JPH1120218A - Resistor-driving circuit - Google Patents

Resistor-driving circuit

Info

Publication number
JPH1120218A
JPH1120218A JP9209559A JP20955997A JPH1120218A JP H1120218 A JPH1120218 A JP H1120218A JP 9209559 A JP9209559 A JP 9209559A JP 20955997 A JP20955997 A JP 20955997A JP H1120218 A JPH1120218 A JP H1120218A
Authority
JP
Japan
Prior art keywords
resistor
driving
constant
heating element
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9209559A
Other languages
Japanese (ja)
Inventor
Ikuo Kurashima
郁夫 倉島
Shozo Kaieda
省三 海江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AFUITSUTO KK
Original Assignee
AFUITSUTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AFUITSUTO KK filed Critical AFUITSUTO KK
Priority to JP9209559A priority Critical patent/JPH1120218A/en
Publication of JPH1120218A publication Critical patent/JPH1120218A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a constant heat generation amount (consumption power) even when a resistance value of a heat-generating body varies, by switching constant current driving and constant voltage driving with time, and making constant a sum of consumption power by the constant voltage driving and consumption power by constant current driving. SOLUTION: When a signal driving sufficiently a transistor 7 is input to an input of a resistor 8 while a transistor 9 is kept off, a voltage Vcc between a collector and an emitter of the transistor 7 decreases sufficiently, and a heat- generating body 1 is driven with a constant voltage. A consumption power at this time is inversely proportional to a resistance of the heat-generating body 1. On the other hand, when a driving voltage Vb is input to the transistor 9 while the transistor 7 is kept off, a collector current of the transistor 9 is nearly equal to an emitter current and consequently not influenced by a value of the resistance of the heat-generating body 1. The consumption power is proportional to the resistance value of the heat-generating body 1. A time of the constant voltage driving and a time of the constant current driving are controlled at a driving control circuit to make a total heat generation amount constant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、抵抗値がばらつく
抵抗体を一定の消費電力になるように駆動する抵抗体駆
動回路に関し、特に複数の発熱体がそれぞれ抵抗体とし
て動作するサーマルヘッドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistor driving circuit for driving a resistor having a variable resistance so as to have a constant power consumption, and more particularly to a thermal head in which a plurality of heating elements each operate as a resistor.

【0002】[0002]

【従来の技術】サーマルヘッドは、多数の発熱体を配列
し、各発熱体毎に設けられた駆動回路に信号を印可する
ことで各発熱体が発熱するかしないかの制御が行えるも
のであり、感熱プリンタや熱転写プリンタなどに広く使
用されている。図1(1)は、サーマルヘッドの発熱体
及びその駆動回路の構成を示す図である。図示のよう
に、各発熱体1−1、1−2、…、1−nは、それぞれ
トランジスタ2−1、2−2、…、2−nで構成される
駆動回路に接続されている。ここでは各発熱体1−1、
1−2、…、1−nは、高電位側の電源線3とトランジ
スタのコレクタに接続され、トランジスタのベースに印
可する信号a1、a2、…、anを制御することで、各
発熱体1−1、1−2、…、1−nに電流を流すか流さ
ないかが制御できるようになっている。各発熱体は抵抗
として作用する。図1(2)は、サーマルヘッドの構造
を示した例である。発熱体1は、必要なドット数分を横
に並べた構成になっており、駆動IC4によって加熱制
御が行われる。駆動IC4には、トランジスタ2が複数
個(64個、128個等)組み込まれており、ワイヤボ
ンディングにより発熱体1と接続されている。コネクタ
5からは駆動IC4の制御信号及び電源が入力される。
2. Description of the Related Art A thermal head has a structure in which a large number of heating elements are arranged and a signal is applied to a driving circuit provided for each heating element to control whether or not each heating element generates heat. Widely used in thermal printers and thermal transfer printers. FIG. 1A is a diagram illustrating a configuration of a heating element of a thermal head and a driving circuit thereof. As shown, each of the heating elements 1-1, 1-2,..., 1-n is connected to a drive circuit composed of transistors 2-1, 2-2,. Here, each heating element 1-1,
, 1-n are connected to the power supply line 3 on the high potential side and the collector of the transistor, and control the signals a1, a2,..., An applied to the base of the transistor. -1, 1-2,..., 1-n can be controlled whether or not current flows. Each heating element acts as a resistor. FIG. 1B is an example showing the structure of the thermal head. The heating element 1 has a configuration in which the required number of dots are arranged side by side, and the heating control is performed by the drive IC 4. A plurality of transistors 2 (64, 128, etc.) are incorporated in the drive IC 4 and are connected to the heating element 1 by wire bonding. From the connector 5, a control signal and a power supply of the drive IC 4 are input.

