JPH11200926A - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine

Info

Publication number
JPH11200926A
JPH11200926A JP10006212A JP621298A JPH11200926A JP H11200926 A JPH11200926 A JP H11200926A JP 10006212 A JP10006212 A JP 10006212A JP 621298 A JP621298 A JP 621298A JP H11200926 A JPH11200926 A JP H11200926A
Authority
JP
Japan
Prior art keywords
cylinder
fuel injection
oxygen concentration
exhaust
injection amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10006212A
Other languages
Japanese (ja)
Other versions
JP3956458B2 (en
Inventor
Hiroshi Umehara
啓 梅原
Tatsuya Fujita
達也 藤田
Kanehito Nakamura
兼仁 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP00621298A priority Critical patent/JP3956458B2/en
Publication of JPH11200926A publication Critical patent/JPH11200926A/en
Application granted granted Critical
Publication of JP3956458B2 publication Critical patent/JP3956458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately estimate exhaust oxygen concentration in each cylinder from an output of one oxygen concentration sensor arranged on collected exhaust pipes of an engine. SOLUTION: When every cylinder fuel injection amount control is necessary, a fuel injection amount of the specific cylinder is increased (step 104). EGR is cut, and waste gate valve is fully opened (step 105). The timing Ta is sensed where the fluctuation of exhaust oxygen concentration caused by increasing the fuel injection amount of the specific cylinder is sensed by an oxygen concentration sensor (step 106). Afterward, an output of the oxygen concentration sensor is read (step 108). Corresponding relation between a weight factor (flow amount ratios of the cylinders) and a crank angle is corrected based on the timing Ta. The exhaust oxygen concentration in each cylinder is calculated from the weight factor and the output of the oxygen concentration sensor (step 109). The fuel injection amounts of the cylinders are so corrected as to obtain the same exhaust oxygen density in all the cylinders, based on the calculated exhaust oxygen concentration in each cylinder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の気筒別
の排気酸素濃度を検出して気筒別の燃料噴射量を補正す
る機能を備えた内燃機関の燃料噴射制御装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection control device for an internal combustion engine having a function of detecting an exhaust oxygen concentration of each cylinder of the internal combustion engine and correcting a fuel injection amount of each cylinder.

【0002】[0002]

【従来の技術】この種の燃料噴射制御装置においては、
各気筒毎に酸素濃度センサを1つずつ設置すると、コス
ト高になるため、特開昭59−101562号公報に示
すように、内燃機関の集合排気管に1つの酸素濃度セン
サを設け、内燃機関の基準タイミングから各気筒の排気
ガスが酸素濃度センサに到達するまでの遅れ時間を運転
状態に応じて予め求めておき、それに基づいて1つの酸
素濃度センサの出力から気筒別の排気酸素濃度を検出し
て、それを目標値にフィードバック制御することが提案
されている。
2. Description of the Related Art In this type of fuel injection control device,
If one oxygen concentration sensor is installed for each cylinder, the cost increases. Therefore, as shown in JP-A-59-101562, one oxygen concentration sensor is provided in a common exhaust pipe of an internal combustion engine. The delay time from the reference timing to the exhaust gas of each cylinder reaching the oxygen concentration sensor is obtained in advance according to the operating state, and the exhaust oxygen concentration for each cylinder is detected from the output of one oxygen concentration sensor based on the delay time. Then, it has been proposed to perform feedback control on the target value.

【0003】しかし、内燃機関の集合排気管を通過する
排気ガスは、排気管形状や気筒毎の排気バルブ開放タイ
ミングのオーバラップ等による混ざりが生じるため、上
記公報のように、気筒別の排気酸素濃度を1つの酸素濃
度センサで検出しようとすると、酸素濃度センサの出力
は、常に全気筒の排気酸素濃度を混合した出力となり、
1つの気筒の排気酸素濃度を単独で検出することは不可
能である。そのため、気筒別の排気酸素濃度を精度良く
検出することができず、各気筒の排気酸素濃度を目標値
に精度良く制御することが困難である。
However, the exhaust gas passing through the collective exhaust pipe of the internal combustion engine is mixed due to the shape of the exhaust pipe, the overlap of the exhaust valve opening timing of each cylinder, and the like. If an attempt is made to detect the concentration with one oxygen concentration sensor, the output of the oxygen concentration sensor will always be an output obtained by mixing the exhaust oxygen concentration of all cylinders,
It is impossible to detect the exhaust oxygen concentration of one cylinder independently. Therefore, it is not possible to accurately detect the exhaust oxygen concentration for each cylinder, and it is difficult to accurately control the exhaust oxygen concentration of each cylinder to a target value.

【0004】この問題を解決するために、特開平5−1
80040号公報では、酸素濃度センサの出力を各気筒
の燃焼履歴に所定の重み係数を乗じた加重平均値からな
るものと見なして排気系の挙動を模擬するモデルを構築
し、各気筒の排気酸素濃度をオブザーバによって観察
し、このオブザーバの出力に基づいて気筒別の排気酸素
濃度を推定することで、気筒別の排気酸素濃度を目標値
にフィードバック制御する技術が提案されている。
[0004] In order to solve this problem, Japanese Patent Laid-Open Publication No.
In Japanese Patent Application Publication No. 80040, a model that simulates the behavior of an exhaust system is constructed by regarding the output of an oxygen concentration sensor as a weighted average value obtained by multiplying the combustion history of each cylinder by a predetermined weighting coefficient, and constructs a model for simulating the exhaust oxygen A technique has been proposed in which the concentration is observed by an observer, and the exhaust oxygen concentration for each cylinder is estimated based on the output of the observer, thereby feedback-controlling the exhaust oxygen concentration for each cylinder to a target value.

【0005】[0005]

【発明が解決しようとする課題】上記特開平5−180
040号公報では、各気筒の排気ガスが酸素濃度センサ
で検出されるタイミングは、エンジン回転数と負荷に応
じて決定されている。しかし、酸素濃度センサの個体差
や経時劣化、過給装置の排気タービンの抵抗等の影響に
より、酸素濃度センサで検出されるタイミングが変化す
るため、エンジン回転数と負荷に応じて検出タイミング
を決定すると、気筒別の排気酸素濃度を精度良く分離、
抽出することが困難である。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. 5-180 is disclosed.
In Japanese Patent No. 040, the timing at which the exhaust gas of each cylinder is detected by the oxygen concentration sensor is determined according to the engine speed and the load. However, the timing of detection by the oxygen concentration sensor changes due to individual differences and aging of the oxygen concentration sensor, the resistance of the exhaust turbine of the supercharger, etc., so the detection timing is determined according to the engine speed and load. Then, the exhaust oxygen concentration for each cylinder is accurately separated,
Difficult to extract.

