JPH11204403A - Mask correction method - Google Patents

Mask correction method

Info

Publication number
JPH11204403A
JPH11204403A JP449398A JP449398A JPH11204403A JP H11204403 A JPH11204403 A JP H11204403A JP 449398 A JP449398 A JP 449398A JP 449398 A JP449398 A JP 449398A JP H11204403 A JPH11204403 A JP H11204403A
Authority
JP
Japan
Prior art keywords
mask
defect
absorber
soft
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP449398A
Other languages
Japanese (ja)
Inventor
Hiromasa Yamanashi
弘将 山梨
Masaaki Ito
昌昭 伊東
Hidekazu Seya
英一 瀬谷
Hiroaki Oiizumi
博昭 老泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP449398A priority Critical patent/JPH11204403A/en
Publication of JPH11204403A publication Critical patent/JPH11204403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable removal of a black defect at a high selection ratio in a short period of time, by ejecting a reactive gas and radiating a converged ion beam to a black defect caused by a redundant defect of an absorber of an X-ray reduction exposure mask. SOLUTION: An X-ray exposure mask is manufactured by stacking a multilayer film 12 and a tungsten absorber 13, which is a shading part, on the upper part of a quartz substrate 11, subsequently carrying out predetermined patterning by electron beam lithography with an electron beam resist applied thereon, and etching the tungsten absorber 13 for pattern forming. When a redundant defect portion 14 of tungsten, presumably clue to the resist applying step, is generated on the multilayer film 12, the redundant defect portion 14 is irradiated with a converged ion beam 18 while xenon difluoride XeF2 16 is ejected near the redundant defect portion 14 through a nozzle. Thus, defect correction causing no damage to the underlying multilayer film 12 can be carried out in a short period of time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、X線領域あるいは
真空紫外領域のビームを用いて、解像力の高いパターン
を転写させる際に用いるマスクの欠陥修正方法、及び前
記欠陥修正方法により修正されたマスクを用いたパター
ン転写方法、及びそのパターン転写方法を用いて作製さ
れたデバイスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for correcting a defect of a mask used for transferring a pattern having a high resolution using a beam in an X-ray region or a vacuum ultraviolet region, and a mask corrected by the defect correcting method. The present invention relates to a pattern transfer method using the same and a device manufactured using the pattern transfer method.

【0002】[0002]

【従来の技術】マスク上に描かれた半導体集積回路等の
パターンをウエハ上に転写する投影露光においては、解
像度と焦点深度が重要である。一般に、結像光学系の開
口数をNA、露光波長をλとすると、解像度Rと焦点深
度DOFはそれぞれ数1および数2で与えられる。
2. Description of the Related Art In projection exposure for transferring a pattern of a semiconductor integrated circuit or the like drawn on a mask onto a wafer, resolution and depth of focus are important. Generally, assuming that the numerical aperture of the imaging optical system is NA and the exposure wavelength is λ, the resolution R and the depth of focus DOF are given by Equations 1 and 2, respectively.

【0003】[0003]

【数1】 R=k1λ/NA …(1)R = k 1 λ / NA (1)

【0004】[0004]

【数2】 DOF=k2λ/NA2 …(2) ただしk1,k2は定数である。## EQU2 ## DOF = k 2 λ / NA 2 (2) where k 1 and k 2 are constants.

【0005】現在、波長248nmのKrFエキシマレ
ーザーと、NA0.6 程度のレンズ光学系,位相シフト
マスク,多層レジストを用いて、解像度0.13 μm,
焦点深度1μmが実現されている。半導体集積回路を高
密度化するために、更に高解像度の投影露光方法が要求
されている。数1から分かるように、NAが大きいほ
ど、あるいは露光波長が短いほど解像度は向上する。し
かしNAを大きくすると、数2にしたがって焦点深度が
低下するので、この方法による高解像度化は限界があ
る。
At present, using a KrF excimer laser having a wavelength of 248 nm, a lens optical system having a NA of about 0.6, a phase shift mask, and a multilayer resist, the resolution is 0.13 μm.
A depth of focus of 1 μm has been realized. In order to increase the density of a semiconductor integrated circuit, a projection exposure method with higher resolution is required. As can be seen from Equation 1, the resolution increases as the NA increases or as the exposure wavelength decreases. However, when the NA is increased, the depth of focus is reduced according to Equation 2, and there is a limit to achieving high resolution by this method.

【0006】一方露光波長を数十nmないしは数nmの
軟X線領域まで短波長化すると、焦点深度1μmを確保
しながら解像度0.1μm 以下を達成することが可能で
ある。しかし軟X線では物質の屈折率が極めて1に近い
ので、レンズ型光学系の適用は困難であり、ミラー(反
射型)光学系を使用する必要がある。
On the other hand, when the exposure wavelength is shortened to a soft X-ray range of several tens nm or several nm, it is possible to achieve a resolution of 0.1 μm or less while securing a depth of focus of 1 μm. However, since the refractive index of a substance is very close to 1 with soft X-rays, it is difficult to apply a lens type optical system, and it is necessary to use a mirror (reflection type) optical system.

