 2nd intermediate frequency signal with a signal of a 2nd local oscillator 9. A 2nd intermediate frequency filter 10' eliminates an unnecessary component from the 2nd intermediate frequency signal. This filter characteristic is a filter characteristic of a narrow band rather than a root square cosine characteristic that is demanded as a receiving band limitation characteristic and secures a necessary adjacent channel selectivity characteristic. An amplitude delay equalizer 15 corrects amplitude deviation that takes place at that time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、無線機の復調方式
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio demodulation system.

【0002】[0002]

【従来の技術】無線通信においては周波数の有効利用の
観点から狭帯域化を行い隣接チャネルへの干渉を最小限
にし、かつ伝送品質を劣化させないことが要求される。
2. Description of the Related Art In wireless communication, it is required to narrow the bandwidth to minimize interference with adjacent channels and not to degrade transmission quality from the viewpoint of effective use of frequency.

【0003】上記要求を満足させるために、ディジタル
通信方式においては帯域制限フィルタとして自乗余弦特
性がよく用いられる。(PDC、PHSシステム等は、
ロールオフ率α=0.5の自乗余弦特性が用いられてい
る。)また、最適に信号伝送を行うため、自乗余弦特性
を送受信それぞれに50%ずつ配分させ、送受それぞれ
のフィルタ特性としてルート自乗余弦特性を用いる方法
が一般的である。受信のルート自乗余弦特性のフィルタ
の実現方法として、中間周波フィルタに近似特性を持た
せる方法が構成が簡単なため良く利用されている。
In order to satisfy the above requirements, the raised cosine characteristic is often used as a band limiting filter in a digital communication system. (PDC, PHS system, etc.
A raised cosine characteristic with a roll-off rate α = 0.5 is used. Also, in order to perform optimal signal transmission, a method is generally used in which 50% of the raised cosine characteristic is distributed to each of the transmission and reception, and the root raised cosine characteristic is used as the filter characteristic of each of the transmission and reception. As a method of realizing a filter having a root-square cosine characteristic for reception, a method of giving an intermediate frequency filter an approximate characteristic is often used because of its simple configuration.

【0004】以下、ルート自乗余弦特性を持たせた中間
周波フィルタを用いた場合の復調方式についての従来技
術を、図2によって説明する。アンテナ端子1より受信
した受信信号は、共用器2を介して高周波増幅器3に入力
され増幅される。該共用器2は送信部から入力する信号
と受信信号とを分離するものである。前記増幅された受
信信号は第1のミキサ4において第1の局部発振器5の
信号により第一中間周波信号に変換される。該変換され
た第一中間周波信号は、第一中間周波フィルタ6で不要
成分の除去を行った後、AGC増幅器7で出力の信号レ
ベルが一定となるように増幅される。次にこの一定出力
になるように増幅された信号は、第2のミキサ8におい
て第2の局部発振器9の信号により第二中間周波信号に
変換される。該第二中間周波信号は、第二中間周波フィ
ルタ10で不要成分の除去、及びルート自乗余弦特性によ
る波形整形を行った後、中間周波増幅器11で増幅され
る。該中間周波増幅器11によって増幅された信号は、次
に直交検波器12において第3の局部発振器13により、同
相成分Iと直交成分Qのベースバンド信号に変換された
後、I信号成分はA/D変換器14-1で、Q成分はA/D
変換器14-2でそれぞれディジタル信号に変換される。該
ディジタル化されたI成分信号とQ成分信号とはともに
検波回路16に送られ、該検波回路16は入力された該I成
分信号とQ成分信号とからデータの再生を行う。ここで
図2における第二中間周波フィルタ10の特性が、図3に
示すような理想ルート自乗余弦特性に近い特性であれ
ば、図6(a)に示すように、必要な隣接チャネル選択度
を確保されている。しかしながら、周波数間隔が25kH
z、12.5kHz、6.25kHz、‥‥‥、と狭帯域化し
ていくに従って、上述の従来例のように中間周波フィル
タのみでルート自乗余弦特性を実現し、かつ隣接チャネ
ル選択度を確保することが難しくなっていく。
[0004] A conventional demodulation system using an intermediate frequency filter having a root-square cosine characteristic will be described below with reference to FIG. The received signal received from the antenna terminal 1 is input to the high frequency amplifier 3 via the duplexer 2 and amplified. The duplexer 2 separates a signal input from the transmission unit from a reception signal. The amplified received signal is converted into a first intermediate frequency signal by a signal of a first local oscillator 5 in a first mixer 4. The converted first intermediate frequency signal is subjected to removal of unnecessary components by the first intermediate frequency filter 6, and then amplified by the AGC amplifier 7 so that the output signal level becomes constant. Next, the signal amplified to have this constant output is converted into a second intermediate frequency signal by the signal of the second local oscillator 9 in the second mixer 8. The second intermediate frequency signal is subjected to removal of unnecessary components by a second intermediate frequency filter 10 and waveform shaping by a root-square cosine characteristic, and then amplified by an intermediate frequency amplifier 11. The signal amplified by the intermediate frequency amplifier 11 is then converted by a third local oscillator 13 in a quadrature detector 12 into a baseband signal of an in-phase component I and a quadrature component Q. In the D converter 14-1, the Q component is A / D
Each is converted into a digital signal by the converter 14-2. The digitized I component signal and Q component signal are both sent to a detection circuit 16, and the detection circuit 16 reproduces data from the input I component signal and Q component signal. If the characteristic of the second intermediate frequency filter 10 in FIG. 2 is close to the ideal root cosine characteristic as shown in FIG. 3, the necessary adjacent channel selectivity is reduced as shown in FIG. Is secured. However, the frequency spacing is 25 kHz
As the bandwidth is narrowed down to z, 12.5 kHz, 6.25 kHz, ‥‥‥, the root raised cosine characteristic is realized only by the intermediate frequency filter and the adjacent channel selectivity is secured as in the above-described conventional example. Things get harder.

