JPH11204424A - Aligner - Google Patents

Aligner

Info

Publication number
JPH11204424A
JPH11204424A JP10017680A JP1768098A JPH11204424A JP H11204424 A JPH11204424 A JP H11204424A JP 10017680 A JP10017680 A JP 10017680A JP 1768098 A JP1768098 A JP 1768098A JP H11204424 A JPH11204424 A JP H11204424A
Authority
JP
Japan
Prior art keywords
light
exposure
amount
gain
light quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10017680A
Other languages
Japanese (ja)
Inventor
Akira Yabuki
晃 矢吹
Katsutoshi Natsubori
勝利 夏堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10017680A priority Critical patent/JPH11204424A/en
Publication of JPH11204424A publication Critical patent/JPH11204424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize improvement in exposure accuracy in an aligner, by causing control means to carry out light exposure control by switching the gain of first light quantity measuring means to an optimum value in accordance with the quantity of incident light on the first light quantity measuring means. SOLUTION: A laser light source 1 is caused to oscillate a plurality of pulses with constant energy, and a light exposure is measured indirectly and directly by an optical measuring instrument 4 which is first light quantity measuring means, and a light exposure measuring instrument 10 which is second light quantity measuring means. From the result of measurement, an optimum gain in accordance with the transmittance and light condition of light quantity adjustment means 2 is selected and stored into a storage 12 in accordance with the light exposure of a wafer. In carrying out the exposure operation, control means 14 carries out light exposure control by immediately switching the gain of the optical measuring instrument 4 in accordance with the transmittance and lighting condition of the light quantity adjustment means 2. Thus, the S/N is improved and desired light exposure control accuracy can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、LSI等の半導体
デバイスや液晶基板の製造に用いられる露光装置に関す
るものであり、特に、露光量制御のために露光量を計測
する機能を有する露光装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus used for manufacturing semiconductor devices such as LSIs and liquid crystal substrates, and more particularly to an exposure apparatus having a function of measuring an exposure amount for controlling an exposure amount. Things.

【0002】[0002]

【従来の技術】半導体デバイス製造において、縮小投影
露光装置(以下、ステッパという)では、レチクル上の
回路パターンを縮小投影してウエハ上に転写している。
多く用いられている露光方式は、1回の露光が終了する
ごとにウエハを移動しながら他の領域を露光し、このよ
うな露光を順次複数回繰り返すことにより、ウエハ面全
体にパターン像を形成していくステップアンドリピート
方式である。
2. Description of the Related Art In the manufacture of semiconductor devices, a reduction projection exposure apparatus (hereinafter, referred to as a stepper) reduces a circuit pattern on a reticle and projects it onto a wafer.
A commonly used exposure method forms a pattern image on the entire wafer surface by exposing another area while moving the wafer each time one exposure is completed, and repeating such exposure sequentially plural times. This is a step-and-repeat method.

【0003】ウエハ面上に転写されるパターンの像質は
照明装置の性能、例えば被照射面上の照射光の量(露光
量)やその変動等に大きく影響される。そこで、被照射
面上の照射光量が所定値となるように制御を行なう露光
装置が提案されている。例えば、特開平4−48714
号公報では、入射光束を2つの光束に振幅分割し、その
うち一方の光束を被照射面(レチクル)側に、他方の光
束を光検出器に導光するビームスプリッタ(光分割部
材)を、光源と被照射面との間の光路中に配置し、その
ビームスプリッタを介した光束を光検出器で検出するこ
とにより、被照射面上への照射光量、すなわち、ウエハ
面上への露光量を制御するようにした露光装置が提案さ
れている。
[0003] The image quality of a pattern transferred onto a wafer surface is greatly affected by the performance of an illuminating device, for example, the amount of exposure light (exposure amount) on a surface to be irradiated and its fluctuation. Therefore, there has been proposed an exposure apparatus which performs control so that the irradiation light amount on a surface to be irradiated becomes a predetermined value. For example, Japanese Patent Application Laid-Open No. 4-48714
In the publication, an incident light beam is amplitude-divided into two light beams, and a beam splitter (light splitting member) that guides one of the light beams to a surface to be irradiated (reticle) and the other light beam to a photodetector is a light source. And in the optical path between the surface to be irradiated and the light beam passing through the beam splitter with a photodetector, the amount of irradiation on the surface to be irradiated, that is, the amount of exposure on the wafer surface There has been proposed an exposure apparatus which is controlled.