【0006】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、集合排気管に設置し
た1つの酸素濃度センサの出力から気筒別の排気酸素濃
度を精度良く推定することができ、気筒別の燃料噴射制
御を精度良く行うことができる内燃機関の燃料噴射制御
装置を提供することにある。
The present invention has been made in view of such circumstances, and accordingly, has as its object to accurately estimate the exhaust oxygen concentration for each cylinder from the output of one oxygen concentration sensor installed in a collective exhaust pipe. It is an object of the present invention to provide a fuel injection control device for an internal combustion engine that can perform fuel injection control for each cylinder with high accuracy.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の内燃機関の燃料噴射制御装置で
は、集合排気管に設置した酸素濃度センサの出力を、各
気筒の排気酸素濃度に所定の重み係数(各気筒の流量比
率に相当)を乗じて加重平均した排気酸素濃度と見な
し、この酸素濃度センサの出力から前記重み係数を考慮
して気筒別の排気酸素濃度を気筒別排気酸素濃度推定手
段により推定する。この際、重み係数を排気酸素濃度検
出時のクランク角に応じて重み係数決定手段により決定
するが、酸素濃度センサの出力から重み係数が適当でな
いと判断した場合(つまり気筒別の燃料噴射量のばらつ
きが大きいと判断した場合)には、重み係数とクランク
角との対応関係を補正制御手段により補正する。これに
より、各気筒の排気酸素濃度が酸素濃度センサで検出さ
れるタイミングが変化しても、それに応じて重み係数
(各気筒の流量比率)とクランク角との対応関係が補正
されるため、集合排気管に設置した1つの酸素濃度セン
サの出力から気筒別の排気酸素濃度を精度良く推定する
ことができ、気筒別の燃料噴射制御を精度良く行うこと
ができる。
According to a first aspect of the present invention, there is provided a fuel injection control apparatus for an internal combustion engine, comprising: an output of an oxygen concentration sensor installed in a common exhaust pipe; The oxygen concentration is multiplied by a predetermined weighting factor (corresponding to the flow rate ratio of each cylinder) to be regarded as a weighted average exhaust gas oxygen concentration. From the output of this oxygen concentration sensor, the exhaust gas oxygen concentration for each cylinder is determined in consideration of the weighting coefficient. It is estimated by another exhaust oxygen concentration estimating means. At this time, the weighting factor is determined by the weighting factor determining means according to the crank angle at the time of detecting the exhaust oxygen concentration, but when it is determined from the output of the oxygen concentration sensor that the weighting factor is not appropriate (that is, the fuel injection amount for each cylinder). If it is determined that the variation is large), the correspondence between the weight coefficient and the crank angle is corrected by the correction control means. Thus, even if the timing at which the exhaust oxygen concentration of each cylinder is detected by the oxygen concentration sensor changes, the correspondence between the weight coefficient (flow rate ratio of each cylinder) and the crank angle is corrected accordingly. The exhaust oxygen concentration for each cylinder can be accurately estimated from the output of one oxygen concentration sensor installed in the exhaust pipe, and the fuel injection control for each cylinder can be accurately performed.

【0008】ここで、重み係数とクランク角との対応関
係を補正する場合には、請求項2のように、特定気筒の
燃料噴射量を増量又は減量し、その増量又は減量によっ
て生じる排気酸素濃度の変化が酸素濃度センサで検出さ
れるタイミングをクランク角で検出し、その検出結果に
基づいて重み係数とクランク角との対応関係を補正する
ようにすれば良い。この場合、特定気筒の燃料噴射量を
増量又は減量することで、特定気筒の排気酸素濃度を検
出するまでの遅れ時間を精度良く検出することができ、
この検出結果から各気筒の流量比率を精度良く反映させ
た重み係数を求めることができる。
Here, when correcting the correspondence between the weight coefficient and the crank angle, the fuel injection amount of the specific cylinder is increased or decreased, and the exhaust oxygen concentration generated by the increased or decreased amount is specified. The timing at which the change in the angle is detected by the oxygen concentration sensor may be detected by the crank angle, and the correspondence between the weight coefficient and the crank angle may be corrected based on the detection result. In this case, by increasing or decreasing the fuel injection amount of the specific cylinder, it is possible to accurately detect the delay time until the exhaust oxygen concentration of the specific cylinder is detected,
From this detection result, a weight coefficient that accurately reflects the flow rate ratio of each cylinder can be obtained.

【0009】この場合、請求項3のように、特定気筒の
燃料噴射量を増量又は減量する際に1サイクル当たりの
合計燃料噴射量が変化しないように、特定気筒以外の気
筒の燃料噴射量を補正するようにしても良い。このよう
にすれば、特定気筒の燃料噴射量を増減させた時の内燃
機関の出力変動を抑制することができ、ドライバビリテ
ィを良好に維持できる。
In this case, when increasing or decreasing the fuel injection amount of the specific cylinder, the fuel injection amounts of the cylinders other than the specific cylinder are changed so that the total fuel injection amount per cycle does not change. The correction may be made. By doing so, it is possible to suppress fluctuations in the output of the internal combustion engine when the fuel injection amount of the specific cylinder is increased or decreased, and to maintain good drivability.

【0010】或は、請求項4のように、特定気筒の燃料
噴射量を増量する場合に、当該特定気筒の燃料噴射時期
を遅角するようにしても良い。このようにすれば、特定
気筒の燃料噴射量の増量による出力増加を燃料噴射時期
の遅角により抑えることができ、気筒間にトルク差が生
じることを防止できて、気筒間のトルク変動による回転
変動を抑制できる。これにより、各気筒の排気バルブ開
放時間に差が生じることを防止できて、各気筒の流量比
率の変化を抑制でき、気筒別の排気酸素濃度の推定精度
を向上できる。
Alternatively, when the fuel injection amount of a specific cylinder is increased, the fuel injection timing of the specific cylinder may be retarded. With this configuration, an increase in the output due to an increase in the fuel injection amount of the specific cylinder can be suppressed by retarding the fuel injection timing, and a torque difference between the cylinders can be prevented. Fluctuations can be suppressed. As a result, it is possible to prevent a difference in the exhaust valve opening time of each cylinder from occurring, suppress a change in the flow rate ratio of each cylinder, and improve the estimation accuracy of the exhaust oxygen concentration for each cylinder.

【0011】また、請求項5のように、特定気筒の燃料
噴射量を増量する場合に、その増量分の燃料を当該特定
気筒の膨張行程で後噴射することで、当該特定気筒の燃
料噴射量を増量するようにしても良い。このように、増
量分の燃料を特定気筒の膨張行程で後噴射して燃焼させ
れば、特定気筒のメイン噴射量を増加させる場合と比較
して、特定気筒のトルク上昇を少なくすることができ、
気筒間のトルク差を低減することができる。
Further, when the fuel injection amount of the specific cylinder is increased, the increased amount of fuel is post-injected in the expansion stroke of the specific cylinder to thereby increase the fuel injection amount of the specific cylinder. May be increased. As described above, if the increased amount of fuel is post-injected and burned in the expansion stroke of the specific cylinder, the increase in the torque of the specific cylinder can be reduced as compared with the case where the main injection amount of the specific cylinder is increased. ,
The torque difference between the cylinders can be reduced.

【0012】また、排気ガス還流装置を備えた内燃機関
では、各気筒毎の排気ガス還流率のばらつきによって各
気筒の流量比率が変動するため、請求項6のように、特
定気筒の燃料噴射量を増量又は減量する際に、排気ガス
還流装置による排気ガス還流を停止することが好まし
い。このようにすれば、排気ガス還流の影響を受けずに
気筒別の排気酸素濃度を精度良く推定することができ
る。
Further, in the internal combustion engine having the exhaust gas recirculation device, the flow rate ratio of each cylinder fluctuates due to the variation of the exhaust gas recirculation rate for each cylinder. When increasing or decreasing the amount of exhaust gas, it is preferable to stop the exhaust gas recirculation by the exhaust gas recirculation device. In this way, the exhaust oxygen concentration for each cylinder can be accurately estimated without being affected by the exhaust gas recirculation.

【0013】また、ウェイストゲートバルブ付きの過給
装置を備えた内燃機関に本発明を適用する場合には、請
求項7のように、特定気筒の燃料噴射量を増量又は減量
する際に、ウェイストゲートバルブを開放することが好
ましい。このように、ウェイストゲートバルブを開放す
ると、それまで排気タービンで攪拌されていた排気の多
くがウェイストゲートに流れるため、排気タービンによ
る気筒間の排気ガスの攪拌を少なくすることができ、気
筒別の排気酸素濃度を精度良く推定することができる。
When the present invention is applied to an internal combustion engine provided with a supercharging device with a waste gate valve, when increasing or decreasing the fuel injection amount of a specific cylinder, it is possible to reduce the waste amount. It is preferable to open the gate valve. In this way, when the wastegate valve is opened, much of the exhaust gas that has been stirred by the exhaust turbine flows to the wastegate, so that the exhaust gas can be less stirred between the cylinders by the exhaust turbine. The exhaust oxygen concentration can be accurately estimated.