【0005】図6(b)に示すように、フィルタを構成し
ている素子のQと比帯域の関係上同じ中間周波数を用い
た場合、狭帯域化を行えば行うほど急峻な減衰特性は得
られなくなる。これに相反して狭帯域化を行えば行うほ
ど隣接チャネル干渉を取り除くために急峻な減衰特性が
要求される。
As shown in FIG. 6 (b), when the same intermediate frequency is used due to the relationship between the Q of the element constituting the filter and the fractional band, the steeper the narrower the band, the steeper the attenuation characteristics. Can not be. Contrary to this, the narrower the band is narrowed, the more abrupt attenuation characteristics are required to remove adjacent channel interference.

【0006】従来方式を流用するためには、フィルタを
構成しているQを上げるか、中間周波数を高くし比帯域
の関係を有利にすればよい。しかしフィルタのQには限
界があり、また、中間周波数を高くすることは、コス
ト、小型化の面で非実用的である。
In order to divert the conventional method, the Q constituting the filter may be increased or the intermediate frequency may be increased to make the relation of the fractional band advantageous. However, there is a limit to the Q of the filter, and increasing the intermediate frequency is impractical in terms of cost and miniaturization.

【0007】さらに、中間周波フィルタの減衰特性を緩
やかにし、後段のディジタルフィルタで十分な減衰特性
を確保することも考えられるが、図7に示すように希望
波信号よりも隣接チャネルの信号レベルが高い場合、帯
域制限された後も残っている隣接チャネルの信号(妨害
波)のレベルに比べ希望波信号のレベルがかなり低いた
めに妨害波レベルにA/D変換器のダイナミックレンジ
がほとんど取られるため、十分広いダイナミックレンジ
を持ったA/D変換器が必要となり、A/D変化器が高
価になるといった問題点がある。
Further, it is conceivable to make the attenuation characteristic of the intermediate frequency filter gentle and to secure a sufficient attenuation characteristic with the digital filter in the subsequent stage. However, as shown in FIG. 7, the signal level of the adjacent channel is higher than that of the desired signal as shown in FIG. If the level is high, the level of the desired signal is much lower than the level of the signal (interfering wave) of the adjacent channel remaining after the band limitation, so that the dynamic range of the A / D converter is almost taken into the level of the interfering wave. Therefore, there is a problem that an A / D converter having a sufficiently wide dynamic range is required, and the A / D converter becomes expensive.

【0008】[0008]

【発明が解決しようとする課題】前述の従来技術には、
狭帯域化していくに連れて、以下の問題があった。
The above-mentioned prior art includes the following:
As the band becomes narrower, there are the following problems.