【0004】一方、近年、ステッパの生産性向上のた
め、ウエハ面上に塗布するレジストの高感度化が進展し
ている。パルス光による露光の場合、1パルス当たりの
エネルギーがばらつくことから、露光むらと露光量精度
を保証するために少なくても数十パルスを照射して1回
の露光を行なっている。よって、高感度のレジストに対
応するために、少ない露光量で露光したい場合は、パル
ス当たりの露光量を減らす必要がある。それには、レー
ザ出力を下げるか、または、光量調整手段により露光光
を減光する方法がある。露光光が連続光の場合でも、同
様の理由により光量調整手段により光量を減少させたい
場合がある。
On the other hand, in recent years, in order to improve the productivity of a stepper, the sensitivity of a resist applied on a wafer surface has been increased. In the case of exposure using pulsed light, since energy per pulse varies, one exposure is performed by irradiating at least several tens of pulses in order to assure exposure unevenness and exposure accuracy. Therefore, if it is desired to perform exposure with a small exposure amount in order to correspond to a highly sensitive resist, it is necessary to reduce the exposure amount per pulse. For this purpose, there is a method of lowering the laser output or reducing the exposure light by the light amount adjusting means. Even when the exposure light is continuous light, there is a case where it is desired to reduce the light amount by the light amount adjusting means for the same reason.

【0005】[0005]

【発明が解決しようとする課題】露光量をモニタするた
めの光計測器は、光検出器と、固有のゲインを持つ増幅
器で構成される。通常、この光計測器は、固定のゲイン
を1段階しか持っていない。ゲインが1段階では、光検
出器への入射光量が低下した場合、SN比が悪化して計
測精度が低下するので、所望の露光量制御精度が得られ
ない問題がある。被照射面上の照射光の量(露光量)を
直接計測する露光量計測器でも同様な問題を有する。
An optical measuring instrument for monitoring an exposure amount comprises a photodetector and an amplifier having a specific gain. Usually, this optical measuring instrument has only one fixed gain. When the gain is one step, when the amount of light incident on the photodetector decreases, the SN ratio deteriorates and the measurement accuracy decreases, so that there is a problem that desired exposure amount control accuracy cannot be obtained. An exposure meter that directly measures the amount of exposure light (exposure) on the surface to be irradiated has the same problem.

【0006】本発明は、上述の従来例における問題点に
鑑みてなされたもので、露光装置における露光精度を向
上させることを目的とする。
The present invention has been made in view of the above-mentioned problems in the conventional example, and has as its object to improve exposure accuracy in an exposure apparatus.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め本発明では、照明光を発生する光源と、被照射体への
照射光量を調整する光量調整手段および前記照明光より
複数の2次光源を形成する2次光源形成手段の少なくと
も一方と、被照射体面上への照射光量を間接的に計測す
る第1の光量計測手段と、被照射体面上の照射光量を直
接計測する第2の光量計測手段と、計測結果の演算を行
なう演算手段と、計測および演算結果を記憶する記憶手
段と、前記各手段の動作を制御する制御手段とを有する
露光装置において、前記第1の光量計測手段は異なる複
数のゲインを持つ増幅器を有し、前記制御手段は前記第
1の光量計測手段への入射光量に応じて前記第1の光量
計測手段のゲインを最適値に切り換えて露光量制御を行
なうことを特徴とする。
According to the present invention, there is provided a light source for generating illumination light, a light amount adjusting means for adjusting the amount of light applied to an object to be illuminated, and a plurality of secondary light sources provided by the illumination light. At least one of a secondary light source forming unit for forming a light source, a first light amount measuring unit for indirectly measuring the irradiation light amount on the surface of the irradiation target, and a second light measuring unit for directly measuring the irradiation light amount on the surface of the irradiation target An exposure apparatus comprising: a light amount measurement unit; a calculation unit configured to calculate a measurement result; a storage unit configured to store measurement and calculation results; and a control unit configured to control an operation of each of the units. Has an amplifier having a plurality of different gains, and the control means switches the gain of the first light quantity measuring means to an optimum value in accordance with the quantity of light incident on the first light quantity measuring means to perform the exposure amount control. It is characterized by That.

【0008】[0008]

【発明の実施の形態】本発明の実施の一形態に係る露光
装置は、ウエハ面上の露光量を間接的にあるいは直接、
モニタするための光計測器が複数段階のゲインを有し、
光検出器への入射光量に応じてゲインを切り換えること
を特徴としている。上述の手段をとることにより、露光
量計測において、少ない露光量でも大きな信号振幅が得
られ、SN比の向上を図ることができる。よって、高精
度な露光量制御が可能となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An exposure apparatus according to an embodiment of the present invention provides an exposure amount on a wafer surface indirectly or directly.
An optical measuring instrument for monitoring has a multi-stage gain,
The gain is switched in accordance with the amount of light incident on the photodetector. By using the above-described means, in the exposure amount measurement, a large signal amplitude can be obtained even with a small exposure amount, and the SN ratio can be improved. Therefore, highly accurate exposure amount control becomes possible.

