JPH1120017A - Multilayered molded body having fiber reinforced thermoplastic resin layer and molding method thereof - Google Patents

Multilayered molded body having fiber reinforced thermoplastic resin layer and molding method thereof

Info

Publication number
JPH1120017A
JPH1120017A JP17849497A JP17849497A JPH1120017A JP H1120017 A JPH1120017 A JP H1120017A JP 17849497 A JP17849497 A JP 17849497A JP 17849497 A JP17849497 A JP 17849497A JP H1120017 A JPH1120017 A JP H1120017A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
sheet
fiber
resin sheet
reinforced thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17849497A
Other languages
Japanese (ja)
Inventor
Koichi Iwata
宏一 瀬
Akio Yoshikoshi
昭雄 吉越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEEPURA SHEET KK
Asano Laboratories Co Ltd
Original Assignee
KEEPURA SHEET KK
Asano Laboratories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEEPURA SHEET KK, Asano Laboratories Co Ltd filed Critical KEEPURA SHEET KK
Priority to JP17849497A priority Critical patent/JPH1120017A/en
Publication of JPH1120017A publication Critical patent/JPH1120017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the lightweight properties, rigidity and dimensional stability of a multilayered formed body by a method wherein a thermoplastic resin sheet having a surface designadness and a fiber reinforced thermoplastic resin sheet are laminated to each other under the condition that the temperature of respective layers are independently controlled to molding temperatures different from each other and, at the same time, the respective layers are differentially molded. SOLUTION: A fiber reinforced thermoplastic resin sheet and a thermoplastic resin sheet having a surface designedness are laminated to each other and then integrally differentially molded. In order to integrally form the laminated sheet at different forming temperatures, the temperatures of the respective layers are independently controlled for forming. Concretely, to a multilayered sheet consisting of an upper sheet 1 made of the thermoplastic resin and a low sheet 2 made of the fiber reinforced thermoplastic resin, the heating object temperature values or the upper and the lower sheets 1 and 2, their conversion percentages, their heating times are set in the inputting means CRT and the surface temperatures of the upper end the lower sheets are detected with a first and a second temperature sensor 9 and 14. The temperature controlling amount of the surface temperatures are calculated with a computer CPU so as to transmit the signals representing the calculated amount through a sequence means SQ to a controlling means SSR in order to control the calorific values of respective heaters.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は自動車部品、サニタ
リー部材(天井、壁、浴槽)家電製品のハウジング、建
材等、外観の意匠性の要求が強くかつ軽量で剛性が必要
な繊維強化熱可塑性樹脂積層体とその成形方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced thermoplastic resin which has strong external design requirements, is lightweight and requires rigidity, such as automobile parts, sanitary members (ceilings, walls, bathtubs), housing of home electric appliances, building materials, etc. The present invention relates to a laminate and a method for forming the same.

【0002】[0002]

【従来の技術】繊維強化熱可塑性樹脂シートを用いて真
空成形(差圧成形)する時の大きな問題は、繊維強化熱
可塑性樹脂の融点又は軟化点を超える温度にまで予熱す
ると熱可塑性樹脂によって抑えられていた強化繊維が、
樹脂が軟化するにつれて弾性力を回復しシート厚が予熱
前の厚さの10倍程度にまで膨張(スウェリング)し
て、シート内部に空気を巻き込んでしまうことである。
これを比較的低圧で成形した成形品には内部に空気溜ま
りが残存し、著しく外観が劣る。この問題について、特
開平7−117114号公報では、繊維強化熱可塑性樹
脂シートの両面にこの繊維強化樹脂のマトリックスを形
成する熱可塑性樹脂(a)より高い融点又は軟化点を有
する熱可塑性樹脂シート(b)を積層し、この複合シー
トを予熱して成形する際に、全周縁部を熱可塑性樹脂
(a)の融点又は軟化点以下の温度に保持して成形する
ことが開示されている。これは、繊維強化熱可塑性樹脂
シートの両面をより融点の高い樹脂シートで覆い、さら
に周縁部を低温に保持して成形時に強化繊維がふくらん
だり空気を巻き込むことを防止しようとするものであ
る。しかし、この先行技術では、繊維強化熱可塑性樹脂
シートは厚み1.3mmであり、両面に積層される熱可
塑性樹脂フィルムは0.03〜0.2mm(30〜20
0μm)といずれも薄いものしか成形できない、特に表
面の熱可塑性樹脂シートの厚みが0.03〜0.2mm
と薄いため、表面硬度を要求されたり、表面意匠性(色
調、平滑性)を求められる場所には利用できない。ま
た、表面の破れが起こりやすく、意匠性においては強化
繊維であるガラス繊維(GF)の透け、凹凸の発生など
が現れるためである。さらに熱可塑性樹脂フィルムの制
約条件として、繊維強化熱可塑性樹脂シートで使用され
ている樹脂より融点、軟化点が10℃以上高い必要があ
る等の問題がある。また従来法では繊維強化熱可塑性樹
脂シートは、乾燥法によって製造されたものであるた
め、材料の伸びにくさのためやぶれや剥離が起こり満足
な成形品が得られなかった。
2. Description of the Related Art A major problem in vacuum forming (differential pressure forming) using a fiber reinforced thermoplastic resin sheet is that if the preheating is performed to a temperature exceeding the melting point or softening point of the fiber reinforced thermoplastic resin, the thermoplastic resin suppresses the problem. The reinforcing fibers that were
As the resin softens, the elastic force is restored, the sheet thickness expands (swells) to about 10 times the thickness before preheating, and air is trapped inside the sheet.
An air pocket remains inside the molded product obtained by molding this at a relatively low pressure, and the appearance is remarkably poor. Regarding this problem, JP-A-7-117114 discloses a thermoplastic resin sheet having a higher melting point or softening point than the thermoplastic resin (a) forming a matrix of the fiber-reinforced resin on both surfaces of the fiber-reinforced thermoplastic resin sheet ( It is disclosed that when b) is laminated and the composite sheet is preheated and molded, the entire periphery is maintained at a temperature equal to or lower than the melting point or softening point of the thermoplastic resin (a). This is intended to cover both sides of the fiber reinforced thermoplastic resin sheet with a resin sheet having a higher melting point, and to keep the peripheral portion at a low temperature to prevent the reinforcing fibers from bulging or entraining air during molding. However, in this prior art, the fiber reinforced thermoplastic resin sheet has a thickness of 1.3 mm, and the thermoplastic resin film laminated on both sides has a thickness of 0.03 to 0.2 mm (30 to 20 mm).
0 μm), which can be formed only in a thin form, especially when the thickness of the surface thermoplastic resin sheet is 0.03 to 0.2 mm
It cannot be used in places where surface hardness is required or surface design (color tone, smoothness) is required. In addition, the surface is apt to be torn, and in design, the glass fiber (GF), which is a reinforcing fiber, is transparent, and irregularities appear. Further, there is a problem that the thermoplastic resin film is required to have a melting point and a softening point higher by 10 ° C. or more than the resin used in the fiber-reinforced thermoplastic resin sheet, for example. Further, in the conventional method, since the fiber-reinforced thermoplastic resin sheet is manufactured by a drying method, the material is difficult to elongate, and the material is liable to be broken or peeled, so that a satisfactory molded product cannot be obtained.

【0003】[0003]

【発明が解決しようとする課題】表面硬度や表面意匠性
が付与された繊維強化熱可塑性樹脂と熱可塑性樹脂の成
形品を考えるなら、熱可塑性樹脂層の厚みは1〜6mm
程度は必要である。繊維強化熱可塑性樹脂と熱可塑性樹
脂層を合わせるとトータル厚みで最大10mm程度にな
り、これらを同時に成形でき、軽量で機械的強度の高い
樹脂多層成形品が切望されているが、従来このような成
形品は得られていない。
When considering a molded article of a fiber-reinforced thermoplastic resin and a thermoplastic resin provided with surface hardness and surface design, the thickness of the thermoplastic resin layer is 1 to 6 mm.
Degree is necessary. The combined total thickness of the fiber-reinforced thermoplastic resin and thermoplastic resin layer is up to about 10 mm, which can be molded simultaneously, and there is a long-awaited demand for a lightweight, high mechanical strength resin multilayer molded product. No molded product has been obtained.