【0014】また、可変ジオメトリターボを備えた内燃
機関に本発明を適用する場合には、請求項8のように、
特定気筒の燃料噴射量を増量又は減量する際に、排気抵
抗を低減するように可変ジオメトリターボのガイド板を
開放することが好ましい。このようにすれば、可変ジオ
メトリターボ内での気筒間の排気ガスの攪拌を少なくす
ることができる。
In the case where the present invention is applied to an internal combustion engine having a variable geometry turbo,
When increasing or decreasing the fuel injection amount of the specific cylinder, it is preferable to open the guide plate of the variable geometry turbo so as to reduce the exhaust resistance. This can reduce the agitation of the exhaust gas between the cylinders in the variable geometry turbo.

【0015】[0015]

【発明の実施の形態】[実施形態(1)]以下、本発明
をディーゼルエンジンに適用した実施形態(1)を図1
乃至図3に基づいて説明する。まず、図1に基づいてエ
ンジン制御システム全体の概略構成を説明する。内燃機
関であるディーゼルエンジン11の吸気管12には、タ
ーボ過給機13(過給装置)の吸気タービン14が設置
されている。このターボ過給機13の吸気タービン14
と連結された排気タービン15がディーゼルエンジン1
1の集合排気管16内に設置され、この排気タービン1
5を排気ガスの運動エネルギによって回転駆動すること
で、吸気タービン14を回転させて過給圧を発生させ
る。集合排気管16には、排気タービン15の上流側と
下流側をバイパスさせるウェイストゲート17が設けら
れ、このウェイストゲート17を通過する排気の流量が
電磁式のウェイストゲートバルブ18によって制御され
る。集合排気管16のうちのウェイストゲート17より
も下流側には、排気酸素濃度を検出する限界電流式の酸
素濃度センサ19が設置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [Embodiment (1)] FIG. 1 shows an embodiment (1) in which the present invention is applied to a diesel engine.
This will be described with reference to FIG. First, a schematic configuration of the entire engine control system will be described with reference to FIG. An intake pipe 14 of a turbocharger 13 (supercharger) is installed in an intake pipe 12 of a diesel engine 11 which is an internal combustion engine. The intake turbine 14 of the turbocharger 13
Exhaust turbine 15 connected to the diesel engine 1
The exhaust turbine 1 is installed in the
5 is driven to rotate by the kinetic energy of the exhaust gas, thereby rotating the intake turbine 14 to generate a supercharging pressure. The collective exhaust pipe 16 is provided with a wastegate 17 that bypasses the upstream side and the downstream side of the exhaust turbine 15, and the flow rate of exhaust gas passing through the wastegate 17 is controlled by an electromagnetic wastegate valve 18. A limiting current type oxygen concentration sensor 19 for detecting an exhaust oxygen concentration is provided downstream of the waste gate 17 in the collective exhaust pipe 16.

【0016】排気タービン15の上流側の集合排気管1
6と吸気タービン14の下流側の吸気管12との間には
EGR配管20が接続され、このEGR配管20の途中
に電子制御式のEGR弁21が設置され、このEGR弁
21の弁開度を調整することで、EGR配管20を通過
するEGR流量が制御される。これらEGR配管20と
EGR弁21とから排気ガス還流装置(EGR装置)2
2が構成されている。ディーゼルエンジン11の各気筒
のシリンダヘッドにはそれぞれ燃料噴射弁23が取り付
けられている。
Collective exhaust pipe 1 on the upstream side of exhaust turbine 15
An EGR pipe 20 is connected between the intake pipe 6 and the intake pipe 12 on the downstream side of the intake turbine 14, and an electronically controlled EGR valve 21 is provided in the middle of the EGR pipe 20. Is adjusted, the EGR flow rate passing through the EGR pipe 20 is controlled. An exhaust gas recirculation device (EGR device) 2 is connected between the EGR pipe 20 and the EGR valve 21.
2 are configured. A fuel injection valve 23 is attached to a cylinder head of each cylinder of the diesel engine 11.

【0017】ターボ過給機13によって過給される空気
は吸気マニホールド24を介してディーゼルエンジン1
1の各気筒に吸入される。各気筒内で圧縮された高温空
気中に燃料噴射弁23から燃料を噴射して自己着火さ
せ、各気筒の排気ガスが排気マニホールド25を通して
1本の集合排気管16に合流し、大気中に排出される。
The air supercharged by the turbocharger 13 is supplied to the diesel engine 1 via an intake manifold 24.
Each cylinder is sucked. Fuel is injected from the fuel injection valve 23 into the high-temperature air compressed in each cylinder and self-ignites, and the exhaust gas of each cylinder merges into one collective exhaust pipe 16 through the exhaust manifold 25 and is discharged into the atmosphere. Is done.

【0018】ディーゼルエンジン11の運転状態は、ク
ランク角センサ26、アクセルセンサ27、車速センサ
28、酸素濃度センサ19等によって検出され、これら
の出力信号がエンジン制御用の制御回路29に読み込ま
れる。この制御回路29は、マイクロコンピュータを主
体として構成され、内蔵されたROM(記憶媒体)に
は、図2の気筒別噴射量補正プログラム等の各種のエン
ジン制御プログラムが記憶され、これらのプログラムを
実行することで、燃料噴射制御、EGR制御及びウェイ
ストゲートバルブ18の制御を実行する。図2の気筒別
噴射量補正プログラム以外のプログラムは、従来と同じ
であるので、以下、図2の気筒別噴射量補正プログラム
のみについて説明する。
The operating state of the diesel engine 11 is detected by a crank angle sensor 26, an accelerator sensor 27, a vehicle speed sensor 28, an oxygen concentration sensor 19 and the like, and output signals of these are read into a control circuit 29 for engine control. The control circuit 29 is mainly composed of a microcomputer, and various engine control programs such as the cylinder-by-cylinder injection amount correction program of FIG. 2 are stored in a built-in ROM (storage medium), and these programs are executed. Thus, the fuel injection control, the EGR control, and the control of the waste gate valve 18 are executed. Since the programs other than the cylinder-by-cylinder injection amount correction program of FIG. 2 are the same as the conventional ones, only the cylinder-by-cylinder injection amount correction program of FIG. 2 will be described below.

【0019】図2の気筒別噴射量補正プログラムは、制
御回路29にて所定クランク角毎又は所定時間毎に次の
ように実行される。まず、ステップ101で、アクセル
センサ27とクランク角センサ26と車速センサ28の
出力信号を読み込み、次のステップ102で、これらの
信号から検出されるアクセル開度とエンジン回転数と車
速とに基づいて現在の運転状態が定常運転であるか否か
を判定する。定常運転でなければ、気筒別の排気酸素濃
度の検出が困難であるので、以降の処理を行うことな
く、本プログラムを終了する。
The cylinder-by-cylinder injection amount correction program of FIG. 2 is executed by the control circuit 29 at every predetermined crank angle or at every predetermined time as follows. First, in step 101, output signals of the accelerator sensor 27, the crank angle sensor 26, and the vehicle speed sensor 28 are read, and in the next step 102, based on the accelerator opening, the engine speed, and the vehicle speed detected from these signals. It is determined whether the current operation state is a steady operation. If it is not a steady operation, it is difficult to detect the exhaust oxygen concentration for each cylinder, so this program is terminated without performing the subsequent processing.

【0020】一方、定常運転時には、ステップ102か
らステップ103に進み、気筒別燃料噴射量制御が必要
か否かを判定する。例えば、今までに一度も気筒別燃料
噴射量制御が実行されていない時や、前回の気筒別燃料
噴射量制御が実行されてから所定の積算走行距離に達し
ている時、或は、定常運転時の酸素濃度センサ19の出
力変化(振幅)が大きい時などは気筒別燃料噴射量制御
が必要と判定される。気筒別燃料噴射量制御が必要でな
いと判定された場合には、以降の処理を行うことなく、
本プログラムを終了する。
On the other hand, during steady operation, the routine proceeds from step 102 to step 103, where it is determined whether or not cylinder-specific fuel injection amount control is necessary. For example, when the cylinder-by-cylinder fuel injection amount control has never been executed, or when a predetermined integrated traveling distance has been reached since the previous cylinder-by-cylinder fuel injection amount control was executed, or when steady-state operation was performed. When the output change (amplitude) of the oxygen concentration sensor 19 is large, it is determined that the fuel injection amount control for each cylinder is necessary. If it is determined that the cylinder-by-cylinder fuel injection amount control is not necessary, without performing the subsequent processing,
Exit this program.