【0009】ところで、増幅器のゲインは回路を構成す
る電子部品の定数のばらつき等が原因で、設計値と実際
の値には差が生じる。また、回路個体差によるばらつき
もある。これらは、光計測器がゲインを数段階持った場
合は、ゲインを切り換えた境目で露光量の連続性がなく
なり、露光量制御精度を劣化させる原因になる。
By the way, the gain of the amplifier has a difference between the design value and the actual value due to variations in the constants of the electronic components constituting the circuit. There is also variation due to individual circuit differences. In the case where the optical measuring instrument has several gains, the continuity of the exposure amount is lost at the boundary where the gain is switched, which causes deterioration of the exposure amount control accuracy.

【0010】このような問題点を解消するため、本発明
の実施の他の形態に係る露光装置は、ウエハ面上の露光
量を間接的にあるいは直接、モニタするための光計測器
が複数段階のゲインを有し、予め、実際のゲインを計測
し、露光量計測時にはその計測結果を基に各設計ゲイン
値を演算により補正することを特徴としている。上述の
手段をとることにより、光計測器のゲインを切り換えて
も露光量計測の連続性を維持できる。よって、高精度な
露光量制御が可能となる。
In order to solve such a problem, an exposure apparatus according to another embodiment of the present invention comprises an optical measuring device for monitoring an exposure amount on a wafer surface indirectly or directly in a plurality of stages. The actual gain is measured in advance, and at the time of measuring the exposure amount, each design gain value is corrected by calculation based on the measurement result. By taking the above-described means, the continuity of the exposure measurement can be maintained even when the gain of the optical measuring device is switched. Therefore, highly accurate exposure amount control becomes possible.

【0011】[0011]

【実施例】以下に、本発明の実施例を図に基づいて説明
する。図1は、本発明の一実施例に係る半導体露光装置
の概略図である。同図において、光源1は、パルス光を
発するレーザ光源でも、連続光を発する水銀ランプでも
良い。光源1は光源制御手段15により、光量などを制
御される。光源より発せられた光は、光量調整手段2に
より、任意の光量に減光される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view of a semiconductor exposure apparatus according to one embodiment of the present invention. In FIG. 1, a light source 1 may be a laser light source that emits pulsed light or a mercury lamp that emits continuous light. The light source 1 is controlled in light amount and the like by a light source control unit 15. The light emitted from the light source is reduced by the light amount adjusting means 2 to an arbitrary light amount.

【0012】光計測器(第1の光量計測手段)4は光検
出器41、ゲイン切り換え手段42および増幅器43で
構成される。光検出器41は、ビームスプリッタ3を通
過した光束を検出し、後述するウエハ7面上への露光量
を間接的に検出している。
An optical measuring instrument (first light quantity measuring means) 4 comprises a photodetector 41, a gain switching means 42 and an amplifier 43. The photodetector 41 detects a light beam that has passed through the beam splitter 3 and indirectly detects an exposure amount on the surface of the wafer 7 described later.

【0013】6は投影光学系であり、レチクル5面上の
回路パターンをウエハチャック8に搭載されたウエハ
(基板)7面上に縮小投影している。9はウエハステー
ジである。10は露光量計測器(第2の光量計測手段)
であり、その受光面がウエハ7とほぼ同一平面上になる
ように設置され、ウエハ7面上における露光量を検出す
る。
Reference numeral 6 denotes a projection optical system which projects a circuit pattern on the reticle 5 on a wafer (substrate) 7 mounted on a wafer chuck 8 in a reduced size. 9 is a wafer stage. 10 is an exposure amount measuring device (second light amount measuring means)
The light receiving surface is set so as to be substantially coplanar with the wafer 7, and the exposure amount on the surface of the wafer 7 is detected.

【0014】43は増幅器であり、光検出器41の出力
信号を増幅し演算手段11に入力する。増幅器43はゲ
インの異なるものを任意の数だけ準備する。ここで、各
増幅器のゲインはそれぞれ、K0、K1、K2、...
Knとする。42は、増幅器(ゲイン)切り換え手段で
あり、制御手段14からの命令により、指定されたゲイ
ンに切り換えを行なう。
Reference numeral 43 denotes an amplifier, which amplifies the output signal of the photodetector 41 and inputs the amplified signal to the arithmetic means 11. The amplifier 43 prepares an arbitrary number of amplifiers having different gains. Here, the gain of each amplifier is K0, K1, K2,. . .
Kn. Reference numeral 42 denotes an amplifier (gain) switching means for switching to a designated gain in accordance with a command from the control means 14.