【0007】近年、屈折率の異なる2種類の物質の薄膜
を交互に多数積層した多層膜ミラーが実用化され、軟X
線を任意の入射角度で高効率で反射させることが可能と
なった。そこで、多層膜ミラーを用いた結像光学系によ
るX線投影露光方法の検討が盛んに行われている。
In recent years, a multilayer mirror in which a large number of thin films of two kinds of materials having different refractive indices are alternately laminated has been put to practical use.
Lines can be reflected with high efficiency at any angle of incidence. Therefore, an X-ray projection exposure method using an imaging optical system using a multilayer mirror has been actively studied.

【0008】多層膜の周期長をΛ、反射波長をλ、入射
角をθ(θ=0°で直入射)とすると数3の条件が満た
されたときに反射が起こる。
Assuming that the period length of the multilayer film is 反射, the reflection wavelength is λ, and the incident angle is θ (direct incidence at θ = 0 °), reflection occurs when the condition of Equation 3 is satisfied.

【0009】[0009]

【数3】 2Λcosθ=nλ(n=1,2,3,4,...) …(3) 多層膜の反射には選択性があり、数3より、入射角が変
化すると反射される波長領域が変化することが分かる。
X線縮小露光用のマスクは、この軟X線反射用多層膜を
平滑な基板上に形成して軟X線の反射部とし、その反射
部上に軟X線を吸収する物質を形成し(吸収体)、エッ
チング等の手段で吸収体をパターニングすることで非反
射部(遮光部)とした反射型構造を有している。
2Λcos θ = nλ (n = 1, 2, 3, 4,...) (3) The reflection of the multilayer film has selectivity. It can be seen that the area changes.
The mask for X-ray reduction exposure forms this soft X-ray reflection multilayer film on a smooth substrate to form a soft X-ray reflection portion, and forms a soft X-ray absorbing substance on the reflection portion ( It has a reflective structure in which a non-reflective portion (light-shielding portion) is formed by patterning the absorber by means such as an absorber and etching.

【0010】[0010]

【発明が解決しようとする課題】X線縮小露光用の反射
型マスクの断面構造を図4(a)に示す。平滑な基板4
5上に軟X線を高効率で反射するMo/Si多層膜41
が形成され、その多層膜上にX線を反射しないW(タン
グステン)吸収体層が成膜された後、ドライエッチング
等の手段により所望の回路パターン42が形成されてい
る。
FIG. 4A shows a sectional structure of a reflective mask for X-ray reduction exposure. Smooth substrate 4
Mo / Si multilayer film 41 that reflects soft X-rays on the surface 5 with high efficiency
After a W (tungsten) absorber layer that does not reflect X-rays is formed on the multilayer film, a desired circuit pattern 42 is formed by means such as dry etching.

【0011】このような構造のマスクに関して、吸収体
余剰の黒欠陥を有する場合のマスクの断面構造を図4
(b)に示す。図4(a)と比較すると、マスク表面の
Wパターンの間にWパターン寸法の半分程度の大きさの
Wのパーティクル43が余分に付着している。
FIG. 4 shows a cross-sectional structure of a mask having such a structure in the case where there is an excess black defect in the absorber.
(B). Compared to FIG. 4A, extra W particles 43 about half the size of the W pattern are extraly attached between the W patterns on the mask surface.

【0012】従来はこのような黒欠陥を、FIBを用い
たスパッタエッチングにより除去していた。リフトオフ
法と比較すると工程数が少なく新たな欠陥の発生が少な
い等の長所がある。しかし、X線縮小露光用のマスクに
とっては、高加速のイオンにより欠陥部の下地の多層膜
層がダメージを受け、反射率が減少し、修正した部分の
転写パターンのコントラストが低下してしまうという問
題点が有る。
Conventionally, such black defects have been removed by sputter etching using FIB. Compared to the lift-off method, there are advantages such as fewer steps and fewer new defects. However, for a mask for X-ray reduction exposure, the high-acceleration ions damage the underlying multilayer film layer of the defective portion, reducing the reflectance, and lowering the contrast of the transfer pattern in the corrected portion. There is a problem.

【0013】これとほぼ同様の修正方法が、例えばオー
エスエイ プロシーディングズ シリーズ(OSA Pr
oceedings Series),vol.23,204(1991)に開
示されている。25keVのGaイオンを用いて(Mo
/Si)多層膜上の吸収体(Au;50nn/Cr;5
nm)を除去したが、打ち込まれたGaによる軟X線の
吸収等の影響で、多層膜の反射率が大幅に低下してしま
った。
An almost similar correction method is described in, for example, OSA Proceedings Series (OSA Pr.
oceedings Series), vol.23, 204 (1991). Using 25 keV Ga ions (Mo
/ Si) Absorber on multilayer film (Au; 50 nn / Cr; 5)
nm), but the reflectivity of the multilayer film was greatly reduced due to the influence of soft X-ray absorption by the implanted Ga.

【0014】また、図4(c)に示した吸収体欠落の白
欠陥44を有する場合のマスクの修正方法に関しては、
白欠陥の近接部に炭化水素系ガスを供給しながら、白欠
陥部へFIBを照射し、イオンビームに含まれる元素−
炭化水素系の膜を形成して遮光膜とし欠陥修正する方法
があげられる。
[0014] Further, regarding the method of correcting the mask in the case where the white defect 44 is missing from the absorber shown in FIG.
While supplying hydrocarbon-based gas to the vicinity of the white defect, the white defect is irradiated with FIB, and the elements contained in the ion beam
There is a method of forming a hydrocarbon-based film to form a light-shielding film and correcting defects.