【0003】サーマルヘッドを使用したプリンタに昇華
型熱転写プリンタがある。この昇華型熱転写プリンタ
は、比較的一様なプリント濃度が得られ、画質が良好で
あるため、カラープリンタとして利用されようとしてい
る。しかし、カラープリンタとして利用した場合、現状
では印刷濃度ムラが十分でないという問題がある。この
印刷濃度ムラを生じる原因としては各種考えられるが、
大きな原因の1つが発熱体の抵抗値のばらつきである。
このようなばらつきがあると、用紙の進行方向に延びた
縞が生じる。
There is a sublimation type thermal transfer printer as a printer using a thermal head. This sublimation type thermal transfer printer is about to be used as a color printer because a relatively uniform print density is obtained and the image quality is good. However, when used as a color printer, there is a problem that print density unevenness is not sufficient at present. There are various possible causes of the print density unevenness,
One of the major causes is a variation in the resistance value of the heating element.
If there is such a variation, stripes extending in the paper traveling direction are generated.

【0004】[0004]

【発明が解決しようとする課題】発熱体の抵抗値のばら
つきを低減するため、サーマルヘッドの製造工程で各発
熱体の抵抗値を実際に測定し、その測定結果に基づいて
所定の抵抗値になるようにレーザトリミングするなどの
対策が行われている。しかし、このような対策を行って
も、発熱体の抵抗値のばらつきは十分に小さいとは言え
ないレベルである。そこで、サーマルヘッドの完成時
に、各発熱体の抵抗値を測定して記憶し、使用時にそれ
ぞれの発熱体の発熱量が一定になるように、電流や通電
時間を各発熱体毎に制御することが行われている。しか
し、各発熱体毎に電流や通電時間を制御するためには、
各発熱体の抵抗値を記録したROMや、そのROMから
データを読み出す回路や、読み出したデータに従って各
発熱体の電流や通電時間を制御する回路が必要であり、
回路構成が複雑で高価になるという問題がある。
In order to reduce the variation in the resistance value of the heating element, the resistance value of each heating element is actually measured in the manufacturing process of the thermal head, and a predetermined resistance value is set based on the measurement result. Countermeasures such as laser trimming have been taken. However, even if such measures are taken, the variation in the resistance value of the heating element is not at a sufficiently small level. Therefore, when the thermal head is completed, the resistance value of each heating element is measured and stored, and the current and energization time are controlled for each heating element so that the amount of heat generated by each heating element is constant during use. Has been done. However, in order to control the current and conduction time for each heating element,
A ROM that records the resistance value of each heating element, a circuit that reads data from the ROM, and a circuit that controls the current and conduction time of each heating element according to the read data are required.
There is a problem that the circuit configuration is complicated and expensive.

【0005】また、発熱体はそれ自体が発熱するため、
使用に伴って劣化し、抵抗値が経年変化する。しかも抵
抗値の経年変化は、発熱体毎に差があり、各発熱体の抵
抗値のばらつきが大きくなる。このような抵抗値の経年
変化の発熱体毎のばらつきはそれほど大きくはないが、
やはり問題になるレベルである。上記のような対策で
は、この発熱体の抵抗値の経年変化による影響は除けな
い。
[0005] Further, since the heating element itself generates heat,
It deteriorates with use, and the resistance value changes over time. Moreover, the aging of the resistance value differs for each heating element, and the variation in resistance value of each heating element increases. Such variation in resistance value over time for each heating element is not so large,
It is still a problematic level. The above measures cannot eliminate the influence of the aging of the resistance value of the heating element.

【0006】本発明は、このような問題を解決するため
のもので、たとえ発熱体の抵抗値がばらついても、一定
の発熱量(消費電力)になるような発熱体(抵抗体)の
駆動回路を実現することを目的とする。
The present invention is intended to solve such a problem. Even if the resistance value of the heating element varies, the driving of the heating element (resistor) so that the heating value (power consumption) is constant. It is intended to realize a circuit.

【0007】[0007]

【課題を解決するための手段】上記目的を実現するた
め、本発明の第1の態様の抵抗体駆動回路は、定電圧駆
動した場合には消費電力が抵抗値に反比例し、定電流駆
動した場合には消費電力が抵抗値に比例することに着目
し、定電圧駆動と定電流駆動を時間的に切り換え、定電
圧駆動による消費電力と定電流駆動による消費電力の和
が一定になるようにすることを特徴とする。
In order to achieve the above object, in the resistor driving circuit according to the first aspect of the present invention, when driving at a constant voltage, the power consumption is inversely proportional to the resistance value, and the driving at a constant current is performed. In this case, paying attention to the fact that the power consumption is proportional to the resistance value, switching between constant voltage drive and constant current drive over time is performed so that the sum of the power consumption by the constant voltage drive and the power consumption by the constant current drive becomes constant. It is characterized by doing.