【0021】上記ステップ103で、気筒別燃料噴射量
制御が必要と判定された場合には、ステップ104に進
み、特定気筒、例えば気筒#1の燃料噴射量を所定量△
Qだけ増量補正し、他の気筒#2〜#4の燃料噴射量を
△Qの3分の1ずつ減量補正して、1サイクル当たりの
合計燃料噴射量が変化しないようにする。これにより、
気筒#1のみ排気酸素濃度を低下させると共に、エンジ
ン出力を補正前後で一定に保持する。
If it is determined in step 103 that the fuel injection amount control for each cylinder is necessary, the process proceeds to step 104, where the fuel injection amount of a specific cylinder, for example, cylinder # 1, is reduced by a predetermined amount △
The fuel injection amount of the other cylinders # 2 to # 4 is corrected by decreasing the amount by 減 of の Q so that the total fuel injection amount per cycle does not change. This allows
The exhaust oxygen concentration is reduced only in the cylinder # 1, and the engine output is kept constant before and after the correction.

【0022】この後、ステップ105で、EGR弁21
を全閉して、排気ガス還流を停止(EGRカット)する
と共に、ウェイストゲートバルブ18を全開して、排気
タービン15へ向かう排気ガスをウェイストゲート17
へバイパスさせる。この後、ステップ106で、酸素濃
度センサ19の出力信号を読み込み、増量補正した気筒
#1の排気酸素濃度が最も良く検出されるタイミングT
a (クランク角)を検出する。つまり、図3に示すよう
に、気筒#1の燃料噴射量を増量補正すると、気筒#1
の燃焼の際に消費される酸素量が増加して気筒#1の排
気酸素濃度が低下するため、増量補正後に、酸素濃度セ
ンサ19の出力(排気酸素濃度の検出値)が最も低下し
たタイミングTa を検出することで、気筒#1の排気ガ
スが酸素濃度センサ19に到達したタイミングTa を検
出する。
Thereafter, at step 105, the EGR valve 21
, The exhaust gas recirculation is stopped (EGR cut), and the waste gate valve 18 is fully opened, so that the exhaust gas flowing toward the exhaust turbine 15 is discharged to the waste gate 17.
To bypass. Thereafter, at step 106, the output signal of the oxygen concentration sensor 19 is read, and the timing T at which the exhaust oxygen concentration of the cylinder # 1 whose amount has been increased and corrected is best detected.
a (Crank angle) is detected. That is, as shown in FIG. 3, when the fuel injection amount of the cylinder # 1 is increased and corrected, the cylinder # 1 is increased.
Since the amount of oxygen consumed during the combustion of the cylinder increases and the exhaust oxygen concentration of the cylinder # 1 decreases, the output Ta of the oxygen concentration sensor 19 (the detected value of the exhaust oxygen concentration) after the increase correction is the timing Ta. Is detected, the timing Ta at which the exhaust gas of the cylinder # 1 reaches the oxygen concentration sensor 19 is detected.

【0023】この後、ステップ107で、燃料噴射量補
正を終了した後、ステップ108で再び酸素濃度センサ
19の出力信号を読み込む。集合排気管16を流れる排
気ガスは、気筒間の排気バルブのオーバーラップ等の影
響により、完全には層状にならず、各気筒の排気ガスが
混ざり合った状態で流れるため、酸素濃度センサ19の
出力(排気酸素濃度の検出値)も各気筒の排気酸素濃度
が混ざり合った値となる。
Then, after the fuel injection amount correction is completed in step 107, the output signal of the oxygen concentration sensor 19 is read again in step 108. The exhaust gas flowing through the collective exhaust pipe 16 is not completely layered due to the influence of the overlap of the exhaust valves between the cylinders, and flows in a state where the exhaust gases of the respective cylinders are mixed. The output (detected value of the exhaust oxygen concentration) is also a value in which the exhaust oxygen concentration of each cylinder is mixed.

【0024】そこで、次のステップ109で、以下のよ
うにして酸素濃度センサ19の出力から気筒別の排気酸
素濃度を算出する。酸素濃度センサ19の出力は、各気
筒の排気酸素濃度に各気筒の重み係数を乗じて積算した
排気酸素濃度と見なすことができる。各気筒の重み係数
は、排気酸素濃度検出時に酸素濃度センサ19部分を通
過する各気筒の排気ガスの流量比率である。
Therefore, in the next step 109, the exhaust oxygen concentration for each cylinder is calculated from the output of the oxygen concentration sensor 19 as follows. The output of the oxygen concentration sensor 19 can be regarded as the exhaust oxygen concentration obtained by multiplying the exhaust oxygen concentration of each cylinder by the weight coefficient of each cylinder. The weight coefficient of each cylinder is a flow rate ratio of the exhaust gas of each cylinder passing through the oxygen concentration sensor 19 when detecting the exhaust oxygen concentration.

【0025】(酸素濃度センサ19の出力)=Σ(気筒
別排気酸素濃度)×(重み係数) 例えば、4気筒エンジンの場合、具体的には、以下の行
列式で表すことができる。
(Output of Oxygen Concentration Sensor 19) = Σ (Exhaust Oxygen Concentration by Cylinder) × (Weight Coefficient) For example, in the case of a four-cylinder engine, it can be specifically expressed by the following determinant.

【0026】[0026]

【数1】 (Equation 1)

【0027】この行列式において、重み係数An 〜Dn
は、ステップ106で検出したタイミングTa に応じて
次のように補正される。今回検出したタイミングTa(i)
を前回検出したタイミングTa(i-1)と比較し、Ta(i)が
Ta(i-1)より遅れている場合には、その遅れ角度ΔTa
を次式により算出する。 ΔTa =Ta(i)−Ta(i-1)
In this determinant, the weighting factors An to Dn
Is corrected as follows according to the timing Ta detected in step 106. Timing detected this time Ta (i)
Is compared with the previously detected timing Ta (i-1), and if Ta (i) is later than Ta (i-1), the delay angle ΔTa
Is calculated by the following equation. ΔTa = Ta (i) −Ta (i-1)

【0028】この後、重み係数An 〜Dn とクランク角
nとの対応関係を次式により補正する。 n(今回値)=n(前回値)+ΔTa これにより、上記行列式の重み係数An 〜Dn を更新
し、且つ上記行列式に各クランク角での酸素濃度センサ
19の出力を代入して気筒別の排気酸素濃度を算出す
る。以上のような処理を行うステップ109が、特許請
求の範囲でいう気筒別排気酸素濃度推定手段、重み係数
決定手段及び補正制御手段としての役割を果たす。
Thereafter, the correspondence between the weighting factors An to Dn and the crank angle n is corrected by the following equation. n (current value) = n (previous value) + ΔTa The weight coefficients An to Dn of the above-mentioned determinant are updated, and the output of the oxygen concentration sensor 19 at each crank angle is substituted into the above-mentioned determinant. The exhaust oxygen concentration is calculated. Step 109 for performing the above-described processing plays a role as a cylinder-by-cylinder exhaust oxygen concentration estimating means, a weight coefficient determining means, and a correction control means.