【0015】これとほぼ同様の修正方法が、例えばジャ
ーナル オブ バキューム サイエンス アンド テク
ノロジー(J.Vac.Sci.Technol.)B12,3833(19
94)に開示されている。ここでは白欠陥領域にフェニ
ルアセチレンを供給しながらGaビームを照射し、厚さ
50nm程度のGa−C膜を堆積している。吸収体の欠
落を補完する材料には、露光波長でのX線吸収率が吸収
体と同等であること、マスクの洗浄プロセスに対し十分
な耐性をもつこと、吸収体材料との密着性がよいことな
どが要求される。しかし、従来方法では欠落した欠陥部
に堆積させる材料は、イオンビームを構成する物質もし
くはその化合物に限定されてしまい、前出の条件を全て
満たす物質を見出すことは非常に困難である。
An almost similar correction method is described in, for example, Journal of Vacuum Science and Technology (J. Vac. Sci. Technol.) B12, 3833 (19).
94). Here, a Ga beam is irradiated while supplying phenylacetylene to the white defect region to deposit a Ga—C film having a thickness of about 50 nm. Materials that compensate for the absence of the absorber must have the same X-ray absorptivity at the exposure wavelength as the absorber, have sufficient resistance to the mask cleaning process, and have good adhesion to the absorber material Is required. However, in the conventional method, the material deposited on the missing defect is limited to a substance constituting the ion beam or its compound, and it is very difficult to find a substance satisfying all the above-mentioned conditions.

【0016】以上のように従来のX線縮小露光用のマス
クの吸収体の余剰欠陥や欠落欠陥に関しては、有効な修
正方法は開示されていなかった。
As described above, no effective repair method has been disclosed for the surplus or missing defect of the absorber of the conventional mask for X-ray reduction exposure.

【0017】本発明は以上のような背景からなされたも
ので、X線縮小露光用マスクの吸収体の欠落欠陥または
余剰欠陥を、下地の多層膜にダメージを与えず、かつ欠
落欠陥を修正する材料を広く選択できるX線縮小露光用
マスクの欠陥修正方法を提供することを目的とする。
The present invention has been made in view of the above background, and is intended to correct a missing defect or an excess defect of an absorber of an X-ray reduction exposure mask without damaging the underlying multilayer film. It is an object of the present invention to provide a method for correcting a defect of an X-ray reduction exposure mask that allows a wide selection of materials.

【0018】[0018]

【課題を解決するための手段】本発明では、X線縮小露
光用マスクの吸収体の余剰欠陥に起因する黒欠陥に関し
ては、反応ガスを噴射すると共にFIBを照射すること
により、前記欠陥を高選択比でかつ短時間で除去するこ
とが可能となった。また吸収体の欠落欠陥に起因する白
欠陥に関しては、吸収体を構成する物質または吸収体の
物質に光学的性質が類似した物質を含んだ反応ガスを噴
射すると共にFIBを照射することにより、前記欠陥を
任意の種類の元素もしくは化合物で修正することが可能
になった。
According to the present invention, with respect to a black defect caused by a surplus defect of an absorber of an X-ray reduction exposure mask, the defect is increased by injecting a reactive gas and irradiating an FIB. It became possible to remove in a short time with a selective ratio. Regarding white defects caused by missing defects of the absorber, the FIB is irradiated by injecting a reaction gas containing a substance constituting the absorber or a substance having similar optical properties to the substance of the absorber, and irradiating the FIB. Defects can be corrected with any kind of element or compound.

【0019】[0019]

【発明の実施の形態】(実施例1)以下、本発明の第1
の実施例を図面に基づいて説明する。図1は第1の実施
例のX線縮小露光用マスクの欠陥修正方法を適用する、
吸収体に余剰欠陥を有するX線縮小露光用マスクの断面
図であり、(a)は修正前の断面図、(b)は修正工程
の断面図、(c)は修正後の断面図である。
(Embodiment 1) Hereinafter, the first embodiment of the present invention will be described.
Will be described with reference to the drawings. FIG. 1 shows a method of applying the defect repair method for an X-ray reduction exposure mask according to the first embodiment.
It is sectional drawing of the mask for X-ray reduction exposure which has an excess defect in an absorber, (a) is sectional drawing before correction, (b) is sectional drawing of a repair process, (c) is sectional drawing after repair. .

【0020】X線縮小露光用マスクは石英基板11、そ
の上部に配置された(Mo/Si)多層膜12,遮光部
であるW(タングステン)吸収体13からなる。上記
(Mo/Si)多層膜12はイオンビームスパッタリン
グ法で周期長6.7nm を50層対形成し、続いて上記
W吸収体層を100nm形成した。その後電子線レジス
トを塗布し、電子線描画により所定のパターニングを行
い、W吸収体13をドライエッチングしてパターン形成
することによりマスクを製造した。そして、レジスト塗
布工程が原因と思われる図1(a)に示すような、Wの
余剰欠陥部14が多層膜12上に発生した。
The mask for X-ray reduction exposure comprises a quartz substrate 11, a (Mo / Si) multilayer film 12 disposed on the quartz substrate 11, and a W (tungsten) absorber 13 as a light shielding portion. The (Mo / Si) multilayer film 12 was formed by ion beam sputtering to form a 50-layer pair having a period length of 6.7 nm, followed by forming the W absorber layer to a thickness of 100 nm. Thereafter, an electron beam resist was applied, predetermined patterning was performed by electron beam drawing, and the W absorber 13 was dry-etched to form a pattern, thereby manufacturing a mask. Then, as shown in FIG. 1A, a surplus defect portion 14 of W occurred on the multilayer film 12, which is considered to be caused by the resist coating process.