【0008】すなわち、本発明の第1の態様の抵抗体駆
動回路は、抵抗体を駆動する抵抗体駆動回路であって、
抵抗体に一定の電圧を印可する定電圧駆動回路と、抵抗
体に一定の電流を流す定電流駆動回路と、定電圧駆動回
路を第1の所定時間、定電流駆動回路を第2の所定時間
作動させるように切り換える駆動制御回路とを備えるこ
とを特徴とする。
That is, a resistor driving circuit according to a first aspect of the present invention is a resistor driving circuit for driving a resistor,
A constant voltage driving circuit for applying a constant voltage to the resistor; a constant current driving circuit for flowing a constant current to the resistor; a constant voltage driving circuit for a first predetermined time; and a constant current driving circuit for a second predetermined time. And a drive control circuit for switching to operate.

【0009】また、本発明の第1の態様の変形例とし
て、トランジスタで抵抗体を駆動する場合、定電流駆動
の回路でも電源電圧を低下させると定電圧駆動になるこ
とに着目して、電圧の異なる2つの電源を用意し、駆動
回路を一方の電源を使用する場合には定電流駆動にな
り、他方の電源を使用する場合には定電圧駆動になるよ
うに駆動回路を設定し、いずれの電源を使用するかを時
間的に切り換え、定電圧駆動による消費電力と定電流駆
動による消費電力の和が一定になるようにすることを特
徴とする。
Also, as a modification of the first aspect of the present invention, when driving a resistor by a transistor, a constant-current driving circuit becomes a constant-voltage driving by lowering the power supply voltage. Are prepared, and the drive circuit is set to be a constant current drive when using one power supply and to be a constant voltage drive when using the other power supply. Is switched over in time, so that the sum of the power consumption by the constant voltage driving and the power consumption by the constant current driving becomes constant.

【0010】すなわち、本発明の第1の態様の変形例の
抵抗体駆動回路は、抵抗体を駆動する抵抗体駆動回路で
あって、第1の電圧を出力する第1の電源と、第2の電
圧を出力する第2の電源と、第1の電源と第2の電源の
いずれかから抵抗体に電力が供給されるように切り換え
るスイッチと、第1の電源から電力が供給される時には
抵抗体に一定の電圧を印可する定電圧駆動回路として作
動し、第2の電源から電力が供給される時には抵抗体に
一定の電流を流す定電流駆動回路として作動する駆動回
路とを備えることを特徴とする。本発明の第2の態様の
抵抗体駆動回路は、抵抗体における消費電力が、電流の
2乗と抵抗の積で決まる点に着目したものである。抵抗
体の抵抗値に近似した所定の抵抗値を有する定抵抗体を
抵抗に直列に接続すると、電流は抵抗体と定抵抗体の抵
抗値の和に反比例するが、抵抗体と定抵抗体の抵抗値は
近似しているため、抵抗体を流れる電流の2乗は抵抗体
の抵抗値にほぼ反比例するので、これと抵抗体の抵抗値
の積はほぼ一定とみなせる。従って、消費電力はほぼ一
定となる。
That is, a resistor driving circuit according to a modification of the first embodiment of the present invention is a resistor driving circuit for driving a resistor, wherein a first power supply for outputting a first voltage and a second power supply are provided. A power supply for outputting a voltage of the first power supply, a switch for switching the power supply from one of the first power supply and the second power supply to the resistor, and a switch for supplying power from the first power supply. A driving circuit that operates as a constant voltage driving circuit that applies a constant voltage to the body, and that operates as a constant current driving circuit that causes a constant current to flow through the resistor when power is supplied from the second power supply. And The resistor driving circuit according to the second aspect of the present invention focuses on the point that the power consumption of the resistor is determined by the product of the square of the current and the resistance. When a constant resistor having a predetermined resistance value approximate to the resistance value of the resistor is connected in series with the resistor, the current is inversely proportional to the sum of the resistance values of the resistor and the constant resistor. Since the resistance values are similar, the square of the current flowing through the resistor is almost inversely proportional to the resistance of the resistor, so that the product of this and the resistance of the resistor can be regarded as substantially constant. Therefore, the power consumption is almost constant.

【0011】すなわち、本発明の第2の態様の抵抗体駆
動回路は、抵抗体を駆動する抵抗体駆動回路であって、
抵抗体に直列に接続され、抵抗体の抵抗値に近似した所
定の抵抗値を有する定抵抗体と、直列に接続された抵抗
体と定抵抗体に一定の電圧を印可する定電圧駆動回路と
を備えることを特徴とする。
That is, a resistor driving circuit according to a second aspect of the present invention is a resistor driving circuit for driving a resistor,
A constant resistor connected in series to the resistor and having a predetermined resistance value approximating the resistance of the resistor; a constant voltage drive circuit for applying a constant voltage to the resistor and the constant resistor connected in series; It is characterized by having.