【0009】(1)フィルタのQの限界 (2)中間周波数を高くすることによる、コスト高と小
型化の面での非実用性 (3)広いダイナミックレンジを持つA/D変換器が必
要なことによるコスト高 本発明の目的は、上記のような欠点を除去し、安価で小
型で、かつ減衰特性の緩やかな中間周波フィルタを用い
て狭帯域化できる復調器を提供することにある。
(1) Limit of the Q of the filter (2) Impracticality in terms of cost and miniaturization by increasing the intermediate frequency (3) A / D converter having a wide dynamic range is required SUMMARY OF THE INVENTION An object of the present invention is to provide a demodulator which eliminates the above-mentioned disadvantages, and which can be narrowed by using an inexpensive and small-sized intermediate frequency filter having a moderate attenuation characteristic.

【0010】[0010]

【課題を解決するための手段】本発明は上記の目的を達
成するため、受信帯域幅(ルート自乗余弦特性の帯域
幅)よりも狭帯域の中間周波フィルタを用いて、必要な
隣接チャネル選択度を確保する。さらに中間周波フィル
タとして狭帯域フィルタを用いたことによる減衰分を、
等化器を用いることによってルート自乗余弦特性となる
よう振幅補償を行ったものである。また、同時に等化器
の補償特性に群遅延歪み補償機能も備え、一定値でない
群遅延特性を補償したものである。
In order to achieve the above object, the present invention employs an intermediate frequency filter having a band narrower than a reception bandwidth (a bandwidth of a root-square cosine characteristic) to obtain a necessary adjacent channel selectivity. To secure. Further, the attenuation due to the use of the narrow band filter as the intermediate frequency filter is:
The amplitude is compensated so as to have the root raised cosine characteristic by using the equalizer. At the same time, a compensation function of the equalizer is provided with a group delay distortion compensation function to compensate for a group delay characteristic that is not a constant value.

【0011】[0011]

【発明の実施の形態】本発明の実施例を図1で説明す
る。アンテナ端子1より受信した受信信号は、共用器2を
介して高周波増幅器3に入力される。該共用器2は送信部
から入力する信号と受信信号とを分離するためのもので
ある。前記高周波増幅器3は送られてきた信号を増幅す
る。該増幅された受信信号は第1のミキサ4に送られ、
該第1のミキサ4は入力された受信信号を第1の局部発
振器5の信号により第一中間周波信号に変換する。該第
一中間周波信号は、第一中間周波フィルタ6で不要成分
の除去を行った後、AGC増幅器7で出力信号レベルが
一定となるように増幅される。次にこの一定信号になる
ように増幅された信号は、第2のミキサ8において第2
の局部発振器9の信号により第二中間周波信号に変換さ
れる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. The received signal received from the antenna terminal 1 is input to the high-frequency amplifier 3 via the duplexer 2. The duplexer 2 separates a signal input from the transmission unit from a reception signal. The high-frequency amplifier 3 amplifies the transmitted signal. The amplified received signal is sent to the first mixer 4,
The first mixer 4 converts the input received signal into a first intermediate frequency signal based on the signal of the first local oscillator 5. The first intermediate frequency signal is subjected to removal of unnecessary components by the first intermediate frequency filter 6, and then amplified by the AGC amplifier 7 so that the output signal level becomes constant. Next, the signal amplified to be a constant signal is supplied to the second mixer 8 for the second signal.
Is converted to a second intermediate frequency signal by the signal of the local oscillator 9.

【0012】該第二中間周波信号は、第二中間周波フィ
ルタ10′で不要成分を除去される。このフィルタ特性
は、図4に示すように、受信帯域制限特性として要求さ
れるルート自乗余弦特性よりも狭帯域のフィルタ特性と
し、必要な隣接チャネル選択度特性を確保する。該第二
中間周波フィルタ10′はルート自乗余弦特性よりも狭帯
域のフィルタ特性としているため、振幅特性はルート自
乗余弦特性からずれている。また、該第二中間周波フィ
ルタ10′は狭帯域フィルタのため必要な帯域内で群遅延
特性が一定でない。このずれの補正は後述の振幅遅延等
化器15により補償され、総合特性でルート自乗余弦特性
となる。
An unnecessary component of the second intermediate frequency signal is removed by a second intermediate frequency filter 10 '. As shown in FIG. 4, the filter characteristic has a narrower band than the root-square cosine characteristic required as the reception band limiting characteristic, and secures a necessary adjacent channel selectivity characteristic. Since the second intermediate frequency filter 10 'has a narrower band filter characteristic than the root raised cosine characteristic, the amplitude characteristic deviates from the root raised cosine characteristic. In addition, the second intermediate frequency filter 10 'has a narrow group delay characteristic within a necessary band because of a narrow band filter. The correction of this deviation is compensated by an amplitude delay equalizer 15 described later, and the overall characteristic becomes a root square cosine characteristic.