【0004】[0004]

【課題を解決するための手段】本発明者は、上述の問題
点を解決するために成形時の積層シートの温度条件を検
討し、特定の温度条件で差圧成形することによって熱可
塑性樹脂層(B)の厚みが1〜6mmといった厚いシー
トにバックアップ材である繊維強化熱可塑性樹脂シート
(A)を積層しても表面欠陥や内部欠陥のない多層成形
品が得られることを知見し、本発明を完成した。
In order to solve the above-mentioned problems, the present inventor has studied the temperature conditions of the laminated sheet at the time of molding, and formed a thermoplastic resin layer by differential pressure molding under a specific temperature condition. The present inventors have found that a multilayer molded article free from surface defects and internal defects can be obtained even when the fiber-reinforced thermoplastic resin sheet (A) as a backup material is laminated on a thick sheet (B) having a thickness of 1 to 6 mm. Completed the invention.

【0005】本発明は、表面意匠性を有する熱可塑性樹
脂シートと繊維強化熱可塑性樹脂シートを積層し、各層
を異なる成形温度にそれぞれ独立に温度制御し、かつ、
各層を同時に差圧成形して得られる多層成形体である。
また、前記繊維強化熱可塑性樹脂層が熱可塑性樹脂80
〜35wt%と強化繊維20〜65wt%を含有し、前
記繊維強化熱可塑性樹脂シートが、熱可塑性樹脂粉粒体
と不連続繊維を水中に分散し、脱水、熱プレスする抄紙
法で製造され、前記繊維強化熱可塑性樹脂シートのマト
リックス樹脂が、ポリエチレン、ポリプロピレン、アク
リル、ポリカーボネート、ポリスチレン、PVC、AB
S、ポリアミド、ポリエステル、およびこれらのブレン
ドよりなる材料から選択される。
According to the present invention, a thermoplastic resin sheet having a surface design and a fiber-reinforced thermoplastic resin sheet are laminated, and each layer is independently controlled at a different molding temperature, and
This is a multi-layer molded body obtained by differential pressure molding of each layer simultaneously.
Further, the fiber-reinforced thermoplastic resin layer is made of a thermoplastic resin 80.
The fiber-reinforced thermoplastic resin sheet containing -35 wt% and reinforcing fibers of 20-65 wt%, is manufactured by a papermaking method in which thermoplastic resin particles and discontinuous fibers are dispersed in water, dewatered, and hot pressed; The matrix resin of the fiber reinforced thermoplastic resin sheet is polyethylene, polypropylene, acrylic, polycarbonate, polystyrene, PVC, AB
It is selected from materials consisting of S, polyamide, polyester, and blends thereof.

【0006】さらに、前記繊維強化熱可塑性樹脂シート
の強化繊維が、チョップドガラス、ロービングガラス、
アラミド繊維、カーボン繊維、セラミックス繊維、金属
繊維および各種ウイスカーからなる群から選択される少
なくとも1つであり、前記表面意匠性を有する熱可塑性
シートが、ポリエチレン、ポリプロピレン、アクリル、
カーボネート、ポリスチレン、PVC、アクリル変性P
VC、ABS、ポリアミド、ポリエステル、およびこれ
らのブレンド、さらにこれらの異種の多層体から選択さ
れ、前記熱可塑性樹脂シートの厚みが1.0〜6mmで
ある。
Further, the reinforcing fibers of the fiber-reinforced thermoplastic resin sheet may be chopped glass, roving glass,
Aramid fiber, carbon fiber, ceramic fiber, metal fiber and at least one selected from the group consisting of various whiskers, the thermoplastic sheet having the surface design, polyethylene, polypropylene, acrylic,
Carbonate, polystyrene, PVC, acrylic-modified P
It is selected from VC, ABS, polyamide, polyester, and a blend thereof, and further, a heterogeneous multilayer body thereof, and the thickness of the thermoplastic resin sheet is 1.0 to 6 mm.

【0007】また本発明は、繊維強化熱可塑性樹脂シー
トと表面意匠性を有する熱可塑性樹脂シートとを積層し
てクランプし、差圧力を用いて一体成形することを特徴
とする多層成形体の成形方法であり、前記一体成形が、
積層シートが異なる成形温度で成形されるように、各層
の温度を独立に制御して成形する多層成形体の成形方法
である。
Further, the present invention provides a method for forming a multilayer molded article, comprising laminating a fiber-reinforced thermoplastic resin sheet and a thermoplastic resin sheet having surface design, clamping the molded article, and integrally molding the sheet using a differential pressure. A method, wherein said integral molding comprises:
This is a method for forming a multilayer molded body in which the temperature of each layer is independently controlled so as to form a laminated sheet at different molding temperatures.

【0008】以下に、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0009】(1)繊維強化熱可塑性樹脂シート(A)強化繊維 本発明の真空圧空成形される多層成形体の繊維強化熱可
塑性樹脂シート層に用いられる強化用繊維は、ガラス繊
維、炭素繊維、金属繊維、その他無機繊維、有機繊維な
どを挙げる事ができる。その中では特にガラス繊維が一
般的である。ガラス繊維を主体としてカーボン繊維、ア
ラミド繊維、金属繊維、セラミック繊維などを本発明の
趣旨に外れない限り併用する事も可能である。ガラス繊
維としてはチョップドストランドを使用するのが一般的
である。なおこのチョップドストランドは用途に応じて
アミノシランカップリング剤、エポキシシランカップリ
ング剤、ポリビニルアルコール、ポリ酢酸ビニル、ポリ
ウレタン等の収束剤等で表面処理を施したものを用いる
事ができる。
(1) Fiber-reinforced thermoplastic resin sheet (A) Reinforced fiber The reinforcing fibers used in the fiber-reinforced thermoplastic resin sheet layer of the multilayer molded article of the present invention are glass fibers, carbon fibers, Examples thereof include metal fibers, other inorganic fibers, and organic fibers. Among them, glass fiber is particularly common. It is also possible to use glass fibers as a main component and carbon fibers, aramid fibers, metal fibers, ceramic fibers, and the like as long as they do not depart from the gist of the present invention. It is common to use chopped strands as glass fibers. The chopped strand may be subjected to a surface treatment with an aminosilane coupling agent, an epoxysilane coupling agent, a sizing agent such as polyvinyl alcohol, polyvinyl acetate, polyurethane, or the like, depending on the application.

【0010】熱可塑性樹脂 本発明の繊維強化熱可塑性樹脂シート層に用いられる樹
脂としては、ポリエチレン、ポリプロピレン、変性P
P、アクリル樹脂、ポリスチレン、ポリ塩化ビニル、A
BS樹脂、ポリエステル樹脂(ポリエチレンテレフタレ
ート、ポリブチレンテレフタレート)、ポリカーボネー
ト樹脂、ポリアミド、ポリアセタール、ポリサルホン、
ポリフェニレンスルファイドなどを挙げる事ができる。
これらの樹脂は単独のみならず、2種類またはそれ以上
の混合物や共重合体としても使用する事ができる。ま
た、これらの樹脂シートの積層体であってもよい。さら
に樹脂中に充填剤や、耐候性向上剤、強度向上のための
添加剤等を配合する事が可能である。各種樹脂の中から
強度、剛性、などの物性面からポリプロピレン、ポリエ
ステル、などが有望であり、成形性、経済性、リサイク
ル性などを考えるとポリプロピレンが特に好ましい。
Thermoplastic resin The resin used for the fiber reinforced thermoplastic resin sheet layer of the present invention is polyethylene, polypropylene, modified P
P, acrylic resin, polystyrene, polyvinyl chloride, A
BS resin, polyester resin (polyethylene terephthalate, polybutylene terephthalate), polycarbonate resin, polyamide, polyacetal, polysulfone,
Polyphenylene sulfide and the like can be mentioned.
These resins can be used not only alone, but also as a mixture or copolymer of two or more kinds. Further, a laminate of these resin sheets may be used. Further, a filler, a weather resistance improver, an additive for improving strength, and the like can be compounded in the resin. Among various resins, polypropylene, polyester, and the like are promising in terms of physical properties such as strength and rigidity, and polypropylene is particularly preferable in consideration of moldability, economy, recyclability, and the like.

【0011】配合割合 本発明の繊維強化熱可塑性樹脂シート(A)中の熱可塑
性樹脂の比率は、80〜35重量%(強化繊維は20〜
65重量%)まで混合される。好ましくは、80〜60
重量%(強化繊維は20〜40重量%)である。熱可塑
性樹脂の配合割合が80重量%を超えると得られる成形
品の剛性向上への寄与が小さくなり、逆に20重量%未
満になると成形良品が得られなくなる。
The proportion of the thermoplastic resin in the fiber-reinforced thermoplastic resin sheet (A) of the present invention is 80 to 35% by weight (the reinforcing fiber is 20 to 35% by weight).
65% by weight). Preferably, 80 to 60
% By weight (20 to 40% by weight of the reinforcing fiber). When the blending ratio of the thermoplastic resin exceeds 80% by weight, the contribution to the improvement of the rigidity of the obtained molded article becomes small, and when it is less than 20% by weight, a good molded article cannot be obtained.