【0012】発熱体の抵抗値を正確に設定することは、
前述のように難しい。しかし、駆動回路に接続する定抵
抗の抵抗値は正確に設定可能である。従って、このよう
な抵抗体駆動回路が可能である。
To accurately set the resistance value of the heating element,
Difficult as mentioned above. However, the resistance value of the constant resistor connected to the drive circuit can be set accurately. Therefore, such a resistor driving circuit is possible.

【0013】上記のような抵抗体躯動回路をサーマルヘ
ッドの発熱体の駆動回路に使用すれば、発熱体の抵抗値
がばらついても発熱量を一定にすることができる。な
お、サーマルヘッド以外でも、多数の抵抗体をそれぞれ
駆動するもので、各抵抗体の抵抗値がばらつくものであ
れば、本発明が適用可能である。
If the above-described resistor driving circuit is used for a driving circuit of a heating element of a thermal head, the amount of heat generated can be kept constant even if the resistance value of the heating element varies. The present invention can be applied to a device other than a thermal head as long as it drives a large number of resistors, and the resistance of each resistor varies.

【0014】[0014]

【発明の実施の形態】以下に説明する本発明の実施例
は、サーマルヘッドに本発明を適用した実施例である。
図2は本発明の第1の態様の実施例(第1実施例)を示
す基本構成であり、図3はその効果を説明する図であ
る。図2は発熱体1を定電圧駆動と定電流駆動に時分割
で切り換える回路であり、トランジスタ7と抵抗8は発
熱体1を定電圧駆動し、トランジスタ9と抵抗10は発
熱体1を定電流駆動する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention described below are embodiments in which the present invention is applied to a thermal head.
FIG. 2 is a basic configuration showing an embodiment (first embodiment) of the first aspect of the present invention, and FIG. 3 is a diagram for explaining the effect. FIG. 2 shows a circuit for switching the heating element 1 between a constant voltage drive and a constant current drive in a time-division manner. The transistor 7 and the resistor 8 drive the heating element 1 at a constant voltage, and the transistor 9 and the resistor 10 drive the heating element 1 at a constant current. Drive.

【0015】まず、トランジスタ9がオフの状態で、抵
抗8の入力にトランジスタ7を十分に駆動する信号が加
えられると、トランジスタ7のコレクタ・エミッタ間の
電圧Vceは十分低くなり、発熱体1は定電圧駆動さ
れ、その消費電力P1は、発熱体の抵抗をRth、電源
電圧をVccとすると、P1≒Vcc/Rthとな
る。したがって、消費電力P1は発熱体1の抵抗値Rt
hに反比例する。一方、トランジスタ7がオフの状態
で、トランジスタ9に駆動電圧Vbが入力されると、抵
抗10にはIe=(Vb−Vbe)/Reの電流が流れ
る。ここで、Vbeはトランジスタ9のベース・エミッ
タ間電圧で、Reは抵抗10の抵抗値である。トランジ
スタ9のコレクタ電流Icは、エミッタ電流Ieとほぼ
同じであり、発熱体1の抵抗値Rthの影響は受けない
ため、発熱体1は定電流駆動され消費電力P2は、P2
≒Ie・Rthとなる。したがって、消費電力P2は
発熱体1の抵抗値Rthに比例する。従来のサーマルプ
リンタの発熱体の駆動回路では、定電圧駆動または定電
流駆動のどちらか一方を使用するのが一般的で、どちら
の方法でも発熱量が抵抗値Rthのばらつきの影響を大
きく受けてしまっていた。本発明では、1個の印字画素
に対して定電圧駆動と定電流駆動を時分割で行い、合計
の発熱量がほぼ一定になるように定電圧駆動の時間T1
と定電流駆動の時間T2を、駆動制御回路で制御する。
First, when a signal for sufficiently driving the transistor 7 is applied to the input of the resistor 8 while the transistor 9 is off, the voltage Vce between the collector and the emitter of the transistor 7 becomes sufficiently low, and the heating element 1 is a constant voltage drive, the power consumption P1 is the resistance of the heating element Rth, the power supply voltage is Vcc, the P1 ≒ Vcc 2 / Rth. Therefore, the power consumption P1 is equal to the resistance value Rt of the heating element 1.
It is inversely proportional to h. On the other hand, when the drive voltage Vb is input to the transistor 9 with the transistor 7 turned off, a current of Ie = (Vb−Vbe) / Re flows through the resistor 10. Here, Vbe is the voltage between the base and the emitter of the transistor 9, and Re is the resistance value of the resistor 10. Since the collector current Ic of the transistor 9 is substantially the same as the emitter current Ie and is not affected by the resistance value Rth of the heating element 1, the heating element 1 is driven at a constant current and the power consumption P2 is P2
≒ Ie 2 · Rth. Therefore, the power consumption P2 is proportional to the resistance value Rth of the heating element 1. In a driving circuit for a heating element of a conventional thermal printer, it is common to use either constant voltage driving or constant current driving. In either method, the amount of heat generated is greatly affected by the variation in the resistance value Rth. Was gone. In the present invention, the constant voltage driving and the constant current driving are performed on one print pixel in a time division manner, and the constant voltage driving time T1 is set so that the total heat generation becomes substantially constant.
And the time T2 of the constant current drive is controlled by the drive control circuit.