【0013】前記第二中間周波フィルタ10′の出力は中
間周波増幅器11で増幅され直交検波器12に入力する。該
直交検波器12において、入力された信号は第3の局部発
振器13により、同相成分信号Iと直交成分信号Qのベー
スバンド信号に変換される。次に該同相成分信号IはA
/D変換器14-1に、直交成分信号QはA/D変換器14-2
に送られ、それぞれディジタル信号に変換される。該デ
ィジタルベースバンド信号IとQとは振幅遅延等化器15
に送られ、該振幅遅延等化器15によって振幅・群遅延歪
みの等化処理をなされ、総合特性でルート自乗余弦特性
とが確保される。その後、信号は検波回路16に入力さ
れ、該検波回路16は入力信号からデータの再生を行う。
The output of the second intermediate frequency filter 10 'is amplified by an intermediate frequency amplifier 11 and input to a quadrature detector 12. In the quadrature detector 12, the input signal is converted by a third local oscillator 13 into a baseband signal of an in-phase component signal I and a quadrature component signal Q. Next, the in-phase component signal I is A
The quadrature component signal Q is supplied to the A / D converter 14-2.
And converted into digital signals. The digital baseband signals I and Q are connected to an amplitude delay equalizer 15.
And the amplitude delay equalizer 15 equalizes the amplitude and group delay distortion to secure the root-square cosine characteristic as the overall characteristic. Thereafter, the signal is input to the detection circuit 16, and the detection circuit 16 reproduces data from the input signal.

【0014】中間周波フィルタの特性は、図4に示すよ
うに、振幅特性は、理想ルート自乗余弦フィルタよりも
狭帯域である。また図5に示すように、群遅延特性は狭
帯域したことによって必要帯域内で理想特性からずれた
特性となる。
As shown in FIG. 4, the characteristics of the intermediate frequency filter have a narrower band than that of the ideal root raised cosine filter. Further, as shown in FIG. 5, the group delay characteristic is shifted from the ideal characteristic within the required band due to the narrow band.

【0015】なお、上述の実施例では、振幅遅延等化器
15は直交復調器12の後段に配置する構成としたが、例え
ば、第二中間フィルタ10′の前段に配置し、狭帯域化さ
れる分をあらかじめ補正する等、配置はどこでもよい。
In the above embodiment, the amplitude delay equalizer is used.
Although 15 is arranged after the quadrature demodulator 12, it can be arranged anywhere, for example, before the second intermediate filter 10 'to correct the narrowed band in advance.

【0016】また、送信部と受信部とが別になっている
ものについては共用器が必要ないことは明らかである。
It is apparent that a duplexer is not required for a transmitter and a receiver separate from each other.

【0017】その結果、中間周波フィルタで十分な隣接
チャネル選択度特性を確保することが可能となり、かつ
等化器により振幅歪みと遅延歪みを補償するために、総
合の受信帯域特性がルート自乗余弦特性となり、符号間
干渉のない伝送特性を確保することが可能となる。
As a result, a sufficient adjacent channel selectivity characteristic can be ensured by the intermediate frequency filter, and the total reception band characteristic is changed to the root square cosine in order to compensate for the amplitude distortion and the delay distortion by the equalizer. Characteristics, and transmission characteristics free of intersymbol interference can be ensured.

【0018】図8は本発明の第二の実施例で、ディジタ
ル無線機の場合の構成例である。符号は図1と同一であ
るが、共用器2及びA/D変換器14-1と14-2並びに復調
器16がなく、12′は等化器であり、信号はすべてディジ
タル処理される。ここで、第一中間周波フィルタ6と第
二中間周波フィルタ10′のフィルタ特性により信号帯域
において発生する振幅・遅延歪みを、該第一中間周波フ
ィルタ6と該第二中間周波フィルタ10′のフィルタ特性
と逆特性となるフィルタ係数を等化器15′にあらかじめ
設定しておき、等化処理を行なうことにより、振幅・遅
延歪みを補償している。
FIG. 8 shows a second embodiment of the present invention, which is a configuration example in the case of a digital radio. Although the codes are the same as those in FIG. 1, there is no duplexer 2, A / D converters 14-1 and 14-2 and demodulator 16, and 12 'is an equalizer, and all signals are digitally processed. Here, the amplitude / delay distortion generated in the signal band due to the filter characteristics of the first intermediate frequency filter 6 and the second intermediate frequency filter 10 'is reduced by the filter of the first intermediate frequency filter 6 and the second intermediate frequency filter 10'. The filter coefficient having the inverse characteristic to the characteristic is set in the equalizer 15 'in advance, and the equalization processing is performed to compensate for the amplitude / delay distortion.