【0012】厚 み 繊維強化熱可塑性樹脂(A)のシートの厚みは2〜10
mmの範囲で成形可能である。好ましくは3〜6mmで
ある。2mm未満では成形品の厚みが剛性を得るまでの
充分な機械的強度がなく、10mm以上では差圧成形が
困難である。
Thickness of the sheet of the fiber-reinforced thermoplastic resin (A) is 2 to 10
It can be molded in the range of mm. Preferably it is 3-6 mm. If the thickness is less than 2 mm, there is not enough mechanical strength until the thickness of the molded product becomes rigid, and if it is 10 mm or more, it is difficult to perform differential pressure molding.

【0013】繊維強化熱可塑性樹脂シート(A)の製造
水中や水泡中で熱可塑性樹脂粉粒体と一定長さまたは
異なる長さの強化繊維を混合、分散させた後、抄紙法に
より中間製品であるウエブを作製しさらに加熱、加圧、
冷却により繊維強化熱可塑性樹脂シートとする方法(湿
式法)。 熱可塑性樹脂粉粒体と強化繊維を混合分散させた後、
混合物をウエブ状にし加熱、加圧、冷却をして繊維強化
熱可塑性樹脂シートとする方法(乾式法)。などが挙げ
られる。 本発明では、どのような製造方法により得られる繊維強
化熱可塑性樹脂シートを用いてもよいが、強化繊維がよ
り均一に分散し、強度が安定し、低圧でも成形性が良好
な湿式法で作製された繊維強化熱可塑性樹脂シートを用
いることが特に好ましい。
Production of fiber-reinforced thermoplastic resin sheet (A)
Mixing reinforcing fibers of the thermoplastic resin powder or granular material constant length or different lengths in a law water and water bubbles were dispersed, further heating, under pressure to prepare a web which is an intermediate product by a papermaking method,
A method of forming a fiber-reinforced thermoplastic resin sheet by cooling (wet method). After mixing and dispersing the thermoplastic resin particles and reinforcing fibers,
A method in which the mixture is formed into a web and heated, pressurized, and cooled to obtain a fiber-reinforced thermoplastic resin sheet (dry method). And the like. In the present invention, a fiber-reinforced thermoplastic resin sheet obtained by any manufacturing method may be used, but the reinforcing fiber is more uniformly dispersed, the strength is stable, and the moldability is excellent even at low pressure. It is particularly preferable to use a fiber-reinforced thermoplastic resin sheet that has been subjected to the above.

【0014】(2)熱可塑性樹脂シート(B)熱可塑性樹脂(B) 本発明の熱可塑性樹脂シート(B)に用いる樹脂として
は上記に示す繊維強化熱可塑性樹脂シート(A)で使用
可能な熱可塑性樹脂(A)中から選ぶ事ができる。また
樹脂中に充填剤、安定剤、着色剤、耐候性向上剤などを
添加した材料を使用する事ができるのも同様である。こ
れらの熱可塑性樹脂シート(B)の厚みは、0.2mm
〜10mm、好ましくは0.5mm〜6mmで成形され
る。厚みが10mmを超えると成形が不十分になり多層
成形体の外観不良となる。また0.2mm未満では表面
に強化繊維の弾性回復による熱膨張によるGFの浮き上
がりまたは時にはシートの破れが生じるケースが現れ
る。これらの熱可塑性樹脂(B)の融点または軟化点
は、繊維強化熱可塑性樹脂(A)で使用の樹脂より30
〜60℃程度の温度差(高、低いずれでも可)があって
も後述の方法で独立に温度制御することにより成形に支
障はない。
(2) Thermoplastic resin sheet (B) Thermoplastic resin (B) As the resin used for the thermoplastic resin sheet (B) of the present invention, the above-mentioned fiber-reinforced thermoplastic resin sheet (A) can be used. It can be selected from among the thermoplastic resins (A). Similarly, a material in which a filler, a stabilizer, a coloring agent, a weather resistance improver, and the like are added to a resin can be used. The thickness of these thermoplastic resin sheets (B) is 0.2 mm
It is molded to a size of 10 mm to 10 mm, preferably 0.5 mm to 6 mm. If the thickness exceeds 10 mm, the molding is insufficient and the appearance of the multilayer molded body is poor. If the thickness is less than 0.2 mm, the surface of the GF rises due to thermal expansion due to the elastic recovery of the reinforcing fiber or sometimes the sheet breaks. The melting point or softening point of these thermoplastic resins (B) is 30 times higher than that of the resin used for the fiber-reinforced thermoplastic resin (A).
Even if there is a temperature difference of about 60 ° C. (either high or low), there is no problem in molding by controlling the temperature independently by the method described later.

【0015】湿式法の1例を挙げると、水に1〜5重量
%の界面活性剤を加え良く泡立てた液中でポリプロピレ
ン(PP)/GF(チョップドストランド)を十分に攪
拌し、抄紙法により、ウエブを作製する。これを加熱、
加圧、冷却することにより繊維強化熱可塑性樹脂シート
を製造する。抄紙法で製造される繊維強化熱可塑性樹脂
シート(例、商品名KPシート)は、本発明の積層シー
トとして成形すれば、真空成形においても繊維量の均一
性が維持され1kg/cm2 程度の大気圧または1〜1
0kg/cm2 の圧空または10〜30kg/cm2
プレス圧で成形できるのが特徴である。またGFが深し
ぼり方向へも均一に分散しており成形後の収縮が小さい
事も特長である。
As an example of the wet method, a surfactant (1 to 5% by weight is added to water, and polypropylene (PP) / GF (chopped strand) is sufficiently stirred in a well-foamed liquid. , To produce a web. Heat this,
The fiber-reinforced thermoplastic resin sheet is manufactured by pressurizing and cooling. When a fiber-reinforced thermoplastic resin sheet (eg, KP sheet under the trade name) manufactured by the papermaking method is formed as the laminated sheet of the present invention, the uniformity of the fiber amount is maintained even in vacuum forming, and about 1 kg / cm 2 . Atmospheric pressure or 1-1
It is characterized by be molded with pressure or 10 to 30 kg / cm 2 of press pressure of 0 kg / cm 2. Another feature is that the GF is uniformly dispersed in the deep drawing direction and the shrinkage after molding is small.

【0016】接着層 繊維強化熱可塑性樹脂シート(A)とこれに積層される
熱可塑性樹脂シート(B)との間には、成形時に熱融着
を行ってもよいし、接着層が設けられていてもよい。接
着層はホットメルト接着剤シートを挟み込み成形時にホ
ットメルトを軟化して繊維強化熱可塑性樹脂シート
(A)と熱可塑性樹脂シート(B)とを接着する。ホッ
トメルトに用いるのは、ポリオレフィン(ポリエチレ
ン、ポリプロピレン)系樹脂、酢酸ビニル系樹脂、ポリ
エステル系樹脂が好ましい。繊維強化熱可塑性樹脂シー
ト(A)のマトリックス樹脂と熱可塑性樹脂シート
(B)の樹脂が異なり、熱融着のみでは充分な接着性が
得られない場合には、接着層を有することが好ましい。
Adhesive Layer Between the fiber-reinforced thermoplastic resin sheet (A) and the thermoplastic resin sheet (B) laminated thereon, heat bonding may be performed at the time of molding, or an adhesive layer may be provided. May be. The adhesive layer sandwiches the hot melt adhesive sheet and softens the hot melt during molding to bond the fiber reinforced thermoplastic resin sheet (A) and the thermoplastic resin sheet (B). Polyolefin (polyethylene, polypropylene) resins, vinyl acetate resins, and polyester resins are preferably used for the hot melt. When the matrix resin of the fiber-reinforced thermoplastic resin sheet (A) and the resin of the thermoplastic resin sheet (B) are different and sufficient adhesiveness cannot be obtained only by heat fusion, it is preferable to have an adhesive layer.