【0016】駆動時間T1、T2は、発熱体の抵抗値R
thのほぼ中心値で、P1・T1=P2・T2となるよ
うに設定する。したがって、発熱体の平均消費電力P3
は P3=(P1・T1+P2・T2)/(T1+T2) =(Vcc/Rth+Ie・Rth)/(T1+T2) となり、抵抗値Rthの中心値で定電圧駆動と定電流駆
動の発熱量がほぼ同じになる。抵抗値Rthが中心値よ
りも小さい場合にはP1が増加し、P2が減少すること
により発熱量の変動が少なくなる。逆に抵抗値Rthが
中心値よりも大きい場合にはP1が減少し、P2が増加
することにより同様に発熱量の変動が少なくなる。図3
は定電圧駆動時の消費電力P1と定電流駆動時の消費電
力P2および本発明による平均消費電力P3の抵抗値R
thの変動による影響を示している。これより、P3は
P1、P2と比較して抵抗値Rthによる変動が非常に
少なくなっていることがわかる。
The driving times T1 and T2 are determined by the resistance R of the heating element.
It is set so that P1 · T1 = P2 · T2 at approximately the center value of th. Therefore, the average power consumption P3 of the heating element
The P3 = (P1 · T1 + P2 · T2) / (T1 + T2) = (Vcc 2 / Rth + Ie 2 · Rth) / (T1 + T2) , and the heating value of the constant voltage drive and the constant current drive at the center value of the resistance value Rth of approximately the same become. When the resistance value Rth is smaller than the center value, P1 increases and P2 decreases, so that the fluctuation of the heat generation amount decreases. Conversely, when the resistance value Rth is larger than the center value, P1 decreases and P2 increases, so that the variation of the heat generation amount similarly decreases. FIG.
Is the resistance R of the power consumption P1 at the time of constant voltage driving, the power consumption P2 at the time of constant current driving, and the average power consumption P3 according to the present invention.
The effect of the variation of th is shown. From this, it can be seen that the variation of P3 due to the resistance value Rth is much smaller than that of P1 and P2.

【0017】図4は本発明の第1の態様の変形の実施例
(第2実施例)を示す基本構成であり、図5はその効果
を説明する図である。図4も図2と同様に定電圧駆動と
定電流駆動を時分割で切り換える回路である。電源電圧
を切り換えスイッチ14で、ViとVvに切り換える
が、定電流駆動時の電源電圧Viと定電圧駆動時の電源
電圧Vvは次のような条件を満たすように設定する。ま
ず、定電流駆動について考える。発熱体1に流す設定電
流をIeとした場合に、発熱体1の抵抗値Rthが最大
の時でも以下の条件が成り立つように電源電圧Viを設
定する。 (Re+Rth)・Ie≦Vi ここで、Reは抵抗13の抵抗値である。さらに、トラ
ンジスタ11の駆動電圧Vbを以下のように設定する
と、発熱体1には常にIeの電流が流れて定電流駆動さ
れることになる。 Vb=Re・Ie+Vbe ここで、Vbeはトランジスタ11のベース・エミッタ
間電圧である。このときの発熱体1の消費電力P4は、
P4≒Ie・Rthとなり、抵抗値Rthに比例する
ことがわかる。
FIG. 4 shows a basic configuration of an embodiment (second embodiment) of a modification of the first embodiment of the present invention, and FIG. 5 is a view for explaining the effect. FIG. 4 is also a circuit for switching between constant voltage driving and constant current driving in a time sharing manner as in FIG. The power supply voltage is switched between Vi and Vv by the changeover switch 14, and the power supply voltage Vi during the constant current drive and the power supply voltage Vv during the constant voltage drive are set so as to satisfy the following conditions. First, consider the constant current drive. When the set current flowing through the heating element 1 is Ie, the power supply voltage Vi is set so that the following condition is satisfied even when the resistance value Rth of the heating element 1 is maximum. (Re + Rth) · Ie ≦ Vi Here, Re is a resistance value of the resistor 13. Further, when the drive voltage Vb of the transistor 11 is set as follows, the heating element 1 always flows with the current Ie and is driven at a constant current. Vb = Re · Ie + Vbe Here, Vbe is a base-emitter voltage of the transistor 11. The power consumption P4 of the heating element 1 at this time is
It is found that P4 ・ Ie 2 · Rth, which is proportional to the resistance value Rth.