【0019】上述の図8の例では、アンテナ端子1より
受信される信号レベルが、フェージング等の影響を受け
るため、一定ではなく時々刻々と変化している。このた
め、第一中間周波フィルタ6の入力レベルが変動し、該
第一中間周波フィルタ6のインピーダンスマッチングの
ずれによって減衰特性が変化する。このため等化器15の
補償効果が落ち、等化C/N劣化量が大きくなってしま
っていた。
In the example shown in FIG. 8, the signal level received from the antenna terminal 1 is affected by fading or the like, and is not constant but changes every moment. Therefore, the input level of the first intermediate frequency filter 6 fluctuates, and the attenuation characteristic changes due to the deviation of the impedance matching of the first intermediate frequency filter 6. For this reason, the compensation effect of the equalizer 15 is reduced, and the amount of C / N deterioration of the equalizer is increased.

【0020】そこで図8の改善として、本発明の第三の
実施例を図9によって説明する。図9において、使用す
る符号は図8と同一である他、100はレベル検出器、110
は等化フィルタ係数ROMである。第1のミキサ4の出
力が第一中間周波フィルタ6に入力する以外に、レベル
検出器100にも入力し、該レベル検出器100の出力が等化
フィルタ係数ROM110に入力する。該等化フィルタ係
数ROM110の出力は等化器12′に入力する。図9にお
ける動作は図8と同様であるが、第1のミキサ4から出
力信号の一部を分波してレベル検出器100に入力した信
号によって、該レベル検出器100は入力した信号のレベ
ルが“Hi”か“Lo”かを判定する。次にこの結果を
等化フィルタ係数ROM110に送り、該等化フィルタ係
数ROM110では前記レベル検出器100の出力信号レベル
に対応した等化フィルタ係数を等化器15′に出力する。
該等化器15′は直交復調器12の出力信号と等化フィルタ
係数ROM110の係数により等化処理を行ない、振幅歪
みと遅延歪みを補償した復調信号を再生データとして出
力する。
Therefore, a third embodiment of the present invention will be described with reference to FIG. 9 as an improvement of FIG. In FIG. 9, reference numerals used are the same as those in FIG.
Is an equalization filter coefficient ROM. In addition to the output of the first mixer 4 being input to the first intermediate frequency filter 6, the output is also input to the level detector 100, and the output of the level detector 100 is input to the equalization filter coefficient ROM 110. The output of the equalization filter coefficient ROM 110 is input to an equalizer 12 '. The operation in FIG. 9 is the same as that in FIG. 8, except that a part of the output signal from the first mixer 4 is split and input to the level detector 100, whereby the level of the input signal is Is "Hi" or "Lo". Next, the result is sent to the equalization filter coefficient ROM 110, and the equalization filter coefficient ROM 110 outputs an equalization filter coefficient corresponding to the output signal level of the level detector 100 to the equalizer 15 '.
The equalizer 15 'performs an equalization process using the output signal of the quadrature demodulator 12 and the coefficient of the equalization filter coefficient ROM 110, and outputs a demodulated signal in which amplitude distortion and delay distortion have been compensated as reproduction data.