【0017】本発明は、以上で説明した熱可塑性樹脂シ
ートを表面材とし、繊維強化熱可塑性樹脂シートをバッ
クアップ材として積層し、各層を異なる成形温度にそれ
ぞれ独立に温度制御し、かつ、各層を同時に(一体的
に)差圧成形して得られる多層成形体であって表面意匠
性を有する成形体である。ここで表面意匠性を有すると
は、表面の熱可塑性樹脂シート(B)が繊維強化熱可塑
性樹脂シート(A)と積層して差圧成形されても、単層
で最適温度範囲で差圧成形された時と全く変わらない表
面性状を有することをいい、具体的には表面に破れがな
く強化繊維の透け、凹凸の発生が実質的にないことをい
う。
According to the present invention, the thermoplastic resin sheet described above is used as a surface material, the fiber reinforced thermoplastic resin sheet is laminated as a backup material, each layer is independently temperature-controlled at different molding temperatures, and each layer is It is a multi-layer molded product obtained by differential pressure molding at the same time (integrally) and has surface design. Here, having the surface design means that even if the thermoplastic resin sheet (B) on the surface is laminated with the fiber-reinforced thermoplastic resin sheet (A) and subjected to differential pressure molding, the single layer is subjected to differential pressure molding within an optimum temperature range. It means that it has the same surface properties as when it was made, and specifically, it means that there is no breakage on the surface and there is substantially no see-through of the reinforcing fibers and no generation of irregularities.

【0018】従来、このような表面意匠性を有し、しか
も表面の熱可塑性樹脂シート(B)が0.2〜10mm
好ましくは0.5〜6mmであり、バックアップ材の繊
維強化熱可塑性樹脂シート(A)が2〜10mm好まし
くは3〜6mmである差圧成形された多層成形体は得ら
れていない。
Conventionally, the thermoplastic resin sheet (B) having such surface design and having a surface of 0.2 to 10 mm
It is preferably from 0.5 to 6 mm, and a multi-layer molded article subjected to differential pressure molding in which the fiber-reinforced thermoplastic resin sheet (A) of the backup material has a thickness of 2 to 10 mm, preferably 3 to 6 mm has not been obtained.

【0019】すなわち上述の積層シートを成形倍率(展
開倍率、成形後の表面積の成形前の表面積に対する割
合)が150%以上、好ましくは250%以上の成形体
として差圧成形した場合に、表面材単層で成形された場
合と実質同等な表面性状を有し、しかも成形体のアイゾ
ット衝撃強度が20kgfcm/cm2 以上、好ましく
は35kgfcm/cm2 以上のものは従来品にない軽
量性と強度を備えた表面意匠性を有する多層成形体であ
る。
That is, when the above-mentioned laminated sheet is subjected to differential pressure molding as a molded article having a molding magnification (development magnification, a ratio of the surface area after molding to the surface area before molding) of 150% or more, preferably 250% or more, A molded article having a surface property substantially equivalent to that of a single-layer molded article and having an Izod impact strength of 20 kgfcm / cm 2 or more, preferably 35 kgfcm / cm 2 or more, has a light weight and strength not found in conventional products. It is a multilayer molded article having a surface design.

【0020】次に本発明の多層成形体の好適な差圧成形
の1例を図面を用いて説明する。 加熱装置 図1は本発明の成形体の成形方法の1例に用いられる加
熱制御装置の概要を示したもので、5は箱状のフレーム
6に多数の発熱応答性の優れたヒーターエレメント7を
配置した上ヒーターである。8は該ヒーターエレメント
7の温度を検出する上ヒーター温度センサー、9はフレ
ーム6の上部に設置した上シート1の表面温度を計測す
る赤外線放射温度計の第1温度センサーである。同様
に、10は箱状のフレーム11に多数の発熱応答性の優
れたヒーターエレメント12を配置した下ヒーター、1
3は該ヒーターエレメント12の温度を検出する下ヒー
ター温度センサー、14はフレーム11の下部に設置し
た下シート2の表面温度を計測する第2温度センサーで
ある。15は上シート1と下シート2を上下に重ねた多
層シート、必要な場合は上シート1と下シート2との間
に接着剤層3を有する、の側縁をクランプするクランプ
手段であり、多層シートはクランプ手段15で梱まれて
搬送手段(図示せず)により上ヒーター5と下ヒーター
10の間に供給される。
Next, an example of a preferred differential pressure molding of the multilayer molded article of the present invention will be described with reference to the drawings. Heating Device FIG. 1 shows an outline of a heating control device used in one example of a molding method of the present invention. Reference numeral 5 denotes a box-shaped frame 6 in which a number of heater elements 7 having excellent heat generation response are provided. It is a heater placed above. Reference numeral 8 denotes an upper heater temperature sensor for detecting the temperature of the heater element 7, and reference numeral 9 denotes a first temperature sensor of an infrared radiation thermometer for measuring the surface temperature of the upper sheet 1 installed on the upper portion of the frame 6. Similarly, reference numeral 10 denotes a lower heater in which a number of heater elements 12 having excellent heat generation response are arranged on a box-shaped frame 11;
Reference numeral 3 denotes a lower heater temperature sensor that detects the temperature of the heater element 12, and reference numeral 14 denotes a second temperature sensor that measures the surface temperature of the lower sheet 2 installed below the frame 11. 15 is a clamping means for clamping a side edge of a multilayer sheet in which the upper sheet 1 and the lower sheet 2 are vertically stacked, and having an adhesive layer 3 between the upper sheet 1 and the lower sheet 2 if necessary; The multilayer sheet is packed by the clamp means 15 and supplied between the upper heater 5 and the lower heater 10 by a transport means (not shown).

【0021】CRTは上シート1と下シート2の各加熱
目標温度値Ts1 、Ts2 、上ヒーター5と下ヒーター
10の点火率及び樹脂シート加熱時間t等を入力するた
めの入力手段である。CPUはコンピューターを表し、
上記加熱目標温度値Ts1 、Ts2 と各シートの加熱前
の表面温度実測値T1 、T2 との偏差量a、bに対する
上ヒーター5と下ヒーター10の各温度制御量α、βを
演算する等の種々の計算機能、前記ヒーター5、10の
点火率に基づいて各ヒーターの温度最大値TH 1 、TH
2 を決定するためのデータベースを記憶し収納する機
能、その他通常の小形コンピューターに準ずる機能を備
えるものである。SSRは上ヒーター5と下ヒーター1
0の発熱量の制御を行うためのサイリスター等からなる
制御手段、SQはプログラマブルロジック調節器(通称
PLC)や入出力局等を備えたシーケンス手段たるシー
ケンサーを表し、前記上ヒーター温度センサー8、第1
温度センサー9、下ヒーター温度センサー13及び第2
温度センサー14からの検出信号を受け、各制御手段S
SRに電力供給指令を出力する等の機能をもつ。
The CRT is for heating the upper sheet 1 and the lower sheet 2
Target temperature value Ts1, TsTwo, Upper heater 5 and lower heater
10 to input the ignition rate and the resin sheet heating time t, etc.
Input means. CPU represents a computer,
The heating target temperature value Ts1, TsTwoAnd before heating each sheet
Measured surface temperature T1, TTwoWith respect to the deviations a and b
The respective temperature control amounts α and β of the upper heater 5 and the lower heater 10
Various calculation functions such as calculating, the heaters 5, 10
Temperature maximum value TH of each heater based on ignition rate 1, TH
TwoFor storing and storing a database for determining
And other functions similar to those of ordinary small computers.
It is something. SSR is upper heater 5 and lower heater 1
It consists of a thyristor etc. for controlling the heating value of 0
The control means and SQ are programmable logic controllers (commonly known as
PLC), and a sequence means such as an I / O station
The upper heater temperature sensor 8 represents the
Temperature sensor 9, lower heater temperature sensor 13 and second
Upon receiving the detection signal from the temperature sensor 14, each control unit S
It has a function of outputting a power supply command to the SR.

【0022】加熱方法 以上の装置を用いて行う温度制御は、上ヒーターと下ヒ
ーターの間に供給される熱可塑性樹脂シートと繊維強化
熱可塑性樹脂シートを上下に重ねた多層シートに対し、
それらの各々の表面側から同時に加熱して成形に適する
温度に加熱制御する方法であって、上シートと下シート
の加熱目標温度値、上ヒーターと下ヒーターの点火率及
びシート加熱時間を入力手段により設定し、加熱開始指
令に基づき上シートの表面温度を第1温度センサーで検
出すると共に下シートの表面温度を第2温度センサーで
各々検出し、予め設定した前記加熱目標温度値とその検
出された各実測値との偏差量に対する各ヒーターの温度
制御量をコンピューターにより演算し、その温度制御量
の信号をシーケンス手段を介して制御手段に伝え、該制
御手段により各ヒーターの発熱量の制御を行い、加熱さ
れた各シートの表面温度の実測値の信号を前記コンピュ
ーターにフィードバックして新たな温度制御量を演算
し、その補正された温度制御量に基づいて各ヒーターの
発熱量を制御することを繰り返して、上シート及び下シ
ートの温度を各々の加熱目標温度値に近づくように制御
する。
Heating method The temperature control using the above-described apparatus is performed on a multilayer sheet in which a thermoplastic resin sheet and a fiber-reinforced thermoplastic resin sheet supplied between an upper heater and a lower heater are vertically stacked.
A method of simultaneously heating from the respective surface sides to control the heating to a temperature suitable for molding, comprising inputting a target heating temperature value of an upper sheet and a lower sheet, an ignition rate of an upper heater and a lower heater, and a sheet heating time. The surface temperature of the upper sheet is detected by the first temperature sensor based on the heating start command, and the surface temperature of the lower sheet is detected by the second temperature sensor based on the heating start command. The computer calculates a temperature control amount of each heater with respect to the deviation amount from each measured value, and transmits a signal of the temperature control amount to the control means via the sequence means, and the control means controls the heat generation amount of each heater. Then, a signal of the actual measured value of the surface temperature of each heated sheet is fed back to the computer to calculate a new temperature control amount, and the corrected amount is calculated. Repeat to control the heating value of the heaters based on the time control amount is controlled so as to approach the upper sheet and the temperature of the lower sheet in each of the heating target temperature.