【0018】つぎに、定電圧駆動について考える。電源
電圧をVvに切り換えて、発熱体1の抵抗値が最小値で
も以下の条件が満たされるようにVvを設定する。 (Re+Rth)・Ie≧Vv ただし、Ieは定電流駆動で設定した電流値である。こ
の場合には、図4の駆動回路は電源電圧が低すぎるため
定電流駆動できず、トランジスタ11のコレクタ・エミ
ッタ間電圧Vceはほとんどゼロとなるため、発熱体1
の電流値Iは、I≒Vv/(Re+Rth)となる。こ
こで、Re<<Rthとなるように設定すると、電流I
は発熱体1の抵抗値Rthにほぼ反比例して、定電圧駆
動になることがわかる。
Next, the constant voltage driving will be considered. The power supply voltage is switched to Vv, and Vv is set such that the following condition is satisfied even when the resistance value of the heating element 1 is the minimum value. (Re + Rth) · Ie ≧ Vv Here, Ie is a current value set by the constant current drive. In this case, the driving circuit of FIG. 4 cannot perform constant current driving because the power supply voltage is too low, and the collector-emitter voltage Vce of the transistor 11 becomes almost zero.
Is I ≒ Vv / (Re + Rth). Here, if it is set so that Re << Rth, the current I
It can be seen that the constant voltage driving is substantially in inverse proportion to the resistance value Rth of the heating element 1.

【0019】このときの発熱体1の消費電力P5は、P
5=I・Rth≒Vv/Rthとなり、抵抗値Rt
hに反比例する。切り換えスイッチ14の切り換えは、
定電流駆動の時間をT4とし、定電圧駆動の時間をT5
とした場合に、発熱体の抵抗値Rthのほぼ中心値で、
P4・T4=P5・T5となるようにしている。.した
がって、発熱体の平均消費電力P6はP6=(P4・T
4+P5・T5)/(T4+T5)≒(Ie・Rth
・T4+Vv・T5/Rth)/(T4+T5)とな
り、抵抗値Rthの中心値で定電圧駆動と定電流駆動の
発熱量がほぼ同じになる。抵抗値Rthが中心値よりも
小さい場合にはP5が増加し、P4が減少することによ
り発熱量の変動が少なくなる。逆に抵抗値Rthが中心
値よりも大きい場合にはP5が減少し、P4が増加する
ことにより同様に発熱量の変動が少なくなる。図5は定
電流駆動時の消費電力P4と定電圧駆動時の消費電力P
5および本発明による平均消費電力P6の抵抗値Rth
の変動による影響を示している。これより、P6はP
4、P5と比較して抵抗値Rthによる変動が非常に少
なくなっていることがわかる。
At this time, the power consumption P5 of the heating element 1 is P
5 = I 2 · Rth ≒ Vv 2 / Rth, and the resistance value Rt
It is inversely proportional to h. Switching of the changeover switch 14
The time of the constant current driving is T4, and the time of the constant voltage driving is T5.
, The resistance value Rth of the heating element is approximately the center value,
P4 · T4 = P5 · T5. . Therefore, the average power consumption P6 of the heating element is P6 = (P4 · T
4 + P5 · T5) / (T4 + T5) ≒ (Ie 2 · Rth
· T4 + Vv 2 · T5 / Rth) / (T4 + T5) , and the heating value of the constant voltage drive and the constant current drive at the center value of the resistance value Rth becomes substantially the same. When the resistance value Rth is smaller than the central value, P5 increases and P4 decreases, so that the fluctuation of the heat generation amount decreases. Conversely, when the resistance value Rth is larger than the center value, P5 decreases and P4 increases, so that the variation in the heat generation amount similarly decreases. FIG. 5 shows the power consumption P4 at the time of constant current driving and the power consumption P at the time of constant voltage driving.
5 and the resistance value Rth of the average power consumption P6 according to the present invention.
The effect of fluctuations in From this, P6 becomes P
4, it can be seen that the variation due to the resistance value Rth is very small as compared with P5.

【0020】図6(1)は、本発明の第2の態様の実施
例(第3実施例)を示す基本構成であり、図7はその効
果を説明する図である。図6(1)は、発熱体1と抵抗
17を直列接続してトランジスタ18で定電圧駆動する
回路であるが、抵抗17の抵抗値Rcは発熱体と比較し
て十分ばらつきの少ないものを使用する。ここで、抵抗
17の抵抗値RcをRthのほぼ中心値と等しくし、R
thのばらつきをΔとすると、Rth=Rc(1+Δ)
となる。Δの値は、通常のサーマルヘッドでは経年変化
を含めても、−0.2〜+0.2程度である。この回路
で電源電圧を2Vpとした場合の発熱体1の消費電力P
7は、 P7≒(2Vp/(Rth+Rc))・Rth =(Vp/Rc)/{1+Δ/(4・(1+Δ))} となる。
FIG. 6A shows a basic configuration of an embodiment (third embodiment) according to the second aspect of the present invention, and FIG. 7 is a diagram for explaining the effect thereof. FIG. 6A shows a circuit in which the heating element 1 and the resistor 17 are connected in series and the transistor 18 is driven at a constant voltage. The resistance value Rc of the resistor 17 has a sufficiently small variation compared to the heating element. I do. Here, the resistance value Rc of the resistor 17 is set substantially equal to the center value of Rth, and R
When the variation of th is Δ, Rth = Rc (1 + Δ)
Becomes The value of Δ is about −0.2 to +0.2 in a normal thermal head, even if aging is included. The power consumption P of the heating element 1 when the power supply voltage is 2 Vp in this circuit
7 is a P7 ≒ (2Vp / (Rth + Rc)) 2 · Rth = (Vp 2 / Rc) / {1 + Δ 2 / (4 · (1 + Δ))}.