【0029】気筒別排気酸素濃度の算出後、ステップ1
10に進み、気筒別排気酸素濃度の算出値を基に、全気
筒の排気酸素濃度が同一となるように、気筒別の燃料噴
射量の補正量を算出し、この補正量で気筒別の燃料噴射
量を補正して、各気筒の燃料噴射を実施する。この後、
ステップ111で、酸素濃度センサ19の出力の振幅が
所定幅以内であるか否かを判定する。つまり、上記ステ
ップ110で行った気筒別の燃料噴射量の補正により気
筒別の排気酸素濃度のばらつきが小さくなれば酸素濃度
センサ19の出力の振幅が小さくなるが、気筒別の排気
酸素濃度のばらつきが大きければ、酸素濃度センサ19
の出力の振幅が大きくなる。この関係から、酸素濃度セ
ンサ19の出力の振幅が所定幅を越える場合には、気筒
別の排気酸素濃度のばらつきが許容値を越えると判断し
て、ステップ101に戻り、上述した処理を繰り返す。
つまり、気筒別の排気酸素濃度を算出して、全気筒の排
気酸素濃度が同一となるように気筒別の燃料噴射量を補
正する処理を繰り返す。
After calculating the exhaust oxygen concentration for each cylinder, step 1
Proceeding to 10, the correction amount of the fuel injection amount for each cylinder is calculated based on the calculated value of the exhaust oxygen concentration for each cylinder so that the exhaust oxygen concentration for all cylinders is the same, and the fuel amount for each cylinder is calculated based on this correction amount. The fuel injection of each cylinder is performed by correcting the injection amount. After this,
In step 111, it is determined whether or not the output amplitude of the oxygen concentration sensor 19 is within a predetermined width. In other words, if the variation in the exhaust oxygen concentration for each cylinder is reduced by the correction of the fuel injection amount for each cylinder performed in step 110, the amplitude of the output of the oxygen concentration sensor 19 is reduced, but the variation in the exhaust oxygen concentration for each cylinder is reduced. Is larger, the oxygen concentration sensor 19
Output amplitude increases. From this relationship, when the amplitude of the output of the oxygen concentration sensor 19 exceeds the predetermined width, it is determined that the variation of the exhaust oxygen concentration for each cylinder exceeds the allowable value, and the process returns to step 101 and repeats the above-described processing.
That is, the process of calculating the exhaust oxygen concentration for each cylinder and correcting the fuel injection amount for each cylinder is repeated so that the exhaust oxygen concentration for all cylinders becomes the same.

【0030】このような気筒別の燃料噴射量の補正によ
り、酸素濃度センサ19の出力の振幅が所定幅以内にな
れば、気筒別の排気酸素濃度のばらつきが許容値以内と
判断して、ステップ112に進み、検出タイミングTa
を前記ステップ106で検出したタイミングTa に更新
して本プログラムを終了する。
If the amplitude of the output of the oxygen concentration sensor 19 falls within a predetermined range due to such correction of the fuel injection amount for each cylinder, it is determined that the variation of the exhaust oxygen concentration for each cylinder is within an allowable value. Proceeding to 112, the detection timing Ta
Is updated to the timing Ta detected in step 106, and the program ends.

【0031】以上説明した本実施形態(1)によれば、
特定気筒の燃料噴射量を増量補正し、その増量補正によ
って生じる排気酸素濃度の変化が酸素濃度センサ19で
検出されるタイミングTa をクランク角で検出し、その
結果に基づいて重み係数(各気筒の流量比率)とクラン
ク角との対応関係を補正するようにしたので、各気筒の
排気酸素濃度が酸素濃度センサ19で検出されるタイミ
ングが変化しても、それに応じて重み係数とクランク角
との対応関係を精度良く補正することができ、集合排気
管16に設置した1つの酸素濃度センサ19の出力から
気筒別の排気酸素濃度を精度良く推定することができ、
気筒別の燃料噴射制御を精度良く行うことができる。
According to the embodiment (1) described above,
The fuel injection amount of the specific cylinder is increased and corrected, the timing Ta at which the change in the exhaust oxygen concentration caused by the increased correction is detected by the oxygen concentration sensor 19 is detected by the crank angle, and a weight coefficient (for each cylinder) is determined based on the result. Since the correspondence between the flow rate ratio and the crank angle is corrected, even if the timing at which the exhaust oxygen concentration of each cylinder is detected by the oxygen concentration sensor 19 changes, the weight coefficient and the crank angle are changed accordingly. The correspondence can be accurately corrected, and the exhaust oxygen concentration for each cylinder can be accurately estimated from the output of one oxygen concentration sensor 19 installed in the collective exhaust pipe 16.
The fuel injection control for each cylinder can be accurately performed.

【0032】更に、本実施形態(1)では、特定気筒の
燃料噴射量を増量補正する際に、1サイクル当たりの合
計燃料噴射量が変化しないように、特定気筒以外の気筒
の燃料噴射量を減量補正するようにしたので、特定気筒
の燃料噴射量を増量補正した時のエンジン出力の変動を
抑制することができ、ドライバビリティを良好に維持で
きる。
Further, in this embodiment (1), when the fuel injection amount of the specific cylinder is increased and corrected, the fuel injection amounts of the cylinders other than the specific cylinder are changed so that the total fuel injection amount per cycle does not change. Since the decrease correction is performed, the fluctuation of the engine output when the fuel injection amount of the specific cylinder is corrected for the increase can be suppressed, and the drivability can be favorably maintained.

【0033】しかも、特定気筒の燃料噴射量を増量補正
する際に、EGRカットして、各気筒毎のEGR率のば
らつきによる各気筒の流量比率の変動を防止すると共
に、ウェイストゲートバルブ18を全開して過給を停止
し、排気タービン15による気筒間の排気ガスの攪拌を
少なくするようにしたので、EGRやターボ過給機13
の影響を受けずに、気筒別の排気酸素濃度を精度良く推
定することができる。
In addition, when the fuel injection amount of a specific cylinder is increased and corrected, EGR cut is performed to prevent fluctuation of the flow rate ratio of each cylinder due to variation of the EGR rate of each cylinder, and the waste gate valve 18 is fully opened. To stop the supercharging and reduce the agitation of the exhaust gas between the cylinders by the exhaust turbine 15.
, The exhaust oxygen concentration for each cylinder can be accurately estimated.

【0034】ところで、エンジン11の運転状態によっ
ては、EGRカットや過給停止(ウェイストゲートバル
ブ18の全開)によってエンジン出力が変化する可能性
がある。例えば、エンジン11が低回転で過給が行われ
ていない状態の時は、EGRカットによるエンジン出力
の上昇が考えられる。また、高負荷時には、もともとE
GR率が低いため、過給停止によるエンジン出力低下が
考えられる。このような場合、予めエンジン出力の変化
を予測して、それを補正する燃料噴射量のマップを記憶
しておき、EGRカットや過給停止を行う時に、このマ
ップを用いて全気筒の燃料噴射量を同一量補正し、エン
ジン出力の変動を抑制するようにしても良い。
Incidentally, depending on the operating state of the engine 11, there is a possibility that the engine output will change due to EGR cut or supercharging stop (full opening of the waste gate valve 18). For example, when the engine 11 is at a low rotation speed and no supercharging is performed, an increase in the engine output due to the EGR cut may be considered. When the load is high, E
Since the GR rate is low, a decrease in engine output due to supercharging stop may be considered. In such a case, a map of the fuel injection amount for predicting the change of the engine output and correcting the change is stored in advance, and when performing the EGR cut or the supercharging stop, the fuel injection amount of all the cylinders is used by using this map. The amount may be corrected by the same amount to suppress fluctuations in the engine output.

【0035】尚、本実施形態(1)では、特定気筒の燃
料噴射量を増量補正したが、減量補正するようにしても
良い。特定気筒の燃料噴射量を減量補正する場合には、
1サイクル当たりの合計燃料噴射量が変化しないよう
に、他の気筒の燃料噴射量を増量補正すると共に、ステ
ップ106において、酸素濃度センサ19の出力が最も
上昇するタイミングTa を検出するようにすれば良い。
In the present embodiment (1), the fuel injection amount of the specific cylinder is corrected to increase, but may be corrected to decrease. To reduce the fuel injection amount of a specific cylinder,
If the fuel injection amounts of the other cylinders are increased and corrected so that the total fuel injection amount per cycle does not change, the timing Ta at which the output of the oxygen concentration sensor 19 rises most in step 106 is detected. good.