【0015】制御手段14は、各手段の制御を行なう。
記憶手段12は、計測および演算結果や制御手段14か
ら各手段への命令内容などを記憶しておく。入出力手段
13は、制御手段14と他の手段との情報のやりとりを
出力したり、オペレータが、必要な情報を制御手段14
に入力するためのものである。
The control means 14 controls each means.
The storage unit 12 stores measurement and calculation results, instruction contents from the control unit 14 to each unit, and the like. The input / output means 13 outputs information exchange between the control means 14 and other means, and the operator inputs necessary information to the control means 14.
It is for input to.

【0016】次に本実施例の制御手段14により、ウエ
ハ7面上への露光量を制御する方法について説明する。
但し、本発明は、上述したように露光光がパルス光、連
続光どちらでも適応可能であるが、ここでは、説明を簡
略化するためパルス光の場合を例に挙げて説明する。ま
た、本発明は、被照射面上の照射光の積算量(露光量)
を間接的に計測する光計測器4だけでなく、直接計測を
する露光量計測器にも適用可能である。しかし、ここで
は、前者の場合を例に挙げて説明する。
Next, a method of controlling the amount of exposure on the surface of the wafer 7 by the control means 14 of this embodiment will be described.
However, in the present invention, as described above, the exposure light can be applied to both pulsed light and continuous light, but here, the case of pulsed light will be described as an example to simplify the description. Further, the present invention provides an integrated amount (exposure amount) of irradiation light on an irradiation surface.
The present invention can be applied not only to the optical measuring device 4 for measuring indirectly, but also to the exposure measuring device for directly measuring. However, here, the former case will be described as an example.

【0017】まず、露光量に応じて光計測器4のゲイン
を最適なゲインに切り換え、光量が低下した場合でも、
高い露光量精度を維持する方法について説明する。 (1)一定エネルギーでレーザ(光源1)を複数パルス
発振させて、光計測器4および露光量計測器10にて間
接および直接的に露光量を計測する。但し、光計測器4
の増幅器43のゲインは基準ゲイン(K0)とする。計
測は光量調整手段2の透過率や照明条件を変えながら、
同一パルス数にて複数回数行なう。計測結果の平均値を
算出して、図2に示すようなウエハ上の露光量と光計測
器4の出力信号の関係を求める。
First, the gain of the optical measuring device 4 is switched to an optimum gain in accordance with the exposure amount, and even when the light amount decreases,
A method for maintaining high exposure dose accuracy will be described. (1) The laser (light source 1) is caused to oscillate a plurality of pulses at a constant energy, and the optical measuring device 4 and the exposure measuring device 10 measure the exposure indirectly and directly. However, optical measuring device 4
The gain of the amplifier 43 is the reference gain (K0). The measurement is performed while changing the transmittance and the illumination conditions of the light amount adjusting means 2.
Performed several times with the same number of pulses. An average value of the measurement results is calculated, and the relationship between the exposure amount on the wafer and the output signal of the optical measurement device 4 as shown in FIG.

【0018】上述のウエハ上の露光量と光計測器4の出
力信号の関係(図2)は、複数パルスを発振させて計測
し、なおかつ、複数回計測した結果の平均値より求めて
いる。よって、レーザ1パルス当たりのエネルギーばら
つきによる計測誤差は十分小さいと言える。
The relationship between the amount of exposure on the wafer and the output signal of the optical measuring device 4 (FIG. 2) is measured by oscillating a plurality of pulses, and is obtained from an average value of the results of a plurality of measurements. Therefore, it can be said that the measurement error due to energy variation per laser pulse is sufficiently small.

【0019】また、計測時間を短くするために、装置に
組み込む前に、予め、光量調整手段2の透過率を計測し
ておき、入出力手段13によりその計測値を入力し、制
御手段14により図2の関係を計算により求めても良
い。
Further, in order to shorten the measurement time, the transmittance of the light amount adjusting means 2 is measured in advance before being incorporated in the apparatus, the measured value is inputted by the input / output means 13, and the control means 14 The relationship in FIG. 2 may be obtained by calculation.

【0020】(2)(1)の結果より、ウエハ露光量に
応じて、最適なゲインを選択する。ウエハ露光量が小さ
い場合には大きなゲインを選択し、大きい場合には小さ
なゲインを選択する。これにより、少ない露光量でも大
きな信号振幅が得られ、SN比の向上が図れる。
(2) From the result of (1), an optimum gain is selected according to the exposure amount of the wafer. When the wafer exposure amount is small, a large gain is selected, and when it is large, a small gain is selected. As a result, a large signal amplitude can be obtained even with a small exposure amount, and the SN ratio can be improved.

【0021】(3)(2)で計測した光量調整手段2の
透過率や照明条件に応じた最適ゲインを記憶装置12に
記憶をしておく。
(3) The optimal gain according to the transmittance of the light amount adjusting means 2 and the illumination conditions measured in (2) is stored in the storage device 12.