【0021】一方図6(2)は、従来の一般的なサーマ
ルヘッドの駆動回路で、発熱体1をトランジスタ2で定
電圧駆動している。この場合の発熱体1の消費電力P8
は、 P8≒Vp/Rth =(Vp/Rc)/(1+Δ) となる。Rcのばらつきは無視できるので、本発明によ
る図6(1)の回路では、図6(2)の従来の駆動回路
と比較して発熱体1の抵抗値Rthの変化の影響が、Δ
からΔ/(4・(1+Δ))になっていることがわか
る。図7は、Δが−0.2〜+0.2と変化した場合の
P7、P8を求めたものである。これより、図6(1)
の本発明の回路では、抵抗値Rthの変動による影響が
非常に少なくなっていることがわかる。
On the other hand, FIG. 6B shows a conventional general thermal head drive circuit, in which a heating element 1 is driven at a constant voltage by a transistor 2. Power consumption P8 of heating element 1 in this case
P8 PVp 2 / Rth = (Vp 2 / Rc) / (1 + Δ) Since the variation in Rc is negligible, in the circuit of FIG. 6A according to the present invention, the influence of the change in the resistance value Rth of the heating element 1 is smaller than that of the conventional driving circuit of FIG.
From this, it can be seen that Δ 2 / (4 · (1 + Δ)). FIG. 7 shows P7 and P8 when Δ changes from −0.2 to +0.2. From this, FIG.
In the circuit of the present invention, it is understood that the influence of the fluctuation of the resistance value Rth is extremely small.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
発熱体の抵抗値のばらつきによる発熱量のばらつきの影
響が、従来の駆動回路と比較して非常に少なくすること
ができる。
As described above, according to the present invention,
The influence of the variation in the amount of generated heat due to the variation in the resistance value of the heating element can be significantly reduced as compared with the conventional driving circuit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(1)従来の一般的なサーマルヘッドの発熱体
の駆動回路を示した回路図と、(2)その構造例を示し
た説明図である。
FIG. 1 is a circuit diagram showing a driving circuit of a heating element of a conventional general thermal head, and FIG. 1B is an explanatory diagram showing a structural example thereof.

【図2】本発明の第1実施例を示した回路図である。FIG. 2 is a circuit diagram showing a first embodiment of the present invention.

【図3】本発明の第1実施例の効果を示したを説明図で
ある。
FIG. 3 is an explanatory diagram showing an effect of the first embodiment of the present invention.

【図4】本発明の第2実施例を示した回路図である。FIG. 4 is a circuit diagram showing a second embodiment of the present invention.

【図5】本発明の第2実施例の効果を示したを説明図で
ある。
FIG. 5 is an explanatory diagram showing the effect of the second embodiment of the present invention.

【図6】本発明の第3実施例を示した回路図である。FIG. 6 is a circuit diagram showing a third embodiment of the present invention.

【図7】本発明の第3実施例の効果を示したを説明図で
ある。
FIG. 7 is an explanatory diagram showing the effect of the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 発熱体 2 トランジスタ 3 電源線 4 駆動IC 5 コネクタ 6 放熱板 7 トランジスタ 8 抵抗 9 トランジスタ 10 抵抗 11 トランジスタ 12 抵抗 13 抵抗 14 切り換えスイッチ 15 電源線 16 電源線 17 抵抗 18 トランジスタ 19 抵抗 20 電源線 21 抵抗 22 電源線 DESCRIPTION OF SYMBOLS 1 Heating element 2 Transistor 3 Power supply line 4 Drive IC 5 Connector 6 Heat sink 7 Transistor 8 Resistance 9 Transistor 10 Resistance 11 Transistor 12 Resistance 13 Resistance 14 Changeover switch 15 Power supply line 16 Power supply line 17 Resistance 18 Transistor 19 Resistance 20 Power supply line 21 Resistance 22 Power line