【0036】[実施形態(2)]上記実施形態(1)で
は、特定気筒#1の燃料噴射量を増量補正する際に、1
サイクル当たりの合計燃料噴射量が変化しないように、
特定気筒#1以外の気筒#2〜#4の燃料噴射量を減量
補正することで、エンジン出力の変動を抑制するように
したが、図4及び図5に示す本発明の実施形態(2)で
は、ステップ104aで、特定気筒#1の燃料噴射量を
増量補正する際に、当該特定気筒#1の燃料噴射時期を
遅角することで、エンジン出力の変動を抑制するように
している。その他の処理は、前記実施形態(1)で説明
した図2の処理と同じであるので、説明を省略する。
[Embodiment (2)] In the embodiment (1), when the fuel injection amount of the specific cylinder # 1 is increased and corrected, 1
In order not to change the total fuel injection amount per cycle,
Fluctuations in the engine output are suppressed by reducing the fuel injection amounts of the cylinders # 2 to # 4 other than the specific cylinder # 1. However, the embodiment (2) of the present invention shown in FIGS. In step 104a, when the fuel injection amount of the specific cylinder # 1 is increased and corrected, the fluctuation of the engine output is suppressed by retarding the fuel injection timing of the specific cylinder # 1. The other processing is the same as the processing in FIG. 2 described in the embodiment (1), and a description thereof will not be repeated.

【0037】このように、特定気筒#1の燃料噴射量を
増量補正する際に、特定気筒#1の燃料噴射時期を遅角
すれば、エンジン出力の変動を抑制できると共に、気筒
間のトルク変動による回転変動も抑制でき、各気筒の排
気バルブ開放時間に差が生じることを防止できて、各気
筒の流量比率の変化を抑制でき、気筒別の排気酸素濃度
の推定精度を向上できる。また、回転変動による振動も
低減できる。
As described above, when the fuel injection amount of the specific cylinder # 1 is increased and corrected, if the fuel injection timing of the specific cylinder # 1 is retarded, the fluctuation of the engine output can be suppressed and the torque fluctuation between the cylinders can be suppressed. , The occurrence of a difference in the exhaust valve opening time of each cylinder can be prevented, the change in the flow rate ratio of each cylinder can be suppressed, and the estimation accuracy of the exhaust oxygen concentration for each cylinder can be improved. In addition, vibration due to rotation fluctuation can be reduced.

【0038】[実施形態(3)]図6及び図7に示す本
発明の実施形態(3)では、特定気筒#1の燃料噴射量
を増量補正する際に、その増量分の燃料を当該特定気筒
#1の膨張行程で後噴射することで、当該特定気筒#1
の燃料噴射量を増量する(ステップ104b)。この場
合、特定気筒#1のメイン噴射量は、他の気筒#2〜#
4のメイン噴射量と同一である。その他の処理は、前記
実施形態(1)で説明した図2の処理と同じであるの
で、説明を省略する。
[Embodiment (3)] In the embodiment (3) of the present invention shown in FIGS. 6 and 7, when the fuel injection amount of the specific cylinder # 1 is increased and corrected, the fuel corresponding to the increased amount is specified. By performing post-injection in the expansion stroke of the cylinder # 1, the specific cylinder # 1
Is increased (step 104b). In this case, the main injection amount of the specific cylinder # 1 is different from the other cylinders # 2 to #
4 is the same as the main injection amount. The other processing is the same as the processing in FIG. 2 described in the embodiment (1), and a description thereof will not be repeated.

【0039】このように、増量分の燃料を特定気筒#1
の膨張行程で後噴射して燃焼させれば、特定気筒#1の
メイン噴射量を増加させる場合と比較して、特定気筒#
1のトルク上昇を少なくすることができ、気筒間のトル
ク差を低減することができて前記実施形態(2)と同じ
効果を得ることができる。
As described above, the increased amount of fuel is supplied to the specific cylinder # 1.
When post-injection and combustion are performed in the expansion stroke of the specific cylinder # 1, compared with the case where the main injection amount of the specific cylinder # 1 is increased,
1 can be reduced, the torque difference between the cylinders can be reduced, and the same effect as in the embodiment (2) can be obtained.

【0040】[その他の実施形態]上記各実施形態
(1)〜(3)では、いずれもウェイストゲートバルブ
18付きのターボ過給機13を設けたが、これに代え
て、図8に示す可変ジオメトリターボ30を用いるよう
にしても良い。この場合には、特定気筒の燃料噴射量を
増量(又は減量)する際に、排気抵抗を低減するように
可変ジオメトリターボ30のガイド板31を開放すれば
良い。その他の制御は、上記各実施形態(1)〜(3)
のいずれかを採用すれば良い。
[Other Embodiments] In each of the above embodiments (1) to (3), the turbocharger 13 with the waste gate valve 18 is provided, but instead of this, the turbocharger 13 shown in FIG. The geometry turbo 30 may be used. In this case, when increasing (or decreasing) the fuel injection amount of the specific cylinder, the guide plate 31 of the variable geometry turbo 30 may be opened so as to reduce the exhaust resistance. Other controls are performed in the above embodiments (1) to (3).
Any one of the above may be adopted.

【0041】可変ジオメトリターボ30のガイド板31
を開放すれば、可変ジオメトリターボ30内での排気タ
ービン32による気筒間の排気ガスの攪拌を少なくする
ことができ、ウェイストゲートバルブ18を全開した時
とほぼ同様の効果を得ることができる。
Guide plate 31 of variable geometry turbo 30
, The agitation of the exhaust gas between the cylinders by the exhaust turbine 32 in the variable geometry turbo 30 can be reduced, and substantially the same effect as when the waste gate valve 18 is fully opened can be obtained.

【0042】また、上記各実施形態(1)〜(3)で
は、特定気筒#1の燃料噴射量を増量(又は減量)によ
って生じる排気酸素濃度の変化が酸素濃度センサ19で
検出されるタイミングTa を検出し、その検出結果に基
づいて重み係数とクランク角との対応関係を補正するよ
うにしたが、エンジン運転中に常に酸素濃度センサ19
の出力をモニタして、重み係数が適当でないと判断した
場合(つまり気筒別の燃料噴射量のばらつきが大きいと
判断した場合)に、重み係数とクランク角との対応関係
を補正するようにしても良い。以下、この補正方法を具
体的に説明する。
In each of the above embodiments (1) to (3), the change in the exhaust oxygen concentration caused by increasing (or decreasing) the fuel injection amount of the specific cylinder # 1 is detected by the oxygen concentration sensor 19 at the timing Ta. Is detected, and the correspondence between the weight coefficient and the crank angle is corrected based on the detection result.
Is monitored, and when it is determined that the weighting coefficient is not appropriate (that is, when it is determined that the variation of the fuel injection amount for each cylinder is large), the correspondence between the weighting coefficient and the crank angle is corrected. Is also good. Hereinafter, this correction method will be specifically described.

【0043】酸素濃度センサ19の出力は、排気酸素濃
度の他に排気圧力等の影響も受けるため、定常運転で各
気筒の排気酸素濃度が一定の場合でも、常に酸素濃度セ
ンサ19の出力が変化する。そこで、予め、定常運転で
各気筒の排気酸素濃度が一定の場合の酸素濃度センサ1
9の出力の最大変化幅(最大振幅)を想定して、それを
許容値として記憶しておき、定常運転時に、所定時間毎
に酸素濃度センサ19の出力の振幅が許容値以下である
か否かを判定し、許容値を越える場合には、気筒別の排
気酸素濃度のばらつきが大きい、つまり、重み係数が適
当でないと判断する。
Since the output of the oxygen concentration sensor 19 is affected not only by the exhaust oxygen concentration but also by the exhaust pressure and the like, the output of the oxygen concentration sensor 19 always changes even when the exhaust oxygen concentration of each cylinder is constant during steady operation. I do. Therefore, the oxygen concentration sensor 1 in the case where the exhaust oxygen concentration of each cylinder is constant in a steady operation in advance.
Assuming the maximum change width (maximum amplitude) of the output of No. 9 and storing it as an allowable value, it is determined whether or not the amplitude of the output of the oxygen concentration sensor 19 is equal to or less than the allowable value every predetermined time during steady operation. If it exceeds the allowable value, it is determined that the variation in the exhaust oxygen concentration for each cylinder is large, that is, the weight coefficient is not appropriate.