【0022】(4)露光動作を実行する際には、制御手
段14は、光量調整手段2の透過率や照明条件に応じて
即座に光計測器4のゲインを切り換え、露光量制御を行
なう。
(4) When executing the exposure operation, the control means 14 immediately switches the gain of the optical measuring device 4 in accordance with the transmittance of the light amount adjusting means 2 and the illumination conditions, and controls the exposure amount.

【0023】次に光計測器4のゲイン補正方法について
説明する。 (1)一定エネルギーでレーザ(光源1)を複数パルス
発振させて、光計測器4および露光量計測器10にて間
接および直接的に露光量を計測する。計測は光量調整手
段2の透過率、照明条件に応じて光計測器4のゲインを
切り換えて同一パルス数にて複数回数行なう。計測結果
の平均値を算出して、図2に示すようなウエハ上の露光
量と光計測器4の出力信号の関係を求める。
Next, a method of correcting the gain of the optical measuring device 4 will be described. (1) The laser (light source 1) is caused to oscillate a plurality of pulses at a constant energy, and the optical measuring device 4 and the exposure measuring device 10 measure the exposure indirectly and directly. The measurement is performed a plurality of times with the same number of pulses by switching the gain of the optical measuring device 4 according to the transmittance of the light amount adjusting means 2 and the illumination conditions. An average value of the measurement results is calculated, and the relationship between the exposure amount on the wafer and the output signal of the optical measurement device 4 as shown in FIG.

【0024】(2)計測結果(図2)より、演算手段1
4により正確なゲイン(直線の傾き)を算出し、記憶装
置12に記憶をしておく。
(2) From the measurement results (FIG. 2),
4, an accurate gain (inclination of a straight line) is calculated and stored in the storage device 12.

【0025】(3)露光動作の際には、制御手段14は
その結果を用いて光計測器4の計測値の補正をして、露
光量制御を行なう(実測したゲイン値によって、設計ゲ
イン値に対して補正をする)。
(3) At the time of the exposure operation, the control means 14 corrects the measurement value of the optical measuring device 4 using the result and controls the exposure amount (the design gain value is determined by the actually measured gain value). Is corrected for).

【0026】また、光計測器4のゲイン計測は、装置に
組み込む前に光計測器4単体で行ない、計測したゲイン
値を入出力手段13により入力してもよい。
Further, the gain measurement of the optical measuring device 4 may be performed by the optical measuring device 4 alone before being incorporated into the apparatus, and the measured gain value may be input by the input / output means 13.

【0027】上述の方法によって光計測器4のゲインを
補正することにより、光計測器4のゲインを切り換えて
も露光量計測の連続性を維持できる。
By correcting the gain of the optical measuring device 4 by the above-described method, the continuity of the exposure measurement can be maintained even when the gain of the optical measuring device 4 is switched.

【0028】なお、本発明においては、NDフィルタ等
を用いる光量調整手段2の代わりに、または光量調整手
段2に加えて、ハエの目レンズやコンデンサレンズなど
を用いた2次光源形成手段を用いることもできる。その
場合、光量調整は2次光源形成手段の照明条件を変化さ
せることによっても行なうことができる。
In the present invention, a secondary light source forming means using a fly-eye lens or a condenser lens is used instead of or in addition to the light quantity adjusting means 2 using an ND filter or the like. You can also. In this case, the light amount can be adjusted by changing the illumination condition of the secondary light source forming unit.

【0029】[0029]

【デバイス生産方法の実施例】次に上記説明した露光装
置を利用したデバイスの生産方法の実施例を説明する。
図3は微小デバイス(ICやLSI等の半導体チップ、
液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン
等)の製造のフローを示す。ステップ1(回路設計)で
はデバイスのパターン設計を行なう。ステップ2(マス
ク製作)では設計したパターンを形成したマスクを製作
する。一方、ステップ3(ウエハ製造)ではシリコンや
ガラス等の材料を用いてウエハを製造する。ステップ4
(ウエハプロセス)は前工程と呼ばれ、上記用意したマ
スクとウエハを用いて、リソグラフィ技術によってウエ
ハ上に実際の回路を形成する。次のステップ5(組み立
て)は後工程と呼ばれ、ステップ4によって作製された
ウエハを用いて半導体チップ化する工程であり、アッセ
ンブリ工程(ダイシング、ボンディング)、パッケージ
ング工程(チップ封入)等の工程を含む。ステップ6
(検査)ではステップ5で作製された半導体デバイスの
動作確認テスト、耐久性テスト等の検査を行なう。こう
した工程を経て半導体デバイスが完成し、これが出荷
(ステップ7)される。
Next, an embodiment of a device production method using the above-described exposure apparatus will be described.
FIG. 3 shows a micro device (a semiconductor chip such as an IC or an LSI,
2 shows a flow of manufacturing a liquid crystal panel, a CCD, a thin-film magnetic head, a micromachine, and the like. In step 1 (circuit design), a device pattern is designed. Step 2 is a process for making a mask on the basis of the designed pattern. On the other hand, in step 3 (wafer manufacture), a wafer is manufactured using a material such as silicon or glass. Step 4
The (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by lithography using the prepared mask and wafer. The next step 5 (assembly) is called a post-process, and is a process of forming a semiconductor chip using the wafer produced in step 4, and includes processes such as an assembly process (dicing and bonding) and a packaging process (chip encapsulation). including. Step 6
In (inspection), inspections such as an operation confirmation test and a durability test of the semiconductor device manufactured in step 5 are performed. Through these steps, a semiconductor device is completed and shipped (step 7).