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 抵抗体を駆動する抵抗体駆動回路であっ
て、 前記抵抗体に一定の電圧を印加する定電圧駆動回路と、 前記抵抗体に一定の電流を流す定電流駆動回路と、 前記定電圧駆動回路を第1の所定時間、前記定電流駆動
回路を第2の所定時間作動させるように切り換える駆動
制御回路とを備えることを特徴とする抵抗体駆動回路。
1. A resistor driving circuit for driving a resistor, comprising: a constant voltage driving circuit for applying a constant voltage to the resistor; a constant current driving circuit for flowing a constant current to the resistor; A drive control circuit for switching the constant voltage drive circuit to operate for a first predetermined time and the constant current drive circuit to operate for a second predetermined time.
【請求項2】 抵抗体を駆動する抵抗体駆動回路であっ
て、 第1の電圧を出力する第1の電源と、 第2の電圧を出力する第2の電源と、 前記第1の電源と前記第2の電源のいづれかから前記抵
抗体に電力が供給されるように切り換えるスイッチと、 前記第1の電源から電力が供給される時には前記抵抗体
に一定の電圧を印可する定電圧駆動回路として作動し、
前記第2の電源から電力が供給される時には前記抵抗体
に一定の電流を流す定電流駆動回路として作動する駆動
回路とを備えることを特徴とする抵抗体駆動回路。
2. A resistor driving circuit for driving a resistor, comprising: a first power supply for outputting a first voltage; a second power supply for outputting a second voltage; and the first power supply. A switch for switching power to be supplied from any one of the second power supply to the resistor; and a constant voltage drive circuit for applying a constant voltage to the resistor when power is supplied from the first power supply. Works,
And a drive circuit that operates as a constant current drive circuit that supplies a constant current to the resistor when power is supplied from the second power supply.
【請求項3】抵抗体を駆動する抵抗体駆動回路であっ
て、 前記抵抗体に直列に接続され、前記抵抗体の抵抗値に近
似した所定の抵抗値を有する定抵抗体と、 直列に接続された前記抵抗体と前記定抵抗体に一定の電
圧を印可する定電圧駆動回路とを備えることを特徴とす
る抵抗体駆動回路。
3. A resistor driving circuit for driving a resistor, the resistor driving circuit being connected in series with the resistor, and having a predetermined resistance close to the resistance of the resistor, and being connected in series. And a constant voltage driving circuit for applying a constant voltage to the constant resistor.
【請求項4】抵抗体として作用する複数の発熱体と、 各発熱体が発熱するように電力を供給する各発熱体毎に
設けられた複数の駆動回路とを備えるサーマルヘッドに
おいて、 前記駆動回路として請求項1から3のいづれか1項に記
載の抵抗体駆動回路が使用されることを特徴とするサー
マルヘッド。
4. A thermal head, comprising: a plurality of heating elements acting as resistors; and a plurality of driving circuits provided for each of the heating elements for supplying electric power so that each heating element generates heat. A thermal head using the resistor driving circuit according to any one of claims 1 to 3.
JP9209559A 1997-07-01 1997-07-01 Resistor-driving circuit Pending JPH1120218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9209559A JPH1120218A (en) 1997-07-01 1997-07-01 Resistor-driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9209559A JPH1120218A (en) 1997-07-01 1997-07-01 Resistor-driving circuit

Publications (1)

Publication Number Publication Date
JPH1120218A true JPH1120218A (en) 1999-01-26

Family

ID=16574840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9209559A Pending JPH1120218A (en) 1997-07-01 1997-07-01 Resistor-driving circuit

Country Status (1)

Country Link
JP (1) JPH1120218A (en)

Similar Documents

Publication Publication Date Title
US4370666A (en) Thermal head driving device
JP3322705B2 (en) Thermal printer
EP0113400B1 (en) Regulated current source for thermal printhead
JP3294777B2 (en) Print head controller
JPH1120218A (en) Resistor-driving circuit
JPS60201970A (en) Driving circuit for electrode for printing
JP3213309B2 (en) LED recording head control circuit
EP0113817B1 (en) Thermal printer edge compensation
JPH0531938A (en) Driver circuit for thermal head
JPS6241056A (en) Recording head
JP3074083B2 (en) Temperature detector
JP2582097B2 (en) Power circuit of thermal head
JPS62193852A (en) Thermal head power source controller
JPH03251467A (en) Optical printing head
JPS6351104B2 (en)
JPH02281969A (en) Thermal head
KR960010518B1 (en) Thermal head in printer
US6616356B2 (en) Method for controlling a thermal head to permit multicolor printing
JP2614248B2 (en) Thermal head
JPH08318633A (en) Print head driving circuit
JP2521453B2 (en) Thermal head
JPH04255368A (en) Optical printing head
JPS58211474A (en) Preheater of thermosensitive recording head
JPS61118268A (en) Thermal serial type video printer
JPH0393555A (en) Thermal head