【0023】上シートと下シートの各加熱目標温度値、
上ヒーターと下ヒーターの点火率及び樹脂シート加熱時
間を入力手段により入力して、加熱開始指令を発する
と、その指令に基づき上ヒーターと下ヒーターの間に供
給された上シートと下シートの表面温度が第1、第2温
度センサーで夫々検出される。コンピューターにより前
記加熱目標温度値とその検出された各実測値との偏差量
が計算され、それらの偏差量に対応した各ヒーターの温
度制御量が演算され、その温度制御量の信号がシーケン
ス手段を介して制御手段に伝えられる。そして、該制御
手段により各ヒーターの発熱量の制御が行われて樹脂シ
ートの加熱が始められる。上シート及び下シートの実測
値が各々の加熱目標温度値に達し、又はシートの実加熱
時間が当初の設定値となったときに加熱が終わる。
The respective heating target temperature values of the upper sheet and the lower sheet,
When the ignition rate of the upper heater and the lower heater and the heating time of the resin sheet are inputted by the input means and a heating start command is issued, the surface of the upper sheet and the lower sheet supplied between the upper heater and the lower heater based on the command is issued. The temperature is detected by the first and second temperature sensors, respectively. The computer calculates a deviation between the heating target temperature value and each of the actually measured values, calculates a temperature control amount of each heater corresponding to the deviation amount, and outputs a signal of the temperature control amount to the sequencer. Via the control means. The control means controls the amount of heat generated by each heater to start heating the resin sheet. Heating ends when the actual measured values of the upper sheet and the lower sheet reach the respective heating target temperature values, or when the actual heating time of the sheet reaches the initial set value.

【0024】上シート、下シートの何れかが加熱目標温
度値に達していないとき、又は実加熱時間が設定値以下
のときはシートの表面温度が再び検出される。検出され
た実測値の信号は前記コンピューターにフィードバック
されて、新たな温度制御量が演算される。該当するヒー
ターの発熱量が、その補正された温度制御量に基づき当
初の加熱目標温度値に近づくように自動的に制御され
る。
If either the upper sheet or the lower sheet has not reached the heating target temperature value, or if the actual heating time is shorter than the set value, the surface temperature of the sheet is detected again. The signal of the detected measured value is fed back to the computer, and a new temperature control amount is calculated. The heating value of the corresponding heater is automatically controlled based on the corrected temperature control amount so as to approach the initial heating target temperature value.

【0025】このような加熱制御方法とすれば、異種材
料の積層シートの厚さ及び熱伝導率等の相違に拘わら
ず、簡単な入力操作によって重ねられたシートを成形に
適した温度に短時間で効率的に加熱し、安定した温度に
維持することができる。
According to such a heating control method, regardless of the difference in the thickness and the thermal conductivity of the laminated sheets of different materials, the stacked sheets can be quickly brought to a temperature suitable for molding by a simple input operation. To efficiently heat and maintain a stable temperature.

【0026】例えば図4は、強化ガラス繊維シート(上
シート、厚さ2.5mm)とABS樹脂シート(下シー
ト、厚さ2.5mm)を重ねた多層シートを加熱制御し
た場合につき、各シート温度及びヒーター温度と加熱時
間との関係を表したグラフを示す。ここで、上シートの
加熱目標温度値Ts1 =120℃、上ヒーター点火率=
8、下シートの加熱目標温度値Ts2 =140℃、下ヒ
ーター点火率=10、シート加熱時間t=180秒であ
る。
For example, FIG. 4 shows a case where a multi-layer sheet in which a reinforced glass fiber sheet (upper sheet, 2.5 mm in thickness) and an ABS resin sheet (lower sheet, 2.5 mm in thickness) are heated is controlled. 3 is a graph showing a relationship between a temperature, a heater temperature, and a heating time. Here, the upper sheet heating target temperature value Ts 1 = 120 ° C., the upper heater ignition rate =
8, the lower target heating temperature Ts 2 = 140 ° C., the lower heater ignition rate = 10, and the sheet heating time t = 180 seconds.

【0027】このグラフから、上下のシートは加熱開始
後約50秒で100℃付近まで加熱され、上ヒーターが
50秒、下ヒーターが80秒を過ぎたあたりから各ヒー
ターの温度が徐々に下げられて、各シートは150秒付
近で各々の加熱目標温度に近づき、その後安定状態とな
ることが認められた。
From this graph, it can be seen that the upper and lower sheets are heated to about 100 ° C. in about 50 seconds after the start of heating, and the temperatures of the respective heaters are gradually lowered after about 50 seconds for the upper heater and about 80 seconds for the lower heater. As a result, it was confirmed that each sheet approached the respective heating target temperature in about 150 seconds, and then became stable.

【0028】本発明の多層成形体は、以下の組合わせの
積層シートとした場合、熱可塑性樹脂シートの成形温度
と繊維強化熱可塑性樹脂シートの表面温度をそれぞれ以
下の温度範囲に設定し、一体で差圧成形するのが好まし
く、この温度設定で、より表面意匠性に優れた多層成形
体が得られる。特に、熱可塑性樹脂シートがアクリルが
主成分であり、繊維強化熱可塑性樹脂シートがポリプロ
ピレンを主成分とするマトリックスにガラス繊維含有で
ある場合に好ましい。これらの材料温度は、本発明者等
により熱可塑性樹脂の荷重たわみ温度(HDT)値+2
0〜100℃、好ましくはHDT+70〜100℃の範
囲でほぼ成形可能な温度となることがわかってきた。従
って、各材料のHDT値より目標とする最適成形温度を
容易に推定することができる。本発明法により表面意匠
性を有する熱可塑性樹脂シートと繊維強化熱可塑性樹脂
シートを積層し、各層をそれぞれ成形温度及び表面温度
で独立に温度制御する場合の好適な温度値は、それぞれ
の材料の熱可塑性樹脂の荷重たわみ温度値を指標として
決定することができる。具体的樹脂それぞれについての
好適値を表1に示す。
When the multilayer molded article of the present invention is a laminated sheet of the following combination, the molding temperature of the thermoplastic resin sheet and the surface temperature of the fiber-reinforced thermoplastic resin sheet are set to the following temperature ranges, respectively, It is preferable to perform differential pressure molding at this temperature, and at this temperature setting, a multilayer molded article having more excellent surface design can be obtained. In particular, it is preferable when the thermoplastic resin sheet is mainly composed of acrylic resin and the fiber reinforced thermoplastic resin sheet is a matrix mainly composed of polypropylene and contains glass fiber. The temperature of these materials is determined by the inventors of the present invention as the deflection temperature under load (HDT) of the thermoplastic resin + 2.
It has been found that the temperature at which molding is possible is substantially in the range of 0 to 100 ° C, preferably HDT + 70 to 100 ° C. Therefore, a target optimum molding temperature can be easily estimated from the HDT value of each material. The preferred temperature value in the case of laminating a thermoplastic resin sheet having a surface design property and a fiber-reinforced thermoplastic resin sheet according to the method of the present invention and independently controlling the temperature of each layer at a molding temperature and a surface temperature, respectively, is The deflection temperature under load of the thermoplastic resin can be determined as an index. Table 1 shows preferred values for each specific resin.