【0030】図4は上記ウエハプロセスの詳細なフロー
を示す。ステップ11(酸化)ではウエハの表面を酸化
させる。ステップ12(CVD)ではウエハ表面に絶縁
膜を形成する。ステップ13(電極形成)ではウエハ上
に電極を蒸着によって形成する。ステップ14(イオン
打込み)ではウエハにイオンを打ち込む。ステップ15
(レジスト処理)ではウエハに感光剤を塗布する。ステ
ップ16(露光)では上記説明した露光量制御装置を有
する露光装置によってマスクの回路パターンをウエハに
焼付露光する。ステップ17(現像)では露光したウエ
ハを現像する。ステップ18(エッチング)では現像し
たレジスト像以外の部分を削り取る。ステップ19(レ
ジスト剥離)ではエッチングが済んで不要となったレジ
ストを取り除く。これらのステップを繰り返し行なうこ
とによって、ウエハ上に多重に回路パターンが形成され
る。
FIG. 4 shows a detailed flow of the wafer process. Step 11 (oxidation) oxidizes the wafer's surface. Step 12 (CVD) forms an insulating film on the wafer surface. Step 13 (electrode formation) forms electrodes on the wafer by vapor deposition. In step 14 (ion implantation), ions are implanted into the wafer. Step 15
In (resist processing), a photosensitive agent is applied to the wafer. In step 16 (exposure), the circuit pattern on the mask is printed onto the wafer by exposure using the exposure apparatus having the above-described exposure control apparatus. Step 17 (development) develops the exposed wafer. In step 18 (etching), portions other than the developed resist image are removed. In step 19 (resist stripping), unnecessary resist after etching is removed. By repeating these steps, multiple circuit patterns are formed on the wafer.

【0031】本実施例の生産方法を用いれば、従来は製
造が難しかった高集積度のデバイスを低コストに製造す
ることができる。
By using the production method of this embodiment, it is possible to produce a highly integrated device at a low cost, which was conventionally difficult to produce.

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
光計測器への入射光量に応じて増幅器のゲインを切り換
えるので、露光量が小さい場合でも大きな信号振幅を得
ることが可能であり、SN比の向上を図ることができ
る。また、予め実際の光計測器のゲインを計測し、各ゲ
イン値を演算により補正すれば、ゲインを切り換えても
露光量計測の連続性を維持できる。
As described above, according to the present invention,
Since the gain of the amplifier is switched according to the amount of light incident on the optical measuring instrument, a large signal amplitude can be obtained even when the exposure amount is small, and the SN ratio can be improved. Further, if the gain of the actual optical measuring instrument is measured in advance and each gain value is corrected by calculation, the continuity of the exposure measurement can be maintained even when the gain is switched.

【0033】したがって、本発明によれば、従来から存
在している機能に僅かな機能追加を施すのみで、露光量
計測精度を向上させることが可能であり、しいては高精
度な露光量制御を実現できる。
Therefore, according to the present invention, it is possible to improve the exposure amount measurement accuracy by adding only a small amount of functions to the existing functions, thereby achieving high-precision exposure amount control. Can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例に係る半導体露光装置の構
成概略を説明する図である。
FIG. 1 is a diagram illustrating a schematic configuration of a semiconductor exposure apparatus according to an embodiment of the present invention.

【図2】 半導体露光装置において、ウエハ露光量と光
計測器の出力信号の関係を示したグラフである。
FIG. 2 is a graph showing a relationship between a wafer exposure amount and an output signal of an optical measuring instrument in a semiconductor exposure apparatus.

【図3】 微小デバイスの製造の流れを示す図である。FIG. 3 is a diagram showing a flow of manufacturing a micro device.