【0021】そこで、図1(b)に示すように、X線縮
小露光用マスクをマスク欠陥修正装置に入れ、約10-6
Torrまで真空引きした。余剰欠陥部14の近傍にノズル
を通じて二弗化キセノンXeF216 を吹き付けなが
ら、上記欠陥部にFIB18を照射する。これにより図
1(c)に示すように、余剰欠陥部14がエッチング除
去され、マスクパターンが修正される。
Therefore, as shown in FIG. 1B, the mask for X-ray reduction exposure is put into a mask defect correcting apparatus, and the mask is exposed to about 10 -6.
Evacuated to Torr. While spraying xenon difluoride XeF 2 16 through a nozzle in the vicinity of the surplus defect portion 14, the defect portion is irradiated with FIB 18. Thus, as shown in FIG. 1C, the surplus defective portion 14 is removed by etching, and the mask pattern is corrected.

【0022】従来のX線縮小露光用マスクの欠陥修正方
法では、欠陥修正後の余剰欠陥の下地の(Mo/Si)
多層膜17の反射率がマスクの反射部15の多層膜反射
率の50%しかなかった。しかし、本実施例の修正方法
の場合は、マスクの反射部15の多層膜反射率の99.
5% であった。軟X線反射率計の計測誤差を考慮する
と、余剰欠陥修正の前後で欠陥部の下地の多層膜の反射
率はほぼ同一であるといえる。これは従来方法に比べ、
余剰吸収体の(Mo/Si)多層膜に対するエッチング
の選択比が15倍に向上したために、余剰欠陥の下地の
多層膜がダメージを受けなかったのが原因と考えられ
る。また加工速度が従来の4倍になっており、マスクの
修正に要する時間を従来の70%に低減することができ
た。
In the conventional defect repair method for the X-ray reduction exposure mask, the (Mo / Si)
The reflectivity of the multilayer film 17 was only 50% of the multilayer film reflectivity of the reflective portion 15 of the mask. However, in the case of the correction method of the present embodiment, the multilayer reflectance of the reflective portion 15 of the mask is 99.
It was 5%. Considering the measurement error of the soft X-ray reflectometer, it can be said that the reflectance of the underlying multilayer film of the defective portion is substantially the same before and after the repair of the surplus defect. This is different from the conventional method.
This is probably because the selectivity of etching of the excess absorber to the (Mo / Si) multilayer film was improved by 15 times, and the underlying multilayer film of the excess defect was not damaged. In addition, the processing speed is four times that of the related art, and the time required for correcting the mask can be reduced to 70% of that of the related art.

【0023】第1の実施例記載の方法で修正されたマス
クを用いてパターン転写を行ったところ、余剰欠陥部で
あった部分はウエハ上のレジストパターンとして転写さ
れており、形成されているレジストパターンの寸法も許
容範囲内であった。
When pattern transfer was performed using the mask modified by the method described in the first embodiment, the portion that was an excess defect was transferred as a resist pattern on the wafer, and the formed resist was transferred. The pattern dimensions were also within acceptable limits.

【0024】(実施例2)次に本発明の第2の実施例を
図面に基づいて説明する。図2は第2の実施例のX線縮
小露光用マスクの欠陥修正方法を適用する、吸収体に欠
落欠陥を有するX線縮小露光用マスクの断面図であり、
(a)は修正前の断面図、(b)は修正工程の断面図、
(c)は修正後の断面図である。
(Embodiment 2) Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a cross-sectional view of an X-ray reduction exposure mask having a defect missing in an absorber, to which the method of correcting defects of the X-ray reduction exposure mask of the second embodiment is applied;
(A) is a cross-sectional view before correction, (b) is a cross-sectional view of a correction process,
(C) is a sectional view after correction.

【0025】第1の実施例と同様な方法で、X線縮小露
光用マスクが形成される。そして、図2(a)に示すよ
うな、レジスト塗布工程が原因と思われる欠落欠陥部2
4が遮光部である吸収体23に発生した。
An X-ray reduction exposure mask is formed in the same manner as in the first embodiment. Then, as shown in FIG. 2A, the missing defect portion 2 which is considered to be caused by the resist coating process
4 occurred in the absorber 23 which is a light shielding portion.