【0029】 荷重たわみ温度(HDT):JIS K 6745により測定、軟化温度は抗張 力(kgf/cm2 )で決定した。 架橋アクリル(サニタリー用メタアクリル) 107℃(一般キャスト板71〜102℃) PP 49〜60℃(タルク入り56〜82℃) PC 121〜135℃ ABS 88〜107℃ PVC 60〜77℃ アクリル変性PVC 73〜90℃[0029] Deflection temperature under load (HDT): Measured according to JIS K 6745 , and the softening temperature was determined by tensile strength (kgf / cm 2 ). Crosslinked acrylic (methacrylic for sanitary) 107 ° C (71-102 ° C for general cast plate) PP 49-60 ° C (56-82 ° C with talc) PC 121-135 ° C ABS 88-107 ° C PVC 60-77 ° C Acrylic-modified PVC 73-90 ° C

【0030】シートのクランプ 繊維強化熱可塑性樹脂と熱可塑性樹脂の多層真空、圧空
成形は、両者を4辺、または必要な数点でクランプし固
定して成形するのが好ましい。クランプは金属、発泡
体、ゴム等特に材質は問わず適宜使用される。
Sheet Clamping In the multilayer vacuum and pressure forming of the fiber-reinforced thermoplastic resin and the thermoplastic resin, it is preferable to clamp and fix both at four sides or at necessary points. The clamp is appropriately used irrespective of the material, such as metal, foam, and rubber.

【0031】成形 繊維強化熱可塑性樹脂シート(A)と熱可塑性樹脂シー
ト(B)の真空、圧空成形は真空および圧縮空気の力で
延伸しながら製品形状に成形する。成形品の肉厚は、延
伸過程においてシートが型に接触した時点で決定され
る。すなわちシートは成形開始と同時に均一な真空圧空
力で成形品形状に延伸される。一方で型と接触した部分
のシートは、表面温度が急冷され延伸が不可能になり厚
みが固定される。これらの過程を経て最終的に延伸され
たシートが型表面に接触し冷却が完了すると成形品が得
られる。
Forming The fiber-reinforced thermoplastic resin sheet (A) and the thermoplastic resin sheet (B) are formed into a product shape by drawing under vacuum and compressed air while drawing by vacuum and compressed air. The thickness of the molded article is determined when the sheet comes into contact with the mold in the stretching process. That is, the sheet is stretched to the shape of a molded article by uniform vacuum pressure aerodynamics simultaneously with the start of molding. On the other hand, the surface temperature of the sheet in contact with the mold is rapidly cooled, stretching is impossible, and the thickness is fixed. After these processes, the finally stretched sheet comes into contact with the surface of the mold, and upon completion of cooling, a molded product is obtained.

【0032】具体的方法として 1.雌型使用で型側より真空引きし成形する。 2.雌型使用で上部を密閉し圧縮空気で成形する。 3.1、2を併用する方法。 4.雌型使用において補助プラグで一旦材料を型近傍ま
で延伸した後真空引きし成形する方法。 5.雄型使用で型側より真空引きし成形する。 6.雄型使用で上部を密閉し圧縮空気で成形する。 7.4、5を併用する方法。 などがあり本発明においてはいずれの方法にも制限され
ない。これら真空、圧空成形においては、0.3〜10
kgf/cm2 好ましくは0.5〜7kgf/cm2
度の圧力をかけることで実施される。
As a specific method: Using a female mold, vacuum form from the mold side and mold. 2. Using a female mold, seal the top and mold with compressed air. 3.1 Method of using both 1 and 2. 4. A method in which a material is stretched once to the vicinity of the mold with an auxiliary plug in the use of a female mold and then evacuated and molded. 5. Using a male mold, vacuum form from the mold side and mold. 6. Use a male mold to seal the top and mold with compressed air. 7.4 Method of using 5 and 5 together. And the present invention is not limited to any method. In these vacuum and pressure forming, 0.3 to 10
kgf / cm 2 is preferably carried out by applying a pressure of about 0.5~7kgf / cm 2.

【0033】図2、図3は本発明の成形品の成形を行う
のに好適な真空成形機16の断面図である。図2は雌型
17を有する真空成形機16であり、図3は雄型20を
有する真空成形機16である。熱可塑性樹脂シートであ
る上シート1は接着剤層3を介して繊維強化熱可塑性樹
脂シート1である下シート2と積層され、クランプ手段
15で周縁部をクランプされる。加熱された積層シート
は、必要により補助プラグ18でシートを伸ばしつつ型
に接触させる。型に接触する直前に型17、20、設け
られた空気穴19から真空ポンプ等で積層シートと型1
7、20との間にある大気を排出させる。
FIGS. 2 and 3 are cross-sectional views of a vacuum forming machine 16 suitable for forming the molded article of the present invention. FIG. 2 shows a vacuum forming machine 16 having a female mold 17, and FIG. 3 shows a vacuum forming machine 16 having a male mold 20. The upper sheet 1 which is a thermoplastic resin sheet is laminated with the lower sheet 2 which is a fiber-reinforced thermoplastic resin sheet 1 via an adhesive layer 3, and its peripheral portion is clamped by a clamping means 15. The heated laminated sheet is brought into contact with the mold while stretching the sheet with the auxiliary plug 18 as necessary. Immediately before contacting the mold, the laminated sheets and the mold 1 are passed through the molds 17 and 20 and the air holes 19 provided by a vacuum pump or the like.
The air between 7, 20 is discharged.

【0034】[0034]

【実施例】【Example】

(実施例1)繊維強化熱可塑性樹脂シートと熱可塑性樹
脂シートとの成形実施例を以下に示す。図1には成形前
段階の加熱状態を示す。真空成形機付近に設置されてい
る遠赤外炉または対流式炉に繊維強化熱可塑性樹脂シー
ト(KPシート)2と接着剤層3および熱可塑性樹脂シ
ートとして(サニタリー用メタアクリル板)1を重ねク
ランプ手段15で押さえて表1に示す所望の設定温度で
所定時間加熱する。上面、下面を独立した設定温度に制
御して加熱して品位の高い成形品を得る事ができた。
(Example 1) An example of forming a fiber-reinforced thermoplastic resin sheet and a thermoplastic resin sheet is shown below. FIG. 1 shows a heating state before molding. A fiber-reinforced thermoplastic resin sheet (KP sheet) 2, an adhesive layer 3, and a (methacrylic sheet for sanitary) 1 as a thermoplastic resin sheet are stacked on a far-infrared furnace or a convection furnace installed near a vacuum forming machine. It is pressed by the clamp means 15 and heated at a desired set temperature shown in Table 1 for a predetermined time. The upper and lower surfaces were controlled to independent set temperatures and heated to obtain a high quality molded product.

【0035】2種のシート材料が成形可能な温度に達し
てから図2、図3で示す真空成形機16に送った。次に
補助プラグ18で一旦シートを伸ばした上で同時に雌型
17を上昇させて材料を十分伸ばした状態で型に当たる
直前に空気穴19から真空ポンプ等でシート1+3+2
と型17の間にある大気を排出させシート1+3+2の
型締めを完了した。これらの過程を経て大気圧と同等圧
力で型じめされたシート1+3+2は型17に対応した
異なる表面意匠性を持つ異種材料2層の成形品(ボック
ス成形品、図5参照)が得られた。伸び率は30%であ
った。
After the two sheet materials reached the temperature at which they could be formed, they were sent to the vacuum forming machine 16 shown in FIGS. Next, the sheet is once stretched by the auxiliary plug 18, and at the same time, the female mold 17 is lifted up at the same time, and the sheet 1 + 3 + 2 is passed through the air hole 19 by a vacuum pump or the like immediately before hitting the mold with the material sufficiently stretched.
The atmosphere between the mold 17 and the mold 17 was discharged to complete the mold clamping of the sheets 1 + 3 + 2. Through these steps, a molded product (box molded product, see FIG. 5) of two layers of different materials having different surface designs corresponding to the mold 17 was obtained from the sheet 1 + 3 + 2 molded at the same pressure as the atmospheric pressure. . The elongation was 30%.

【0036】(実施例2)図3に示した雄型20を用い
て実施例1と同様の圧空成形により成形し模様付きパネ
ルを作製した。別に、成形機として圧縮空気を送り込み
2〜5kgf/cm2 の型じめができる圧空成形機や、
上、下型を有するプレス機を使用しても同様の成形を行
うことができた。
(Example 2) Using the male mold 20 shown in FIG. 3, the same pressure molding as in Example 1 was carried out to produce a patterned panel. Separately, as a molding machine, a compressed air molding machine capable of feeding compressed air to form a die of 2 to 5 kgf / cm 2 ,
Similar molding could be performed using a press having upper and lower dies.