【0021】図10はレベル検出器100の回路図の一例
で、21はレベル検出器入力端子、22と23はダイオード、
24はコンデンサ、25は抵抗器、26は検波回路部、27はコ
ンパレータ、28は基準電圧、29はラッチ回路、30はレベ
ル検出器出力端子、31は接地である。図10において、
レベル検出器入力端子21に入力した信号は、ダイオード
22,23及びコンデンサ24並びに抵抗器25によって構成さ
れる検波回路部26によって検波され、平均入力レベルが
該検波回路部26からコンパレータ27に送られる。該コン
パレータ27では、送られてきた平均入力レベルを基準電
圧28と比較し、等化係数を高入力レベル用等化係数か低
入力レベル用等化係数かの選択信号を出力する。このコ
ンパレータ27の出力結果はラッチ回路29に入力され保持
され、レベル検出器出力端子30を介して送られる、等化
フィルタ係数ROMの高入力レベル用等化係数か低入力
レベル用等化係数かの選択信号となる。
FIG. 10 is an example of a circuit diagram of the level detector 100, in which 21 is a level detector input terminal, 22 and 23 are diodes,
24 is a capacitor, 25 is a resistor, 26 is a detection circuit section, 27 is a comparator, 28 is a reference voltage, 29 is a latch circuit, 30 is a level detector output terminal, and 31 is a ground. In FIG.
The signal input to the level detector input terminal 21 is a diode
Detection is performed by a detection circuit section 26 composed of 22, 23, a capacitor 24 and a resistor 25, and the average input level is sent from the detection circuit section 26 to a comparator 27. The comparator 27 compares the transmitted average input level with the reference voltage 28 and outputs a selection signal indicating whether the equalization coefficient is a high input level equalization coefficient or a low input level equalization coefficient. The output result of the comparator 27 is input to and held in a latch circuit 29, and is sent through a level detector output terminal 30. The high input level equalization coefficient or the low input level equalization coefficient of the equalization filter coefficient ROM is transmitted. Selection signal.

【0022】なお、上述の実施例でも、遅延等化器15′
は直交復調器12の後段に配置する構成としたが、配置は
どこでもよく、その配置に伴って、レベル検出器100と
等化フィルタ係数ROM110の配置も変わるのは自明で
ある。
Incidentally, also in the above-described embodiment, the delay equalizer 15 '
Is arranged at the subsequent stage of the quadrature demodulator 12. However, the arrangement may be arbitrary, and it is obvious that the arrangement of the level detector 100 and the equalization filter coefficient ROM 110 changes with the arrangement.

【0023】[0023]

【発明の効果】本発明により、中間周波フィルタをルー
ト自乗余弦特性などの受信帯域特性とする必要がなくな
り、狭帯域復調方式の場合でも隣接チャネル選択度を十
分確保することが可能となる。
According to the present invention, the intermediate frequency filter does not need to have a receiving band characteristic such as a root-square cosine characteristic, and it is possible to sufficiently secure adjacent channel selectivity even in the case of a narrow band demodulation method.

【0024】また本発明の第2の効果として、等化器の
補償特性に群遅延歪み補償機能も備え、一定値でない群
遅延特性を補償できる。
Further, as a second effect of the present invention, the compensation characteristic of the equalizer is provided with a group delay distortion compensation function, so that a group delay characteristic that is not a constant value can be compensated.

【0025】またさらに本発明の第三の実施例の如く、
フェージング等の影響による入力レベルの変動にも対応
した復調器を実現できる。
Further, as in a third embodiment of the present invention,
It is possible to realize a demodulator that can cope with a change in input level due to the influence of fading or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例を示すブロック図。FIG. 1 is a block diagram showing one embodiment of the present invention.

【図2】 従来技術の一実施例を示すブロック図。FIG. 2 is a block diagram showing one embodiment of the prior art.

【図3】 従来技術のフィルタ特性を示す図。FIG. 3 is a diagram showing filter characteristics according to the related art.

【図4】 本発明のフィルタ特性の一例を示す図。FIG. 4 is a diagram illustrating an example of a filter characteristic according to the present invention.

【図5】 本発明の等化器の特性の一例を示す図。FIG. 5 is a diagram showing an example of characteristics of the equalizer of the present invention.

【図6】 狭帯域化した場合の隣接チャネル選択度特性
を説明する図。
FIG. 6 is a view for explaining adjacent channel selectivity characteristics when a band is narrowed;

【図7】 希望波信号よりも隣接チャネルの妨害波レ
ベルが高い場合を説明する図。
FIG. 7 is a diagram illustrating a case where an interference wave level of an adjacent channel is higher than a desired wave signal.

【図8】 本発明の第二の実施例を示すブロック図。FIG. 8 is a block diagram showing a second embodiment of the present invention.

【図9】 本発明の第三の実施例を示すブロック図。FIG. 9 is a block diagram showing a third embodiment of the present invention.

【図10】 本発明で使用するレベル検出回路の一例を
示す回路図。
FIG. 10 is a circuit diagram showing an example of a level detection circuit used in the present invention.