【図4】 図3におけるウエハプロセスの詳細な流れを
示す図である。
FIG. 4 is a diagram showing a detailed flow of a wafer process in FIG. 3;

【符号の説明】[Explanation of symbols]

1:光源、2:光量調整手段、3:ビームスプリッタ、
4:光計測器、41:増幅器、42:ゲイン切り換え手
段、43:増幅器、5:レチクル、6:投影光学系、
7:ウエハ、8:ウエハチャック、9:ウエハステー
ジ、10:露光量計測器、11:演算手段、12:記憶
手段、13:入出力手段、14:制御手段、15:光源
制御手段。
1: light source, 2: light intensity adjusting means, 3: beam splitter,
4: optical measuring instrument, 41: amplifier, 42: gain switching means, 43: amplifier, 5: reticle, 6: projection optical system,
7: Wafer, 8: Wafer chuck, 9: Wafer stage, 10: Exposure amount measuring instrument, 11: Operation means, 12: Storage means, 13: Input / output means, 14: Control means, 15: Light source control means.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 照明光を発生する光源と、被照射体への
照射光量を調整する光量調整手段および前記照明光より
複数の2次光源を形成する2次光源形成手段の少なくと
も一方と、被照射体面上への照射光量を間接的に計測す
る第1の光量計測手段と、被照射体面上の照射光量を直
接計測する第2の光量計測手段と、計測結果の演算を行
なう演算手段と、計測および演算結果を記憶する記憶手
段と、前記各手段の動作を制御する制御手段とを有する
露光装置において、前記第1の光量計測手段は異なる複
数のゲインを持つ増幅器を有し、前記制御手段は前記第
1の光量計測手段への入射光量に応じて前記第1の光量
計測手段のゲインを最適値に切り換えて露光量制御を行
なうことを特徴とする露光装置。
1. A light source for generating illumination light, at least one of a light amount adjusting means for adjusting an irradiation light amount to an object to be irradiated and a secondary light source forming means for forming a plurality of secondary light sources from the illumination light, First light quantity measuring means for indirectly measuring the irradiation light quantity on the irradiated body surface, second light quantity measuring means for directly measuring the irradiation light quantity on the irradiated body surface, and arithmetic means for calculating the measurement result; In an exposure apparatus having storage means for storing measurement and calculation results and control means for controlling the operation of each means, the first light quantity measurement means has an amplifier having a plurality of different gains, and the control means An exposure apparatus for controlling an exposure amount by switching a gain of said first light amount measuring means to an optimum value in accordance with an amount of incident light on said first light amount measuring means.
【請求項2】 前記制御手段は、予め前記光量調整手段
および/または2次光源形成手段の設定状況を変化させ
ながら、前記各光量計測手段に前記被照射体面上の照射
光量を複数回計測させ、その計測結果に基づき照射光量
に対する前記第1の光量計測手段の最適なゲインおよび
各ゲイン補正値を前記演算手段に算出させ、それらの情
報を前記記憶装置に記憶させるとともに、露光動作の際
には即座に被照射体面上の照射光量に応じて、前記第1
の光量計測手段のゲインを最適値に切り換え、かつ各ゲ
イン値の補正をして露光量制御を行なうことを特徴とす
る請求項1記載の露光装置。
2. The control means causes each of the light quantity measuring means to measure the irradiation light quantity on the surface of the object to be irradiated a plurality of times while changing the setting of the light quantity adjusting means and / or the secondary light source forming means in advance. Based on the measurement result, the calculation unit calculates the optimum gain and the respective gain correction values of the first light amount measurement unit with respect to the irradiation light amount, stores the information in the storage device, and stores the information in the exposure operation. Immediately responds to the amount of irradiation on the surface of the object to be irradiated,
2. An exposure apparatus according to claim 1, wherein the exposure amount control is performed by switching the gain of said light amount measuring means to an optimum value and correcting each gain value.
【請求項3】 前記第1の照射光量計測手段の正確なゲ
イン値計測は、露光装置搭載前に第1の照射光量計測手
段単体で行なわれ、その計測値が入力手段により前記記
憶手段に入力されており、前記制御手段は、前記演算手
段に、その計測値より各ゲイン値の補正値を算出させ、
その算出結果より各ゲイン値の補正をして露光量制御を
行なうことを特徴とする請求項1記載の露光装置。
3. An accurate gain value measurement of the first irradiation light quantity measuring means is performed by the first irradiation light quantity measuring means alone before mounting the exposure apparatus, and the measured value is inputted to the storage means by the input means. The control means causes the calculation means to calculate a correction value for each gain value from the measured value,
2. The exposure apparatus according to claim 1, wherein each exposure value is controlled by correcting each gain value based on the calculation result.
【請求項4】 前記記憶手段は、照射光量に対する前記
第1の光量計測手段の最適ゲインを前記照明条件および
/または光量調整手段の設定状況に対応して記憶してお
り、前記制御手段は、露光動作の際には前記照明条件お
よび/または光量調整手段の設定状況に応じて即座に前
記第1の照射光量計測手段のゲインを最適値に切り換え
て露光量制御を行なうことを特徴とする請求項1〜3の
いずれかに記載の露光装置。
4. The storage means stores an optimum gain of the first light quantity measuring means with respect to an irradiation light quantity in correspondence with the illumination condition and / or a setting state of the light quantity adjusting means. In the exposure operation, the exposure amount control is performed by immediately switching the gain of the first irradiation light amount measurement unit to an optimum value according to the illumination condition and / or the setting state of the light amount adjustment unit. Item 4. The exposure apparatus according to any one of Items 1 to 3.
【請求項5】 照明光を発生する光源と、被照射体への
照射光量を調整する光量調整手段および前記照明光より
複数の2次光源を形成する2次光源形成手段の少なくと
も一方と、被照射体面上への照射光量を間接的に計測す
る第1の光量計測手段と、被照射体面上の照射光量を直
接計測する第2の光量計測手段と、計測結果の演算を行
なう演算手段と、計測および演算結果を記憶する記憶手
段と、前記各手段の動作を制御する制御手段とを有する
露光装置において、前記第2の光量計測手段は異なる複
数のゲインを持つ増幅器を有し、前記制御手段は前記第
2の光量計測手段への入射光量に応じて前記第2の光量
計測手段のゲインを最適値に切り換えて露光量制御を行
なうことを特徴とする露光装置。
5. A light source for generating illumination light, at least one of a light amount adjusting means for adjusting an irradiation light amount to an object to be irradiated and a secondary light source forming means for forming a plurality of secondary light sources from the illumination light, First light quantity measuring means for indirectly measuring the irradiation light quantity on the irradiated body surface, second light quantity measuring means for directly measuring the irradiation light quantity on the irradiated body surface, and arithmetic means for calculating the measurement result; In an exposure apparatus having storage means for storing measurement and calculation results and control means for controlling the operation of each means, the second light quantity measurement means has an amplifier having a plurality of different gains, and the control means An exposure apparatus for controlling an exposure amount by switching a gain of the second light amount measuring unit to an optimum value in accordance with an amount of light incident on the second light amount measuring unit.
【請求項6】 請求項1〜5のいずれかに記載の露光装
置を用いてデバイスを製造することを特徴とするデバイ
ス製造方法。
6. A device manufacturing method, comprising manufacturing a device using the exposure apparatus according to claim 1.
JP10017680A 1998-01-14 1998-01-14 Aligner Pending JPH11204424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10017680A JPH11204424A (en) 1998-01-14 1998-01-14 Aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10017680A JPH11204424A (en) 1998-01-14 1998-01-14 Aligner