【0037】(実施例3)サニタリー用メタアクリル樹
脂の板厚みを3mmとした以外は実施例1および2と同
様の成形方法で成形した。
Example 3 The same molding method as in Examples 1 and 2 was used except that the thickness of the methacrylic resin for sanitary was 3 mm.

【0038】(実施例4)サニタリー用メタアクリル樹
脂の代わりにPPを用いた以外は実施例1および2と同
様の成形方法で成形した。
Example 4 A molding was performed in the same manner as in Examples 1 and 2, except that PP was used instead of the methacrylic resin for sanitary.

【0039】(実施例5)サニタリー用メタアクリル樹
脂の代わりにPCを用いた以外は実施例1および2と同
様の成形方法で成形した。
Example 5 Molding was performed in the same manner as in Examples 1 and 2, except that PC was used instead of the methacrylic resin for sanitary.

【0040】(実施例6)サニタリー用メタアクリル樹
脂の代わりにABSを用いた以外は実施例1および2と
同様の成形方法で成形した。
Example 6 A molding was performed in the same manner as in Examples 1 and 2, except that ABS was used instead of the methacrylic resin for sanitary use.

【0041】(実施例7)サニタリー用メタアクリル樹
脂の代わりにPVCを用いた以外は実施例1および2と
同様の成形方法で成形した。
Example 7 A molding was performed in the same manner as in Examples 1 and 2, except that PVC was used instead of the methacrylic resin for sanitary.

【0042】(実施例8)サニタリー用メタアクリル樹
脂の代わりにサニタリー用メタアクリル変性PVCを用
いた以外は実施例1および2と同様の成形方法で成形し
た。
Example 8 A molding was performed in the same manner as in Examples 1 and 2, except that a methacrylic modified PVC for sanitary was used instead of the methacrylic resin for sanitary.

【0043】(比較例1)真空成形機として温度制御機
構が積層シート全体を同時に温度制御するタイプで加熱
し、KPシートのかわりに抄紙法以外の方法で作製した
繊維強化熱可塑性樹脂シートを実施例1と同じ方法で真
空成形した。
(Comparative Example 1) As a vacuum forming machine, a fiber-reinforced thermoplastic resin sheet produced by a method other than the papermaking method was used instead of the KP sheet, in which the temperature control mechanism heated the entire laminated sheet simultaneously. Vacuum forming was performed in the same manner as in Example 1.

【0044】(比較例2)表面材として厚み0.16m
mのナイロンフィルムを繊維強化熱可塑性樹脂シートに
プレスにてあらかじめ貼合した材料を用いた以外は実施
例1と同様の方法で成形した。
(Comparative Example 2) 0.16 m thick as a surface material
m was molded in the same manner as in Example 1 except that a material in which a nylon film of m was previously bonded to a fiber-reinforced thermoplastic resin sheet by a press was used.

【0045】*評価 実施例1で作製したボックス成形品と実施例2で作製し
た模様付きパネルの成形の様子を評価した。評価結果を
表2に示す。さらにGF量と目付量の異なる実施例3〜
8、比較例1、2で表2に示すそれぞれボックスと模様
付きパネルを作成し同様に成形性を評価した。結果を表
2に示す。
* Evaluation The state of molding the box molded product produced in Example 1 and the patterned panel produced in Example 2 was evaluated. Table 2 shows the evaluation results. Further, Examples 3 to 3 differing in the amount of GF and the basis weight
8. Boxes and patterned panels shown in Table 2 were prepared in Comparative Examples 1 and 2, and the moldability was similarly evaluated. Table 2 shows the results.

【0046】[0046]

【表1】 [Table 1]

【0047】(実施例9〜14)GF量と目付量の異な
る繊維強化熱可塑性樹脂シート(KPシート)と表面シ
ートであるサニタリー用メタアクリル樹脂シートとの成
形を実施例1と同様の方法で行った。
(Examples 9 to 14) A fiber-reinforced thermoplastic resin sheet (KP sheet) having a different GF amount and a basis weight and a methacrylic resin sheet for sanitary as a surface sheet were molded in the same manner as in Example 1. went.

【0048】(比較例3)サニタリー用メタアクリル樹
脂シートのみで成形した以外は実施例1と同様の方法で
行った。
(Comparative Example 3) The same procedure as in Example 1 was carried out except that only a methacrylic resin sheet for sanitary was formed.

【0049】*評価 実施例9〜14および比較例3の成形結果と物性(アイ
ゾット衝撃値)を評価し結果を表3に示した。繊維強化
熱可塑性樹脂シートとの積層体として成形することによ
りサニタリー用メタアクリル樹脂シート単体より強度が
向上した。
* Evaluation The molding results and physical properties (Izod impact value) of Examples 9 to 14 and Comparative Example 3 were evaluated. The results are shown in Table 3. By molding as a laminate with a fiber reinforced thermoplastic resin sheet, the strength was improved as compared with a single methacrylic resin sheet for sanitary.

【0050】 材料/サニタリー用メタアクリル樹脂(厚み5mm)とKPシートとの成形 ボックス:成形倍率280% ○:成形良 △:成形一部不良[0050] Material: Molding of methacrylic resin for sanitary (thickness: 5 mm) and KP sheet Box: molding ratio 280% ○: Good molding △: Partly defective molding

【0051】[0051]

【発明の効果】本発明の繊維強化熱可塑性樹脂シートと
熱可塑性樹脂シートからなる多層成形体は、表面意匠性
を有し軽量で剛性のある、寸法安定性にも優れているの
で自動車部品、サニタリー部品(浴槽、天井材、壁)、
家電製品のハウジングに極めて有用である。
The multilayer molded article comprising the fiber-reinforced thermoplastic resin sheet and the thermoplastic resin sheet of the present invention has a surface design property, is lightweight and rigid, and has excellent dimensional stability. Sanitary parts (bathtubs, ceiling materials, walls),
Extremely useful for home appliance housing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の成形体の好適な加熱制御装置の概要
を示す模式図である。
FIG. 1 is a schematic diagram showing an outline of a suitable heating control device for a molded article of the present invention.

【図2】 真空成形機の断面図である。FIG. 2 is a sectional view of a vacuum forming machine.

【図3】 真空成形機の断面図である。FIG. 3 is a sectional view of a vacuum forming machine.

【図4】 本発明に好適な加熱制御装置によるシート温
度及びヒーター温度と加熱時間との関係を示すグラフで
ある。
FIG. 4 is a graph showing a relationship between a sheet temperature and a heater temperature and a heating time by a heating control device suitable for the present invention.

【図5】 ボックス成形品を示す斜視図である。FIG. 5 is a perspective view showing a box molded product.

【符号の説明】[Explanation of symbols]

1 上シート 2 下シート 3 接着剤層 5 上ヒーター 6 フレーム 7 ヒーターエレメント 8 上ヒーター温度センサー 9 第1温度センサー 10 下ヒーター 11 フレーム 12 ヒーターエレメント 13 下ヒーター温度センサー 14 第2温度センサー 15 クランプ手段 16 真空成形機 17 凹型 18 補助プラグ 19 空気穴 20 凸型 DESCRIPTION OF SYMBOLS 1 Upper sheet 2 Lower sheet 3 Adhesive layer 5 Upper heater 6 Frame 7 Heater element 8 Upper heater temperature sensor 9 First temperature sensor 10 Lower heater 11 Frame 12 Heater element 13 Lower heater temperature sensor 14 Second temperature sensor 15 Clamping means 16 Vacuum forming machine 17 concave type 18 auxiliary plug 19 air hole 20 convex type

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B29K 105:08 B29L 9:00 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B29K 105: 08 B29L 9:00