【符号の説明】[Explanation of symbols]

1:アンテナ端子、 2:共用器、 3:高周波増幅器、
4:第1のミキサ、5:第1の局部発振器、 6:第一
中間周波フィルタ、 7:AGC増幅器、 8:第2のミ
キサ、 9:第2の局部発振器、 10,10′:第二中間
周波フィルタ、11:中間周波増幅器、 12:直交復調
器、 14-1:A/D変換器、 14-2:A/D変換器、
15:振幅遅延等化器、 15′:等化器、 16:検波回
路、 21:レベル検出器入力端子、 22,23:ダイオー
ド、 24:コンデンサ、 25:抵抗器、 26:検波回路
部、 27:コンパレータ、 28:基準電圧、 29:ラッ
チ回路、 30:レベル検出器出力端子、 31:接地、
100:レベル検出器1、 110:等化フィルタ係数RO
M、
1: Antenna terminal, 2: Duplexer, 3: High frequency amplifier,
4: first mixer, 5: first local oscillator, 6: first intermediate frequency filter, 7: AGC amplifier, 8: second mixer, 9: second local oscillator, 10, 10 ': second Intermediate frequency filter, 11: Intermediate frequency amplifier, 12: Quadrature demodulator, 14-1: A / D converter, 14-2: A / D converter,
15: Amplitude delay equalizer, 15 ': Equalizer, 16: Detection circuit, 21: Level detector input terminal, 22, 23: Diode, 24: Capacitor, 25: Resistor, 26: Detection circuit, 27 : Comparator, 28: Reference voltage, 29: Latch circuit, 30: Level detector output terminal, 31: Ground,
100: Level detector 1, 110: Equalization filter coefficient RO
M,

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 無線機であって、受信信号を増幅する第
1の増幅器と、該第1の増幅器によって増幅された信号
の不要成分を除去する第1の中間周波フィルタと、該第
1の中間周波フィルタによって不要周波数成分を除去さ
れた第1の中間周波信号を一定出力信号レベルに増幅す
るAGC増幅器と、該AGC増幅器によって増幅された
信号の不要成分を除去する第2の中間周波フィルタと、
該第2の中間周波フィルタによって不要周波数成分を除
去された第2の中間周波信号を増幅する第2の増幅器
と、該第2の増幅器によって増幅された信号を直交検波
する直交検波器と、該直交検波器によって直交検波され
た信号の等化処理を行なう等化手段とを有し、前記第2
の中間周波フィルタが受信帯域特性よりも狭帯域なフィ
ルタであることを特徴とする復調器。
1. A wireless device, comprising: a first amplifier for amplifying a received signal; a first intermediate frequency filter for removing unnecessary components of a signal amplified by the first amplifier; An AGC amplifier for amplifying the first intermediate frequency signal from which unnecessary frequency components have been removed by the intermediate frequency filter to a constant output signal level, and a second intermediate frequency filter for removing unnecessary components of the signal amplified by the AGC amplifier; ,
A second amplifier for amplifying a second intermediate frequency signal from which unnecessary frequency components have been removed by the second intermediate frequency filter, a quadrature detector for quadrature detecting the signal amplified by the second amplifier, An equalizing means for performing an equalization process on a signal orthogonally detected by the quadrature detector;
Wherein the intermediate frequency filter is a filter having a band narrower than a reception band characteristic.
【請求項2】 請求項1記載の発明において、前記等化
器は遅延歪みを補正する等化機能を設けたことを特徴と
する復調器。
2. The demodulator according to claim 1, wherein said equalizer has an equalizing function for correcting delay distortion.
【請求項3】 請求項2記載の発明において、総合特性
で最適受信帯域、または受信に要求される帯域制限特性
となるようにしたことを特徴とする復調器。
3. The demodulator according to claim 2, wherein the overall characteristic is an optimum reception band or a band restriction characteristic required for reception.
【請求項4】 請求項2記載の発明において、入力信号
のレベルを検出する手段と、該入力レベルに対応した等
化係数を記憶する手段とを有し、入力レベルに応じて等
化係数を変化させることを特徴とする復調器。
4. An apparatus according to claim 2, further comprising means for detecting a level of the input signal, and means for storing an equalization coefficient corresponding to the input level, wherein the equalization coefficient is stored in accordance with the input level. A demodulator characterized by changing.
【請求項5】 請求項4記載の発明において、半波整流
回路と、コンパレータ回路と、ラッチ回路とを有し、入
力レベルに応じて等化係数を変化させることを特徴とす
る復調器。
5. The demodulator according to claim 4, further comprising a half-wave rectifier circuit, a comparator circuit, and a latch circuit, wherein the equalizer coefficient is changed according to an input level.
【請求項6】 請求項4記載の発明において、前記等化
係数を記憶する手段は、前記入力信号のレベルを検出す
る手段の出力信号により入力信号のレベルに対応した等
化フィルタ係数を出力し、前記等化係数を変化させるこ
とを特徴とする復調器。
6. The invention according to claim 4, wherein the means for storing the equalization coefficient outputs an equalization filter coefficient corresponding to the level of the input signal based on an output signal of the means for detecting the level of the input signal. A demodulator characterized by changing the equalization coefficient.
JP149798A 1998-01-07 1998-01-07 Demoduiator Pending JPH11205204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP149798A JPH11205204A (en) 1998-01-07 1998-01-07 Demoduiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP149798A JPH11205204A (en) 1998-01-07 1998-01-07 Demoduiator