Publications (1)

Publication Number Publication Date
JPH11204424A true JPH11204424A (en) 1999-07-30

Family

ID=11950566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10017680A Pending JPH11204424A (en) 1998-01-14 1998-01-14 Aligner

Country Status (1)

Country Link
JP (1) JPH11204424A (en)

Similar Documents

Publication Publication Date Title
JP3267414B2 (en) Scanning exposure apparatus and device manufacturing method using the scanning exposure apparatus
JPWO2002063664A1 (en) Exposure apparatus, exposure method, and device manufacturing method
US6501532B2 (en) Exposure apparatus and method of controlling the same
US7483764B2 (en) Exposure apparatus and device manufacturing method
US7834978B2 (en) Exposure apparatus, exposure method, and device manufacturing method
EP0540302B1 (en) X-ray exposure apparatus and semiconductor-device manufacturing method
JP2003068622A (en) Aligner, control method thereof, and method of manufacturing device
JPH08162397A (en) Projection light exposure device and manufacture of semiconductor device by use thereof
JP2000235945A (en) Scanning type aligner and its method
US6744492B2 (en) Exposure apparatus
US6519024B2 (en) Exposure apparatus and device manufacturing apparatus and method
JPH1187230A (en) Aligner and manufacture of device
JPH11204424A (en) Aligner
JPH08339954A (en) Illumination method and illumination device, and aligner using them
JPH1050600A (en) Method and device for projection exposure
JPH11243050A (en) Aligner
JP2006030021A (en) Position detection apparatus and position detection method
JP2002198281A (en) Illuminating device and projection aligner using it
JP2926581B1 (en) Reduction projection exposure equipment
JP6202993B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP3245026B2 (en) Exposure method, exposure apparatus, and device manufacturing method using the same
JP2000195770A (en) Tilt correcting method and manufacture of device
JPH09214039A (en) Energy amount control method
JPH0996908A (en) Exposure device and production of device using the same
JP2000150334A (en) Aligner and manufacturing for device