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】表面意匠性を有する熱可塑性樹脂シートと
繊維強化熱可塑性樹脂シートを積層し、各層を異なる成
形温度にそれぞれ独立に温度制御し、かつ、各層を同時
に差圧成形して得られる多層成形体。
1. A laminate obtained by laminating a thermoplastic resin sheet having a surface design and a fiber-reinforced thermoplastic resin sheet, independently controlling the temperature of each layer at a different molding temperature, and simultaneously performing differential pressure molding of each layer. Multi-layer molded body.
【請求項2】前記繊維強化熱可塑性樹脂層が熱可塑性樹
脂80〜35wt%と強化繊維20〜65wt%を含有
する請求項1の多層成形体。
2. The multilayer molded article according to claim 1, wherein said fiber-reinforced thermoplastic resin layer contains 80 to 35% by weight of a thermoplastic resin and 20 to 65% by weight of a reinforcing fiber.
【請求項3】前記繊維強化熱可塑性樹脂シートが、熱可
塑性樹脂粉粒体と不連続繊維を水中に分散し、脱水、熱
プレスする抄紙法で製造される請求項1または2に記載
の多層成形体。
3. The multilayer according to claim 1, wherein the fiber-reinforced thermoplastic resin sheet is produced by a papermaking method in which thermoplastic resin particles and discontinuous fibers are dispersed in water, dewatered, and hot-pressed. Molded body.
【請求項4】前記繊維強化熱可塑性樹脂シートのマトリ
ックス樹脂が、ポリエチレン、ポリプロピレン、アクリ
ル、ポリカーボネート、ポリスチレン、PVC、AB
S、ポリアミド、ポリエステル、およびこれらのブレン
ドよりなる群から選択される少なくとも1つである請求
項1〜3のいずれかに記載の多層成形体。
4. The matrix resin of the fiber reinforced thermoplastic resin sheet is polyethylene, polypropylene, acrylic, polycarbonate, polystyrene, PVC, AB
The multilayer molded article according to any one of claims 1 to 3, which is at least one selected from the group consisting of S, polyamide, polyester, and a blend thereof.
【請求項5】前記繊維強化熱可塑性樹脂シートの強化繊
維が、チョップドガラス、ロービングガラス、アラミド
繊維、カーボン繊維、セラミックス繊維、金属繊維およ
び各種ウイスカーからなる群から選択される少なくとも
1つである請求項1〜4のいずれかに記載の多層成形
体。
5. The reinforcing fiber of the fiber-reinforced thermoplastic resin sheet is at least one selected from the group consisting of chopped glass, roving glass, aramid fiber, carbon fiber, ceramic fiber, metal fiber, and various whiskers. Item 5. The multilayer molded article according to any one of Items 1 to 4.
【請求項6】前記表面意匠性を有する熱可塑性シート
が、ポリエチレン、ポリプロピレン、アクリル、カーボ
ネート、ポリスチレン、PVC、アクリル変性PVC、
ABS、ポリアミド、ポリエステル、およびこれらのブ
レンドよりなる群から選択される少なくとも1つである
請求項1〜5のいずれかに記載の多層成形体。
6. The thermoplastic sheet having a surface design property is made of polyethylene, polypropylene, acrylic, carbonate, polystyrene, PVC, acrylic-modified PVC,
The multilayer molded article according to any one of claims 1 to 5, which is at least one selected from the group consisting of ABS, polyamide, polyester, and a blend thereof.
【請求項7】前記熱可塑性樹脂シートの厚みが1.0〜
6mmである請求項1〜6のいずれかに記載の多層成形
体。
7. The thermoplastic resin sheet has a thickness of 1.0 to 1.0.
The multilayer molded product according to any one of claims 1 to 6, which is 6 mm.
【請求項8】繊維強化熱可塑性樹脂シートと表面意匠性
を有する熱可塑性樹脂シートとを積層してクランプし、
差圧力を用いて一体成形することを特徴とする多層成形
体の成形方法。
8. A laminate of a fiber-reinforced thermoplastic resin sheet and a thermoplastic resin sheet having surface design, which is clamped,
A molding method of a multilayer molded body, wherein the molding is performed integrally using a differential pressure.
【請求項9】前記一体成形が、積層シートがそれぞれ異
なる成形温度で成形されるように、各層の温度を独立に
制御して成形する請求項8記載の多層成形体の成形方
法。
9. The method according to claim 8, wherein the integral molding is performed by controlling the temperature of each layer independently so that the laminated sheet is molded at different molding temperatures.
JP17849497A 1997-07-03 1997-07-03 Multilayered molded body having fiber reinforced thermoplastic resin layer and molding method thereof Pending JPH1120017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17849497A JPH1120017A (en) 1997-07-03 1997-07-03 Multilayered molded body having fiber reinforced thermoplastic resin layer and molding method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17849497A JPH1120017A (en) 1997-07-03 1997-07-03 Multilayered molded body having fiber reinforced thermoplastic resin layer and molding method thereof

Publications (1)

Publication Number Publication Date
JPH1120017A true JPH1120017A (en) 1999-01-26

Family

ID=16049442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17849497A Pending JPH1120017A (en) 1997-07-03 1997-07-03 Multilayered molded body having fiber reinforced thermoplastic resin layer and molding method thereof

Country Status (1)

Country Link
JP (1) JPH1120017A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205697A (en) * 2000-01-31 2001-07-31 Sumitomo Chem Co Ltd Method for manufacturing resin molding
JP2002321275A (en) * 2001-04-24 2002-11-05 Asano Laboratories Co Ltd Method and device for molding resin-molded sheet
US7507363B2 (en) 2001-10-31 2009-03-24 3M Innovative Properties Company Methods of thermoforming non-self-supporting polymeric films and articles made therefrom
JP2013046965A (en) * 2011-08-29 2013-03-07 Mitsubishi Gas Chemical Co Inc Mold for pressure forming, pressure forming method, and molding
JP2013091267A (en) * 2011-10-26 2013-05-16 Mitsubishi Gas Chemical Co Inc Die and method for air pressure molding
US9073288B2 (en) 2011-01-27 2015-07-07 Toyota Jidosha Kabushiki Kaisha Method of producing a fiber-reinforced plastic

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205697A (en) * 2000-01-31 2001-07-31 Sumitomo Chem Co Ltd Method for manufacturing resin molding
JP2002321275A (en) * 2001-04-24 2002-11-05 Asano Laboratories Co Ltd Method and device for molding resin-molded sheet
US7507363B2 (en) 2001-10-31 2009-03-24 3M Innovative Properties Company Methods of thermoforming non-self-supporting polymeric films and articles made therefrom
US9073288B2 (en) 2011-01-27 2015-07-07 Toyota Jidosha Kabushiki Kaisha Method of producing a fiber-reinforced plastic
JP2013046965A (en) * 2011-08-29 2013-03-07 Mitsubishi Gas Chemical Co Inc Mold for pressure forming, pressure forming method, and molding
JP2013091267A (en) * 2011-10-26 2013-05-16 Mitsubishi Gas Chemical Co Inc Die and method for air pressure molding

Similar Documents

Publication Publication Date Title
EP0013089B1 (en) Laminates of cloth or other sheet material and filled crystalline polypropylenes and a method for making them
US20050205203A1 (en) Thermoplastic resin-laminated structure, method for preparation and use thereof
CA2148556A1 (en) Methods of Making a Cushiony Decorative Tile or Cover Product from Extruded Hot Recycled Polyvinyl Chloride Material with Discrete Fibres Randomly Dispersed Therein as the Material Exits the Extruder, and the Products So Formed
EP0575336A1 (en) A method for forming structural panels having a core with thermoplastic resin facings with a decorative film adhered to one of the facings and panel formed thereby.
KR102022210B1 (en) A method for manufacturing a panel including a reinforcement sheet, and a floor panel
JP6267468B2 (en) Polyolefin-based laminated sheet and method for producing the same
JP4898212B2 (en) Hollow structure board
JPH06344431A (en) Overhanging or deep drawing molding of fiber reinforced thermoplastic resin and molding method thereof
JPS60112424A (en) Method of improving surface finish
JPH1120017A (en) Multilayered molded body having fiber reinforced thermoplastic resin layer and molding method thereof
US20220134611A1 (en) Method for producing moulded parts from particle foams
JP6464063B2 (en) Polyolefin fiber reinforced resin laminated sheet and method for producing the same
JPH0732465A (en) Overhung or deep-drawn molded item made of fiber-reinforced thermoplastic resin and manufacture thereof
JP3162299B2 (en) Manufacturing method of synthetic resin laminated sheet
JP6464062B2 (en) Polyolefin fiber reinforced resin laminated sheet and method for producing the same
JP6433869B2 (en) Polyolefin fiber reinforced resin laminated sheet and method for producing the same
JP2004098343A (en) Decorative sheet and manufacturing method for decorative frp molded product
JPH0222031A (en) Vacuum molding of both sides of laminated sheet
JP3032582B2 (en) Method for improving appearance of fiber-reinforced thermoplastic resin molded product
EP0568615B1 (en) Process for forming a laminated body
JPH0516277A (en) Laminate molded product and its molding method
JPH04201412A (en) Woven fabric reinforced resin composite material
JPS5871154A (en) Ceiling interior finish material for automobile and its manufacture
EP1028840B1 (en) Method of making an acrylic article
JP2003001657A (en) Method for manufacturing fiber reinforced thermosetting resin decorative panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040702

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20050204

Free format text: JAPANESE INTERMEDIATE CODE: A821

A711 Notification of change in applicant

Effective date: 20050204

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051024

A131 Notification of reasons for refusal

Effective date: 20051101

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060228