Publications (1)

Publication Number Publication Date
JPH11205204A true JPH11205204A (en) 1999-07-30

Family

ID=11503107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP149798A Pending JPH11205204A (en) 1998-01-07 1998-01-07 Demoduiator

Country Status (1)

Country Link
JP (1) JPH11205204A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002091612A1 (en) * 2001-05-01 2002-11-14 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for eliminating distortion
JP2008521357A (en) * 2004-11-19 2008-06-19 クゥアルコム・インコーポレイテッド Filter and adjustable delay unit for narrowband noise reduction
JP2014204218A (en) * 2013-04-03 2014-10-27 日本電信電話株式会社 Base station system, base station communication method, and baseband unit
CN114785657A (en) * 2021-01-22 2022-07-22 东芝泰格有限公司 Communication apparatus and communication method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002091612A1 (en) * 2001-05-01 2002-11-14 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for eliminating distortion
JP2008521357A (en) * 2004-11-19 2008-06-19 クゥアルコム・インコーポレイテッド Filter and adjustable delay unit for narrowband noise reduction
JP2011250427A (en) * 2004-11-19 2011-12-08 Qualcomm Incorporated Filter for narrowband noise reduction and adjustable delay unit
US8243864B2 (en) 2004-11-19 2012-08-14 Qualcomm, Incorporated Noise reduction filtering in a wireless communication system
JP2014204218A (en) * 2013-04-03 2014-10-27 日本電信電話株式会社 Base station system, base station communication method, and baseband unit
CN114785657A (en) * 2021-01-22 2022-07-22 东芝泰格有限公司 Communication apparatus and communication method

Similar Documents

Publication Publication Date Title
US7957713B2 (en) Method for calibrating automatic gain control in wireless devices
JP3180682B2 (en) Receiving machine
JP3744546B2 (en) Variable of sampled signal C. Method and apparatus for compensating offset
US20090137212A1 (en) Non-Linear Signal Distortion Detection Using Multiple Signal to Noise Ratio Measurement Sources
US6965658B1 (en) Method and means for telecommunication
JPH11234150A (en) Digital demodulator
JP3216597B2 (en) Direct conversion receiver
JP2001268145A (en) Amplitude deviation correcting circuit
US20020136190A1 (en) Band-division demodulation method and OFDM receiver
JPH06204907A (en) Digital radio receiver
JPH11205204A (en) Demoduiator
JP2005160082A (en) Apparatus and method for enhancing reception rate of receiver provided with automatic gain control (agc) system
JPH1041992A (en) Quasi-synchronization detection demodulator
JPH08204605A (en) Radio equipment and method of using the radio equipment
JP2004080455A (en) Reception circuit and wireless communication apparatus using same
EP1145451B1 (en) Improvements in or relating to polyphase receivers
WO2007032550A1 (en) Reception amplitude correction circuit, reception amplitude correction method, and receiver using the same
JP3522725B2 (en) Quadrature demodulator and quadrature demodulation method
JP3449164B2 (en) Receiver
US20080253485A1 (en) Broadcast receiving apparatus and method for receiving broadcast signal
JPH09294146A (en) Automatic gain control circuit
JP3248179B2 (en) Wireless receiver
KR100577264B1 (en) Apparatus of automatic gain controller in receiving system
JPH1041840A (en) Receiver
JP2000174677A (en) Decoding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060217

A131 Notification of reasons for refusal

Effective date: 20060227

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

A02 Decision of refusal

Effective date: 20070130

Free format text: JAPANESE INTERMEDIATE CODE: A02