【0044】この場合には、前記数1の行列式におい
て、重み係数An 〜Dn とクランク角nとの対応関係を
次のようにして補正する。予め、nをパラメータとする
重み係数An 〜Dn のマップを制御回路29のROMに
記憶しておき、最初に、n=mとして各気筒の排気酸素
濃度(実際は燃料噴射量)を補正する。その結果、酸素
濃度センサ19の出力の振幅があまり減少しなければ、
n=m+Δmとして、各気筒の排気酸素濃度を再度補正
する。これにより、酸素濃度センサ19の出力の振幅が
許容値以下に減少すれば、n=m+Δmとして更新す
る。反対に、酸素濃度センサ19の出力の振幅が増加す
るようであれば、n=m−Δmとして、同様の補正を行
う。このような補正処理を、酸素濃度センサ19の出力
の振幅が許容値以下に減少するまで繰り返す。
In this case, the correspondence between the weighting factors An to Dn and the crank angle n in the determinant of Equation 1 is corrected as follows. A map of weighting factors An to Dn using n as a parameter is stored in advance in the ROM of the control circuit 29, and first, the exhaust oxygen concentration (actually, the fuel injection amount) of each cylinder is corrected with n = m. As a result, if the output amplitude of the oxygen concentration sensor 19 does not decrease so much,
Assuming that n = m + Δm, the exhaust oxygen concentration of each cylinder is corrected again. As a result, if the amplitude of the output of the oxygen concentration sensor 19 decreases to a value equal to or less than the allowable value, the value is updated as n = m + Δm. Conversely, if the amplitude of the output of the oxygen concentration sensor 19 increases, the same correction is performed with n = m-Δm. Such a correction process is repeated until the amplitude of the output of the oxygen concentration sensor 19 decreases below the allowable value.

【0045】尚、図1のシステム構成例では、ターボ過
給機13とEGR装置22の両方を設けているが、いず
れか一方のみを持つシステムや、両方とも持たないシス
テムにも本発明を適用可能である。
Although both the turbocharger 13 and the EGR device 22 are provided in the system configuration example shown in FIG. 1, the present invention is also applied to a system having only one of them or a system having neither of them. It is possible.

【0046】その他、本発明は、ディーゼルエンジンに
限定されず、ガソリンエンジンにも適用可能である。
In addition, the present invention is not limited to a diesel engine but can be applied to a gasoline engine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態(1)を示すエンジン制御システム全
体の構成図
FIG. 1 is a configuration diagram of an entire engine control system showing an embodiment (1).

【図2】実施形態(1)の気筒別噴射量補正プログラム
の処理の流れを示すフローチャート
FIG. 2 is a flowchart showing a processing flow of a cylinder-by-cylinder injection amount correction program according to the embodiment (1).

【図3】実施形態(1)において特定気筒の燃料噴射量
を増量補正した時のエンジン回転数と排気酸素濃度の変
化具合を示すタイムチャート
FIG. 3 is a time chart showing how the engine speed and the exhaust oxygen concentration change when the fuel injection amount of a specific cylinder is increased and corrected in the embodiment (1).

【図4】実施形態(2)の気筒別噴射量補正プログラム
の処理の流れを示すフローチャート
FIG. 4 is a flowchart showing a processing flow of a cylinder-by-cylinder injection amount correction program according to the embodiment (2).

【図5】実施形態(2)において特定気筒の燃料噴射量
を増量補正した時のエンジン回転数と排気酸素濃度の変
化具合を示すタイムチャート
FIG. 5 is a time chart showing how the engine speed and the exhaust oxygen concentration change when the fuel injection amount of a specific cylinder is increased and corrected in the embodiment (2).

【図6】実施形態(3)の気筒別噴射量補正プログラム
の処理の流れを示すフローチャート
FIG. 6 is a flowchart showing the flow of processing of a cylinder-by-cylinder injection amount correction program according to the embodiment (3).

【図7】実施形態(3)において特定気筒の燃料噴射量
を増量補正した時のエンジン回転数と排気酸素濃度の変
化具合を示すタイムチャート
FIG. 7 is a time chart showing how the engine speed and the exhaust oxygen concentration change when the fuel injection amount of a specific cylinder is increased and corrected in the embodiment (3).

【図8】他の実施形態で用いる可変ジオメトリターボの
構成を概略的に示す図
FIG. 8 is a diagram schematically illustrating a configuration of a variable geometry turbo used in another embodiment.

【符号の説明】[Explanation of symbols]

11…ディーゼルエンジン(内燃機関)、12…吸気
管、13…ターボ過給機、15…排気タービン、16…
集合排気管、17…ウェイストゲート、18…ウェイス
トゲートバルブ、19…酸素濃度センサ、20…EGR
配管、21…EGR弁、22…EGR装置、23…燃料
噴射弁、29…制御回路(気筒別排気酸素濃度推定手
段,重み係数決定手段,補正制御手段)、30…可変ジ
オメトリターボ、31…ガイド板、32…排気タービ
ン。
11: diesel engine (internal combustion engine), 12: intake pipe, 13: turbocharger, 15: exhaust turbine, 16:
Collective exhaust pipe, 17: waste gate, 18: waste gate valve, 19: oxygen concentration sensor, 20: EGR
Piping, 21 EGR valve, 22 EGR device, 23 fuel injection valve, 29 control circuit (cylinder-specific exhaust oxygen concentration estimating means, weight coefficient determining means, correction control means), 30 variable geometry turbo, 31 guide Plate, 32 ... exhaust turbine.

フロントページの続き (51)Int.Cl.6 識別記号 FI F02D 41/02 380 F02D 41/40 H 41/40 C F02B 37/12 301N Continued on the front page (51) Int.Cl. 6 Identification code FI F02D 41/02 380 F02D 41/40 H 41/40 C F02B 37/12 301N