【0026】そこで、図2(b)に示すように、X線縮
小露光用マスクをマスク欠陥修正装置に入れ、約10-6
Torrまで真空引きした。欠落欠陥部24の近傍にノズル
を通じて蒸発させたタングステンカルボニルガスW(C
O)626 を吹き付けながら、上記欠陥部にFIB28
を照射する。これにより図2(c)に示すように、W膜
が堆積し、堆積部27が形成され、欠落欠陥部24が修
正される。
Therefore, as shown in FIG. 2B, the mask for X-ray reduction exposure is put into a mask defect repairing apparatus, and about 10 −6.
Evacuated to Torr. The tungsten carbonyl gas W (C) vaporized through the nozzle near the missing defect portion 24
O) while blowing 6 26, FIB28 in the defect
Is irradiated. As a result, as shown in FIG. 2C, a W film is deposited, a deposited portion 27 is formed, and the missing defect portion 24 is corrected.

【0027】このように堆積された堆積部27は吸収体
23と同じ材料のため密着性に問題はなく、その後のX
線縮小露光用マスク用の洗浄にもパターン剥がれ等の問
題は起こらなかった。
Since the deposited portion 27 thus deposited is the same material as the absorber 23, there is no problem in adhesiveness.
No problems such as pattern peeling occurred in the cleaning for the line reduction exposure mask.

【0028】本実施例の方法で修正されたマスクを用い
てパターン転写を行ったが、欠落欠陥部はウエハ上へ転
写されていなかった。また上記欠落欠陥部に接するマス
クの反射部に対応するレジストパターンの寸法精度も許
容範囲内であった。
Pattern transfer was performed using the mask modified by the method of this embodiment, but the missing defect was not transferred onto the wafer. Also, the dimensional accuracy of the resist pattern corresponding to the reflective portion of the mask in contact with the missing defect portion was within the allowable range.

【0029】(実施例3)次に本発明の第3の実施例と
して、半導体デバイスを製造した例を示す。N−基板3
0を通常の方法でPウェル層31,P層32,フィールド
酸化膜33,poly−Si/SiO2 ゲート34,P高濃
度拡散層35,N高濃度拡散層36などを形成した(図
2(a))。次に通常の方法でBPSG等の絶縁膜37
を形成した(図2(b))。その上にレジスト40を塗
布した後、本発明による第1の実施例で示した方法を用
いて検査し、FIB装置で修正したマスクを用いて、ホ
ールパターンを形成した(図2(c))。
(Embodiment 3) Next, as a third embodiment of the present invention, an example in which a semiconductor device is manufactured will be described. N-substrate 3
0 was formed by a usual method to form a P well layer 31, a P layer 32, a field oxide film 33, a poly-Si / SiO 2 gate 34, a P high concentration diffusion layer 35, an N high concentration diffusion layer 36 (FIG. 2 ( a)). Next, an insulating film 37 of BPSG or the like is formed by a usual method.
Was formed (FIG. 2B). After a resist 40 was applied thereon, inspection was performed using the method described in the first embodiment of the present invention, and a hole pattern was formed using a mask modified by an FIB apparatus (FIG. 2C). .

【0030】次にこのレジストをマスクとして絶縁膜3
7をドライエッチングし、コンタクトホールを形成し
た。そして通常の方法によりW/Ti電極配線38を形
成した後、層間絶縁膜39をCVDにより成膜した(図
2(d))。以降の工程は通常と同様の方法で形成し
た。なお本実施例では主な製造工程のみを説明したが、
コンタクトホール形成のリソグラフィ工程で使用したマ
スクが本発明の第1の実施例を用いて修正されているこ
と以外は従来と同じ工程を用いた。マスクの欠陥修正の
加工精度が従来方法と比べ向上しているため、CMOS
−LSIを高歩留まりで作製することができた。
Next, using this resist as a mask, the insulating film 3 is formed.
7 was dry-etched to form a contact hole. Then, after forming the W / Ti electrode wiring 38 by a normal method, an interlayer insulating film 39 was formed by CVD (FIG. 2D). Subsequent steps were formed by the same method as usual. Although only the main manufacturing steps have been described in this embodiment,
The same process as the conventional process was used except that the mask used in the lithography process for forming the contact hole was modified using the first embodiment of the present invention. Since the processing accuracy of mask defect correction is improved compared to the conventional method, CMOS
-An LSI can be manufactured with a high yield.

【0031】上記実施例では、X線縮小露光用マスクの
吸収体の欠陥修正について示したが、本発明はX線縮小
露光用位相シフトマスクのシフタ層の修正や、多層膜層
と吸収体層の間に形成されることのあるエッチングスト
ッパ層の完全除去についても、同様の方法が適用可能で
あるし、また露光波長13nmのX線縮小露光に対する
マスク装置に限定されず、X線領域,真空紫外,極真空
紫外領域の任意の波長に適用できることも言うまでもな
い。
In the above embodiment, the defect correction of the absorber of the X-ray reduction exposure mask was described. However, the present invention is directed to the correction of the shifter layer of the phase shift mask for X-ray reduction exposure, and the multilayer film and the absorber layer. The same method can be applied to the complete removal of the etching stopper layer that may be formed during the process, and is not limited to a mask device for X-ray reduction exposure at an exposure wavelength of 13 nm. It goes without saying that the present invention can be applied to any wavelength in the ultraviolet or extreme vacuum ultraviolet region.

【0032】また、上記の実施例では、吸収体と同じ材
料であるW膜を堆積させることで吸収体の欠け欠陥を修
正したが、必ずしも吸収体と同一材料である必要はな
く、吸収体の物質に類似した光学的性質を有する材料の
膜を形成すればよい。また、FIBとしてGaビームを
使用したが、本発明の構成はFIBのビームの種類に制
限されるものでないことは言うまでもない。
Further, in the above embodiment, the chipping defect of the absorber was corrected by depositing a W film made of the same material as the absorber, but it is not always necessary to use the same material as the absorber. A film of a material having optical properties similar to a substance may be formed. Although the Ga beam is used as the FIB, it goes without saying that the configuration of the present invention is not limited to the type of the FIB beam.

【0033】[0033]

【発明の効果】以上説明したように本発明では、X線縮
小露光用マスクの吸収体の余剰欠陥をFIBによるガス
アシストエッチングを用いて修正することで、下地の多
層膜にダメージを与えない欠陥修正がより短時間で可能
になった。また、吸収体の欠落欠陥に関しては、吸収体
を構成する物質または吸収体の物質に光学的性質が類似
した物質を含んだガスを欠陥部近傍に吹き付けFIBを
照射することで、前記欠陥を任意の種類の元素もしくは
化合物で修正することが可能になった。
As described above, according to the present invention, the defect which does not damage the underlying multilayer film is corrected by correcting the excess defect of the absorber of the mask for X-ray reduction exposure using FIB-assisted etching. Modifications were made faster. Regarding the missing defect of the absorber, a gas containing a substance constituting the absorber or a substance having a similar optical property to the substance of the absorber is blown to the vicinity of the defect to irradiate the FIB with the defect. It becomes possible to correct by the kind of element or compound.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例のX線縮小露光用マスク
の欠陥修正方法を示す断面図。
FIG. 1 is a cross-sectional view illustrating a method for correcting a defect of an X-ray reduction exposure mask according to a first embodiment of the present invention.

【図2】本発明の第2の実施例のX線縮小露光用マスク
の欠陥修正方法を示す断面図。
FIG. 2 is a cross-sectional view illustrating a method of correcting a defect of an X-ray reduction exposure mask according to a second embodiment of the present invention.

【図3】本発明の第3の実施例を用いて作製されたデバ
イスの断面構造を示す断面図。
FIG. 3 is a cross-sectional view showing a cross-sectional structure of a device manufactured by using a third embodiment of the present invention.

【図4】X線縮小露光用マスクの吸収体の欠陥を示す断
面図。
FIG. 4 is a sectional view showing a defect of an absorber of the X-ray reduction exposure mask.

【符号の説明】[Explanation of symbols]

11…石英基板、12…(Mo/Si)多層膜、13…
W吸収体、14…W吸収体余剰欠陥部、15…マスクの
反射部の多層膜、16…二弗化キセノン、17…余剰欠
陥の下地の多層膜、18…FIB、23…W吸収体、2
4…W吸収体欠落欠陥部、26…タングステンカルボニ
ルガス、17…堆積部、18…FIB、30…N−基
板、31…Pウェル層、32…P層、33…フィールド
酸化膜、34…polySi/SiO2 ゲート、35…P高
濃度拡散層、36…N高濃度拡散層、37…絶縁膜、3
8…W/Ti電極配線、39…層間絶縁膜、40…レジ
スト、41…Mo/Si多層膜、42…W(タングステ
ン)吸収体パターン、43…Wのパーティクル(黒欠
陥)、44…W吸収体欠落の白欠陥、45…基板。
11 ... quartz substrate, 12 ... (Mo / Si) multilayer film, 13 ...
W absorber, 14 ... W absorber excess defect portion, 15 ... Multilayer film of reflective portion of mask, 16 ... Xenon difluoride, 17 ... Multilayer film of base of excess defect, 18 ... FIB, 23 ... W absorber, 2
4 ... W absorber missing defect part, 26 ... Tungsten carbonyl gas, 17 ... Deposition part, 18 ... FIB, 30 ... N-substrate, 31 ... P well layer, 32 ... P layer, 33 ... Field oxide film, 34 ... polySi / SiO 2 gate, 35: P high concentration diffusion layer, 36: N high concentration diffusion layer, 37: insulating film, 3
8 W / Ti electrode wiring, 39 interlayer insulating film, 40 resist, 41 Mo / Si multilayer film, 42 W (tungsten) absorber pattern, 43 W particles (black defect), 44 W absorption White defect with missing body, 45 ... substrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 老泉 博昭 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroaki Oizumi 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Inside Central Research Laboratory, Hitachi, Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】軟X線を反射する多層膜上に軟X線を反射
しにくい物質がパターニングされた構造を有するマスク
を、軟X線領域のビームを照明光学系を介して照明し、
前記マスク上に描かれている微細パターンを結像光学系
を介して、ウエハ基板上に縮小転写するX線縮小露光
の、前記マスク上の吸収体余剰に起因する黒欠陥部を修
正する欠陥修正方法において、前記黒欠陥部にガスを噴
射すると共にFIB(Focused Ion Beam:収束イオンビ
ーム)を照射することにより、前記欠陥部を除去し修正
することを特徴とするマスクの欠陥修正方法。
A mask having a structure in which a substance that hardly reflects soft X-rays is patterned on a multilayer film that reflects soft X-rays is illuminated with a beam in a soft X-ray region through an illumination optical system,
X-ray reduction exposure for reducing and transferring a fine pattern drawn on the mask onto a wafer substrate via an imaging optical system, and correcting a black defect caused by excess absorber on the mask. A method of repairing a defect in a mask, comprising: removing and correcting the defective portion by irradiating a focused ion beam (FIB) while injecting a gas into the black defective portion.
【請求項2】軟X線を反射する多層膜上に軟X線を反射
しにくい物質がパターニングされた構造を有するマスク
を、軟X線領域のビームを照明光学系を介して照明し、
前記マスク上に描かれている微細パターンを結像光学系
を介して、ウエハ基板上に縮小転写するX線縮小露光
の、マスク上の吸収体欠落に起因する白欠陥部を修正す
る欠陥修正方法において、前記欠陥部に前記吸収体を構
成する元素を含んだガスを噴射すると共にFIBを照射
することにより、前記欠陥部に反応物を堆積させ前記欠
陥部を修正することを特徴とするマスクの欠陥修正方
法。
2. A mask having a structure in which a substance hardly reflecting soft X-rays is patterned on a multilayer film reflecting soft X-rays is illuminated with a beam in a soft X-ray region through an illumination optical system,
X-ray reduction exposure for reducing and transferring a fine pattern drawn on the mask onto a wafer substrate via an imaging optical system, a defect correction method for correcting a white defect caused by a missing absorber on the mask In the mask, wherein a gas containing an element constituting the absorber is injected into the defect portion and FIB is irradiated to deposit a reactant on the defect portion and correct the defect portion. Defect correction method.
【請求項3】軟X線を反射する多層膜上に軟X線を反射
しにくい物質がパターニングされた構造を有するマスク
を、軟X線領域のビームを照明光学系を介して照明し、
前記マスク上に描かれている微細パターンを結像光学系
を介して、ウエハ基板上に縮小転写するX線縮小露光
の、前記マスク上の吸収体余剰に起因する黒欠陥部を修
正する欠陥修正装置において、前記黒欠陥部にガスを噴
射すると共にFIBを照射することにより、前記欠陥部
を除去し修正する手段を具備することを特徴とするマス
クの欠陥修正装置。
3. A mask having a structure in which a substance that hardly reflects soft X-rays is patterned on a multilayer film that reflects soft X-rays is illuminated with a beam in the soft X-ray region through an illumination optical system,
X-ray reduction exposure for reducing and transferring a fine pattern drawn on the mask onto a wafer substrate via an imaging optical system, and correcting a black defect caused by excess absorber on the mask. An apparatus for repairing a defect of a mask, comprising: means for removing and repairing the defective portion by irradiating gas and FIB to the black defective portion.
【請求項4】軟X線を反射する多層膜上に軟X線を反射
しにくい物質がパターニングされた構造を有するマスク
を、軟X線領域のビームを照明光学系を介して照明し、
前記マスク上に描かれている微細パターンを結像光学系
を介して、ウエハ基板上に縮小転写するX線縮小露光
の、前記マスク上の吸収体欠落に起因する白欠陥部を修
正する欠陥修正装置において、前記欠陥部に前記吸収体
を構成する元素を含んだガスを噴射すると共にFIBを
照射することにより、前記欠陥部に反応物を堆積させ前
記欠陥部を修正する手段を具備することを特徴とするマ
スクの欠陥修正装置。
4. A mask having a structure in which a substance that hardly reflects soft X-rays is patterned on a multilayer film that reflects soft X-rays is illuminated with a beam in a soft X-ray region through an illumination optical system;
X-ray reduction exposure for reducing and transferring a fine pattern drawn on the mask onto a wafer substrate via an imaging optical system, defect correction for correcting a white defect caused by a missing absorber on the mask. The apparatus may further include means for injecting a gas containing an element constituting the absorber into the defective portion and irradiating the FIB with FIB, thereby depositing a reactant on the defective portion and correcting the defective portion. Characteristic mask defect repair device.
【請求項5】請求項1に記載のガスがCl,H,F等の
元素を含んだ反応性のガスであることを特徴とするマス
ク欠陥修正方法。
5. A method according to claim 1, wherein said gas is a reactive gas containing an element such as Cl, H, F or the like.
【請求項6】請求項2に記載のガスが、吸収体に含まれ
ている元素とほぼ同じもしくは類似した光学的性質を露
光波長において有する元素を含んだ反応性のガスである
ことを特徴とするマスク欠陥修正方法。
6. The gas according to claim 2, wherein the gas is a reactive gas containing an element having substantially the same or similar optical properties as the element contained in the absorber at the exposure wavelength. To correct mask defects.
【請求項7】請求項1または2のいずれかに記載の修正
方法にて修正されたマスクを用いることを特徴とする微
細パターンの転写方法。
7. A method for transferring a fine pattern, comprising using a mask modified by the modification method according to claim 1.
【請求項8】請求項1または2のいずれかに記載の修正
方法にて修正されたマスクを具備することを特徴とする
露光装置。
8. An exposure apparatus comprising a mask corrected by the correction method according to claim 1.
【請求項9】請求項7ないし8のいずれかにおいて、軟
X線領域のビームを放射する光源は、シンクロトロン放
射光,レーザプラズマX線源,X線レーザ,電子線励起
型X線源,エキシマレーザ,半導体レーザのいずれかで
あることを特徴とする微細パターン転写方法。
9. A light source for emitting a beam in the soft X-ray region according to claim 7, wherein the light source is a synchrotron radiation light, a laser plasma X-ray source, an X-ray laser, an electron beam excitation type X-ray source, A fine pattern transfer method characterized by being one of an excimer laser and a semiconductor laser.
【請求項10】請求項7ないし9のいずれかの微細パタ
ーン転写方法,露光装置を用いて製作されたことを特徴
とする電子デバイス。
10. An electronic device manufactured by using the fine pattern transfer method and exposure apparatus according to claim 7.
JP449398A 1998-01-13 1998-01-13 Mask correction method Pending JPH11204403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP449398A JPH11204403A (en) 1998-01-13 1998-01-13 Mask correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP449398A JPH11204403A (en) 1998-01-13 1998-01-13 Mask correction method

Publications (1)

Publication Number Publication Date
JPH11204403A true JPH11204403A (en) 1999-07-30

Family

ID=11585616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP449398A Pending JPH11204403A (en) 1998-01-13 1998-01-13 Mask correction method

Country Status (1)

Country Link
JP (1) JPH11204403A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403933B1 (en) * 2000-05-02 2003-10-30 샤프 가부시키가이샤 Method for fabricating mask
JP2009010373A (en) * 2007-06-20 2009-01-15 Advanced Mask Technology Center Gmbh & Co Kg Euv mask and method for repairing euv mask
JP2011238800A (en) * 2010-05-11 2011-11-24 Dainippon Printing Co Ltd Manufacturing method of reflective mask and reflective mask
JP2012124372A (en) * 2010-12-09 2012-06-28 Dainippon Printing Co Ltd Reflective mask, manufacturing method therefor, and reflective mask defect correction device
WO2014032312A1 (en) * 2012-08-31 2014-03-06 深圳市华星光电技术有限公司 Pattern repairing device and method for array substrate
CN111610693A (en) * 2019-02-26 2020-09-01 中芯国际集成电路制造(天津)有限公司 Repairing method of mask plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403933B1 (en) * 2000-05-02 2003-10-30 샤프 가부시키가이샤 Method for fabricating mask
JP2009010373A (en) * 2007-06-20 2009-01-15 Advanced Mask Technology Center Gmbh & Co Kg Euv mask and method for repairing euv mask
JP2011238800A (en) * 2010-05-11 2011-11-24 Dainippon Printing Co Ltd Manufacturing method of reflective mask and reflective mask
JP2012124372A (en) * 2010-12-09 2012-06-28 Dainippon Printing Co Ltd Reflective mask, manufacturing method therefor, and reflective mask defect correction device
WO2014032312A1 (en) * 2012-08-31 2014-03-06 深圳市华星光电技术有限公司 Pattern repairing device and method for array substrate
CN111610693A (en) * 2019-02-26 2020-09-01 中芯国际集成电路制造(天津)有限公司 Repairing method of mask plate
CN111610693B (en) * 2019-02-26 2023-08-22 中芯国际集成电路制造(天津)有限公司 Repair method of mask plate

Similar Documents

Publication Publication Date Title
US6593041B2 (en) Damascene extreme ultraviolet lithography (EUVL) photomask and method of making
US6673520B2 (en) Method of making an integrated circuit using a reflective mask
US5928817A (en) Method of protecting an EUV mask from damage and contamination
US6872495B2 (en) Method for fabricating a lithographic reflection mask in particular for the patterning of a semiconductor wafer, and a reflection mask
US20080113303A1 (en) Multilayer Coatings For EUV Mask Substrates
US6653053B2 (en) Method of forming a pattern on a semiconductor wafer using an attenuated phase shifting reflective mask
US5549994A (en) Exposure apparatus and reflection type mask to be used in the same
US6905801B2 (en) High performance EUV mask
US7090948B2 (en) Reflection mask and method for fabricating the reflection mask
US11143949B2 (en) Photomask blank, method of manufacturing photomask, and photomask
JP4197378B2 (en) Halftone phase shift photomask, blank for halftone phase shift photomask for the same, and pattern formation method using the same
JP4923923B2 (en) Extreme ultraviolet exposure mask and semiconductor integrated circuit manufacturing method using the same
CN111902772A (en) Mask blank, phase shift mask and method for manufacturing semiconductor device
JPH11204403A (en) Mask correction method
EP1960835B1 (en) Reflection lithography mask and method for making same
JP4529359B2 (en) Ultraviolet exposure mask, blank and pattern transfer method
JP2000031021A (en) Reflective mask and method of producing device using the same
JPH05144710A (en) Optical element and fabrication thereof
US20070292772A1 (en) Structure Of A Lithography Mask
JPH02177532A (en) Mild x-ray reflection type exposure mask and manufacture thereof
TWI839576B (en) Reticle in an apparatus for extreme ultraviolet exposure
JP4923922B2 (en) Extreme ultraviolet exposure mask, manufacturing method thereof, and semiconductor integrated circuit manufacturing method using the same
JPH08257780A (en) Mask for laser beam machining and its manufacture
JPH06338444A (en) Manufacture of mask
JP2022128851A (en) Reflection type mask blank, reflection type mask, and method for manufacturing reflection type mask