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の集合排気管に設置され、排気
酸素濃度を検出する酸素濃度センサと、 前記酸素濃度センサの出力を各気筒の排気酸素濃度に所
定の重み係数を乗じて加重平均した排気酸素濃度と見な
し、前記酸素濃度センサの出力から前記重み係数を考慮
して気筒別の排気酸素濃度を推定する気筒別排気酸素濃
度推定手段と、 前記気筒別排気酸素濃度推定手段で推定した気筒別の排
気酸素濃度に基づいて気筒別の燃料噴射量を補正する噴
射量補正手段とを備えた内燃機関の燃料噴射制御装置に
おいて、 前記重み係数を排気酸素濃度検出時のクランク角に対応
して決定する重み係数決定手段と、 前記重み係数とクランク角との対応関係を補正する補正
制御手段とを備えていることを特徴とする内燃機関の燃
料噴射制御装置。
An oxygen concentration sensor installed in a collective exhaust pipe of an internal combustion engine for detecting an exhaust oxygen concentration, and an output of the oxygen concentration sensor is weighted average by multiplying an exhaust oxygen concentration of each cylinder by a predetermined weighting coefficient. Cylinder-specific exhaust oxygen concentration estimating means for assuming exhaust oxygen concentration and estimating cylinder-specific exhaust oxygen concentration in consideration of the weighting coefficient from the output of the oxygen concentration sensor; and a cylinder estimated by the cylinder-specific exhaust oxygen concentration estimating means. A fuel injection control device for an internal combustion engine, comprising: an injection amount correction unit that corrects a fuel injection amount for each cylinder based on another exhaust oxygen concentration, wherein the weight coefficient corresponds to a crank angle at the time of detecting the exhaust oxygen concentration. A fuel injection control device for an internal combustion engine, comprising: a weight coefficient determining means for determining; and a correction control means for correcting the correspondence between the weight coefficient and the crank angle.
【請求項2】 前記補正制御手段は、特定気筒の燃料噴
射量を増量又は減量し、その増量又は減量によって生じ
る排気酸素濃度の変化が前記酸素濃度センサで検出され
るタイミングをクランク角で検出し、その検出結果に基
づいて前記重み係数とクランク角との対応関係を補正す
ることを特徴とする請求項1に記載の内燃機関の燃料噴
射制御装置。
2. The correction control means increases or decreases a fuel injection amount of a specific cylinder, and detects, by a crank angle, a timing at which a change in exhaust oxygen concentration caused by the increase or decrease is detected by the oxygen concentration sensor. 2. The fuel injection control device for an internal combustion engine according to claim 1, wherein the correspondence between the weight coefficient and the crank angle is corrected based on the detection result.
【請求項3】 前記補正制御手段は、前記特定気筒の燃
料噴射量を増量又は減量する際に、1サイクル当たりの
合計燃料噴射量が変化しないように、前記特定気筒以外
の気筒の燃料噴射量を補正することを特徴とする請求項
2に記載の内燃機関の燃料噴射制御装置。
3. The fuel injection amount of a cylinder other than the specific cylinder so that the total fuel injection amount per cycle does not change when increasing or decreasing the fuel injection amount of the specific cylinder. 3. The fuel injection control device for an internal combustion engine according to claim 2, wherein:
【請求項4】 前記補正制御手段は、前記特定気筒の燃
料噴射量を増量する場合に、当該特定気筒の燃料噴射時
期を遅角することを特徴とする請求項2に記載の内燃機
関の燃料噴射制御装置。
4. The fuel for an internal combustion engine according to claim 2, wherein the correction control means delays the fuel injection timing of the specific cylinder when increasing the fuel injection amount of the specific cylinder. Injection control device.
【請求項5】 前記補正制御手段は、前記特定気筒の燃
料噴射量を増量する場合に、その増量分の燃料を当該特
定気筒の膨張行程で後噴射することで、当該特定気筒の
燃料噴射量を増量することを特徴とする請求項2に記載
の内燃機関の燃料噴射制御装置。
5. When the fuel injection amount of the specific cylinder is increased, the correction control means post-injects the increased amount of fuel in the expansion stroke of the specific cylinder to increase the fuel injection amount of the specific cylinder. 3. The fuel injection control device for an internal combustion engine according to claim 2, wherein the fuel injection amount is increased.
【請求項6】 排気ガス還流装置を備え、 前記補正制御手段は、前記特定気筒の燃料噴射量を増量
又は減量する際に、前記排気ガス還流装置による排気ガ
ス還流を停止することを特徴とする請求項2乃至5のい
ずれかに記載の内燃機関の燃料噴射制御装置。
6. An exhaust gas recirculation device, wherein the correction control means stops the exhaust gas recirculation by the exhaust gas recirculation device when increasing or decreasing the fuel injection amount of the specific cylinder. A fuel injection control device for an internal combustion engine according to any one of claims 2 to 5.
【請求項7】 ウェイストゲートバルブ付きの過給装置
を備え、 前記補正制御手段は、前記特定気筒の燃料噴射量を増量
又は減量する際に、前記ウェイストゲートバルブを開放
することを特徴とする請求項2乃至6のいずれかに記載
の内燃機関の燃料噴射制御装置。
7. A supercharger with a waste gate valve, wherein the correction control means opens the waste gate valve when increasing or decreasing the fuel injection amount of the specific cylinder. Item 7. A fuel injection control device for an internal combustion engine according to any one of Items 2 to 6.
【請求項8】 可変ジオメトリターボを備え、 前記補正制御手段は、前記特定気筒の燃料噴射量を増量
又は減量する際に、排気抵抗を低減するように前記可変
ジオメトリターボのガイド板を開放することを特徴とす
る請求項2乃至6のいずれかに記載の内燃機関の燃料噴
射制御装置。
8. A variable geometry turbo, wherein the correction control means opens a guide plate of the variable geometry turbo so as to reduce exhaust resistance when increasing or decreasing the fuel injection amount of the specific cylinder. The fuel injection control device for an internal combustion engine according to any one of claims 2 to 6, wherein:
JP00621298A 1998-01-16 1998-01-16 Fuel injection control device for internal combustion engine Expired - Fee Related JP3956458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00621298A JP3956458B2 (en) 1998-01-16 1998-01-16 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00621298A JP3956458B2 (en) 1998-01-16 1998-01-16 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11200926A true JPH11200926A (en) 1999-07-27
JP3956458B2 JP3956458B2 (en) 2007-08-08

Family

ID=11632232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00621298A Expired - Fee Related JP3956458B2 (en) 1998-01-16 1998-01-16 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3956458B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003232244A (en) * 2002-02-08 2003-08-22 Nippon Soken Inc Fuel injection control device for internal combustion engine
US7356985B2 (en) 2005-07-19 2008-04-15 Denso Corporation Air-fuel ratio controller for internal combustion engine
JP2008255859A (en) * 2007-04-03 2008-10-23 Toyota Motor Corp Exhaust system sensor output stable condition judging device
JP2011185159A (en) * 2010-03-09 2011-09-22 Denso Corp Abnormality diagnosing device of internal combustion engine with supercharger
JP2012107521A (en) * 2010-11-15 2012-06-07 Toyota Motor Corp Control device for internal combustion engine
US20130340423A1 (en) * 2011-03-16 2013-12-26 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003232244A (en) * 2002-02-08 2003-08-22 Nippon Soken Inc Fuel injection control device for internal combustion engine
US7356985B2 (en) 2005-07-19 2008-04-15 Denso Corporation Air-fuel ratio controller for internal combustion engine
JP2008255859A (en) * 2007-04-03 2008-10-23 Toyota Motor Corp Exhaust system sensor output stable condition judging device
JP2011185159A (en) * 2010-03-09 2011-09-22 Denso Corp Abnormality diagnosing device of internal combustion engine with supercharger
JP2012107521A (en) * 2010-11-15 2012-06-07 Toyota Motor Corp Control device for internal combustion engine
US20130340423A1 (en) * 2011-03-16 2013-12-26 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US9103270B2 (en) * 2011-03-16 2015-08-11 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine

Also Published As

Publication number Publication date
JP3956458B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
JP4583038B2 (en) Supercharging pressure estimation device for an internal combustion engine with a supercharger
JP3926522B2 (en) Intake control device for turbocharged engine
US9261031B2 (en) Control device for internal combustion engine and method for controlling internal combustion engine
EP0965740B1 (en) Turbocharger control system for turbocharged internal combustion engines equipped with exhaust gas recirculation control system
US7905135B2 (en) Throttle upstream pressure estimating apparatus and cylinder charged air quantity calculating apparatus for internal combustion engine
US7509210B2 (en) Abnormality determination apparatus and method for blow-by gas feedback device, and engine control unit
US9989029B2 (en) Method and device for determining a charge air mass flow rate
EP2458183B1 (en) Apparatus for controlling internal combustion engine
US7219002B2 (en) Control apparatus for internal combustion engine
JP4495204B2 (en) EGR device abnormality determination device
JP2005307847A (en) Air amount calculation device for internal combustion engine
JP5273183B2 (en) Control device for internal combustion engine
JP4192759B2 (en) Injection quantity control device for diesel engine
CN110645110B (en) Control device for internal combustion engine
WO2019094318A1 (en) Measurement, modeling, and estimation of scavenging airflow in an internal combustion engine
JP5146619B2 (en) Control device for internal combustion engine
WO2014080523A1 (en) Control device of internal combustion engine
EP3759332B1 (en) System and method for avoiding compressor surge during cylinder deactivation of a diesel engine
JP3956458B2 (en) Fuel injection control device for internal combustion engine
JP4228953B2 (en) Control device for internal combustion engine
JP2570463B2 (en) Abnormality detection device for exhaust switching valve of two-stage supercharged internal combustion engine
JP4428150B2 (en) Engine intake control device
JPH1026049A (en) Intake and exhaust system pressure estimating device for internal combustion engine
EP1683953A1 (en) Control apparatus for an internal combustion engine
JP3651012B2 (en) Fuel supply control device for an internal combustion engine with a supercharger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees