JPH11199911A - Production of metal iron - Google Patents

Production of metal iron

Info

Publication number
JPH11199911A
JPH11199911A JP314598A JP314598A JPH11199911A JP H11199911 A JPH11199911 A JP H11199911A JP 314598 A JP314598 A JP 314598A JP 314598 A JP314598 A JP 314598A JP H11199911 A JPH11199911 A JP H11199911A
Authority
JP
Japan
Prior art keywords
iron
slag
cao
metallic iron
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP314598A
Other languages
Japanese (ja)
Other versions
JP3848453B2 (en
Inventor
Toshihide Matsumura
俊秀 松村
Yoshimichi Takenaka
芳通 竹中
Shoken Shimizu
正賢 清水
Akiji Shirouchi
章治 城内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP00314598A priority Critical patent/JP3848453B2/en
Publication of JPH11199911A publication Critical patent/JPH11199911A/en
Application granted granted Critical
Publication of JP3848453B2 publication Critical patent/JP3848453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a producing method of metal iron, with which melting separation between the metal iron and slag is executed in a short time and the high class metal iron can be obtd. in low operational cost. SOLUTION: In the producing method of the metal iron by heat-reducing iron oxide compact contg. carboneous material, the content ratios of CaO, SiO2 and Al2 O3 in the raw material are adjusted and then, the m.p. of producec slag composed of these gangue components is lowered, and the metal iron and the slag are melted and separated. The content ratios of CaO, SiO2 , AlO2 O3 in the raw material are the one, in which the m.p. of the produced slag composed of these gangue components is <=1400 deg.C. Further, the content ratios of CaO, SiO2 and Al2 O3 in the raw material are adjusted by blending one or more kinds of iron oxide raw materials or blending lime and/or CaSiO3 .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄鉱石等の酸化鉄
粉粒体を炭材とともに成形した炭材内装酸化鉄成形体を
加熱還元して金属鉄を製造する技術に属し、さらに詳し
くは、炭材内装酸化鉄成形体の還元過程において、酸化
鉄や炭材とともに混入する脈石成分をスラグ化し、金属
鉄とスラグとを溶融分離する金属鉄の製造技術に属する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for producing metallic iron by heating and reducing a carbonaceous material-containing iron oxide molded body formed by molding iron oxide particles such as iron ore with a carbonaceous material. In the process of reducing a carbonaceous material-containing iron oxide molded body, the present invention belongs to a technology for producing metallic iron that slags gangue components mixed with iron oxide and carbonaceous material and melts and separates metallic iron from slag.

【0002】[0002]

【従来の技術】従来、還元鉄の製造方法としてはミドレ
ックス法がよく知られており、この方法によれば天然ガ
スから変成した還元性ガスを羽口から吹き込み、シャフ
ト炉中を上昇させることによって、炉内に充填された鉄
鉱石や酸化鉄ペレットを還元して固体状態で還元鉄を得
ることができる。ただし、この方法では燃料としてコス
トの高い天然ガスを大量に供給する必要がある。したが
って、プラントの立地条件も天然ガスが発生する地域に
限られる。
2. Description of the Related Art Conventionally, as a method for producing reduced iron, the Midrex method is well known. According to this method, a reducing gas converted from natural gas is blown from a tuyere and raised in a shaft furnace. Thus, iron ore and iron oxide pellets filled in the furnace can be reduced to obtain reduced iron in a solid state. However, this method requires a large amount of expensive natural gas to be supplied as fuel. Therefore, the location conditions of the plant are also limited to the area where natural gas is generated.

【0003】そこで近年では、上記天然ガスに替えて比
較的安価な石炭を還元剤として使用することのできる還
元鉄製造プロセスが注目されている。例えば、米国特許
第3443931 号には、粉鉱石と炭材とを混合してペレット
化し、高温雰囲気下で加熱還元することにより固体状態
で還元鉄を製造するプロセスが開示されている。この方
法によれば、石炭ベースであることの他にも、粉鉱石を
直接使用できること、高速還元が可能であること、製品
中の炭素含有量を調整することができる等の利点を有し
ている。
[0003] In recent years, attention has been paid to a reduced iron production process in which relatively inexpensive coal can be used as a reducing agent instead of the natural gas. For example, U.S. Pat. No. 3,443,931 discloses a process for producing reduced iron in a solid state by mixing and ore-mixing fine ore and carbonaceous material into pellets, and heating and reducing the mixture in a high-temperature atmosphere. According to this method, in addition to being based on coal, there are advantages such as the ability to directly use fine ore, high-speed reduction, and the ability to adjust the carbon content in products. I have.

【0004】しかし、従来の還元鉄の製造方法によって
得られる還元鉄は、原料である鉄鉱石等の酸化鉄粉粒体
や炭材に含まれる CaO、SiO2、Al2O3 の脈石成分がスラ
グとして混入してくるため、還元鉄の品位は低くなる。
実用に当たっては、次の精錬工程でこのスラグは分離除
去されるが、スラグ量の増加は精錬溶湯の歩留りを低下
させるばかりでなく、電気炉の操業コストにも大きな影
響を及ぼすので、鉄品位が高くスラグ含有量の少ない還
元鉄が求められている。前述のように、従来の還元鉄の
製造方法で、こうした要求に応えるには、原料に鉄品位
の高い酸化鉄を使用しなければならず、使用可能な原料
である酸化鉄の選択の幅を大幅に狭めることになる。
[0004] However, reduced iron obtained by a conventional method for producing reduced iron is composed of gangue components of CaO, SiO 2 and Al 2 O 3 contained in iron oxide powder such as iron ore and carbonaceous materials. Is mixed in as slag, so that the quality of the reduced iron is low.
In practical use, this slag is separated and removed in the next smelting process. There is a need for reduced iron with high slag content. As described above, in order to respond to such demands in the conventional method of producing reduced iron, it is necessary to use high-grade iron oxide as a raw material. It will be greatly reduced.

【0005】この解決策として、鉄品位の高い還元鉄を
得るために、炭材内装酸化鉄成形体を加熱還元して金属
鉄を製造する方法(平成8年特許願第59801号)が
提案されている。この方法は加熱還元により炭材内装酸
化鉄成形体の表面に金属鉄外皮を生成し、この金属鉄外
皮を成長させ、内部には酸化鉄が実質的に存在しなくな
るまで還元を進めるとともに、内部に脈石成分からなる
生成スラグを凝集させ、金属鉄とスラグとを溶融分離す
るものである。
As a solution to this problem, there has been proposed a method of producing metallic iron by heating and reducing a carbon material-containing iron oxide formed body in order to obtain reduced iron having a high iron quality (Japanese Patent Application No. 59801/1996). ing. In this method, a metallic iron outer skin is formed on the surface of a carbonaceous material-containing iron oxide molded body by heat reduction, the metallic iron outer skin is grown, and the reduction is advanced until iron oxide is substantially absent inside. The slag formed from gangue components is aggregated to melt and separate metallic iron and slag.

【0006】[0006]

【発明が解決しようとする課題】この方法は、1400℃以
上の還元温度で炭材内装酸化鉄成形体を還元し、この成
形体の表面に金属鉄外皮を生成させ、さらに、この金属
鉄外皮を成長させ、内部に脈石成分からなる生成スラグ
を凝集させ、金属鉄とスラグとを溶融分離するものであ
る。ところが、脈石成分の組成によって生成スラグの融
点が異なるため、金属鉄とスラグとを溶融分離するのに
必要な時間がまちまちとなり、このため操業時間に大き
なばらつきが生じる。したがって、高温の雰囲気温度を
維持するために多量の燃料が必要となり、このことが操
業コストを引き上げる原因になっている。
In this method, a carbonaceous material-containing iron oxide formed body is reduced at a reduction temperature of 1400 ° C. or more, a metal iron shell is formed on the surface of the formed body, and the metal iron shell is further formed. Is grown and slag formed of gangue components is agglomerated therein to melt and separate metallic iron and slag. However, since the melting point of the produced slag differs depending on the composition of the gangue component, the time required to melt and separate the metallic iron and the slag varies, which causes a large variation in the operation time. Therefore, a large amount of fuel is required to maintain a high ambient temperature, which raises operating costs.

【0007】本発明は、上記の問題点を解決するために
なされたもので、炭材内装酸化鉄成形体の原料に含まれ
る CaO、SiO2、Al2O3 の含有比率を調整することで、こ
れらの脈石成分からなる生成スラグの融点をさげること
により、短時間で金属鉄とスラグとの溶融分離を行い品
位の高い金属鉄を低い操業コストで得ることができる金
属鉄の製造方法を提供することを目的とする。
[0007] The present invention has been made to solve the above-mentioned problems, and is intended to adjust the content ratio of CaO, SiO 2 , and Al 2 O 3 contained in the raw material of the carbon-oxide-containing iron oxide molded body. By lowering the melting point of the slag formed from these gangue components, a method for producing metallic iron that can melt-separate metallic iron and slag in a short time and obtain high-quality metallic iron at low operating costs. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】その要旨は、炭材内装酸
化鉄成形体を加熱還元して金属鉄を製造する方法におい
て、原料中の CaO、SiO2、Al2O3 の含有比率を調整する
ことにより、これらの脈石成分からなる生成スラグの融
点をさげ、金属鉄とスラグとを溶融分離する金属鉄の製
造方法であって、前記、原料中の CaO、SiO2、Al2O3
含有比率が、これらの脈石成分からなる生成スラグの融
点を1400℃以下とする含有比率である金属鉄の製造方法
である。
The gist of the present invention is to adjust the content ratio of CaO, SiO 2 , and Al 2 O 3 in the raw material in a method of producing metallic iron by heating and reducing a carbon material-containing iron oxide molded body. Thereby reducing the melting point of the slag formed from these gangue components and melting and separating the metal iron and the slag, the method comprising the steps of: preparing the CaO, SiO 2 , Al 2 O 3 Is a method for producing metallic iron in which the content ratio of the slag formed from these gangue components is 1400 ° C. or less.

【0009】さらに、原料中の CaO、SiO2、Al2O3 の含
有比率を1種または2種以上の酸化鉄原料の配合によっ
て、または生石灰等の含CaO 原料および/またはCaSiO3
の配合によって調整する上記の金属鉄の製造方法であ
る。
Further, the content ratio of CaO, SiO 2 and Al 2 O 3 in the raw material is adjusted by mixing one or more iron oxide raw materials, or a CaO-containing raw material such as quicklime and / or CaSiO 3.
Is a method for producing metallic iron as described above, which is adjusted by the blending of metal.

【0010】[0010]

【発明の実施の形態】本発明の重要な点は、炭材内装酸
化鉄成形体の加熱還元過程において、原料に含まれる脈
石成分である CaO、SiO2、Al2O3 の含有比率を調整する
ことにより、これらの脈石成分からなる生成スラグの融
点をさげ、短時間で金属鉄とスラグとを溶融分離するこ
とにある。このために、生成スラグの融点が1400℃以下
になるように脈石成分である CaO、SiO2、Al2O3 の含有
比率を調整する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An important point of the present invention is that the content ratio of gangue components CaO, SiO 2 and Al 2 O 3 contained in a raw material is reduced in a heating and reducing process of a carbon material-containing iron oxide formed body. By adjusting, the melting point of the slag formed of these gangue components is lowered, and the metallic iron and the slag are melted and separated in a short time. For this purpose, the content ratio of gangue components CaO, SiO 2 and Al 2 O 3 is adjusted so that the melting point of the produced slag is 1400 ° C. or less.

【0011】脈石成分である CaO、SiO2、Al2O3 の含有
比率の調整は、酸化鉄原料である鉄鉱石の粉粒体、ミル
スケール、高炉ダスト、転炉ダスト、焼結ダスト、電気
炉ダストおよびこれらの混合物を組み合わせて配合する
ことによって行う。すなわち、これらの酸化鉄原料は脈
石成分である CaO、SiO2、Al2O3 の含有比率が異なるた
め、上記の酸化鉄原料を組み合わせて配合することで、
脈石成分からなる生成スラグの融点を1400℃以下にする
ように、脈石成分である CaO、SiO2、Al2O3 の含有比率
を調整することができる。また、配合原料に生石灰等の
含CaO 原料および/またはCaSiO3を直接的に配合するこ
とによっても、脈石成分からなる生成スラグの融点を14
00℃以下にするように、脈石成分である CaO、SiO2、Al
2O3 の含有比率を調整することができる。
The content ratio of CaO, SiO 2 , and Al 2 O 3 as gangue components is adjusted by adjusting iron ore powder, mill scale, blast furnace dust, converter dust, sintered dust, It is performed by combining and mixing electric furnace dust and a mixture thereof. That is, since these iron oxide raw materials have different content ratios of gangue components CaO, SiO 2 , and Al 2 O 3 , by combining and mixing the above iron oxide raw materials,
The content ratio of CaO, SiO 2 , and Al 2 O 3 as gangue components can be adjusted so that the melting point of the formed slag composed of gangue components is 1400 ° C. or less. The melting point of the slag formed of gangue components can also be increased by directly blending a CaO-containing raw material such as quicklime and / or CaSiO 3 into the blending raw material.
The gangue components CaO, SiO 2 , Al
The content ratio of 2 O 3 can be adjusted.

【0012】炭材内装酸化鉄成形体を1400℃以上の温度
で加熱すると、この成形体中に含まれる炭材還元剤によ
って酸化鉄が還元されて金属鉄が生成するが、この還元
は成形体の外周側から進行し、加熱還元の初期過程で生
成する金属鉄が成形体の表面で拡散結合して上記成形体
の外周側に金属鉄外皮を形成する。そして、その後この
金属鉄外皮内で炭材還元剤による酸化鉄の還元が効率よ
く進行し、内部に残存する酸化鉄は、その後ごく短時間
のうちに実質的に酸化鉄が存在しなくなるまで速やかに
還元され、生成された金属鉄は前記外皮の内面側に逐次
拡散結合して成長する。
When a carbon material-containing iron oxide molded body is heated at a temperature of 1400 ° C. or more, iron oxide is reduced by a carbon material reducing agent contained in the molded body to produce metallic iron. Proceeds from the outer peripheral side of the molded article, and the metallic iron generated in the initial stage of the heat reduction is diffusion-bonded on the surface of the molded article to form a metallic iron skin on the outer peripheral side of the molded article. Then, the reduction of the iron oxide by the carbonaceous material reducing agent proceeds efficiently in the metal iron skin, and the iron oxide remaining inside the metal shell is quickly removed within a very short time until substantially no iron oxide is present. The generated metallic iron is successively diffused and bonded to the inner surface of the outer skin and grows.

【0013】一方、原料に含まれる脈石成分である Ca
O、SiO2、Al2O3 は、加熱還元過程でこれらの脈石成分
からなる生成スラグの融点が、上述のように1400℃以下
になるように調整してあるため、酸化鉄が金属鉄に還元
される過程で上記生成スラグは溶融状態にあり、金属鉄
と短時間で溶融分離し、上記金属鉄外皮内に溜まり外皮
を構成する金属鉄と効率よく分離することができる。
On the other hand, Ca, which is a gangue component contained in the raw material,
O, SiO 2 , and Al 2 O 3 are adjusted such that the melting point of the slag formed of these gangue components in the heat reduction process is 1400 ° C. or less as described above, so that iron oxide becomes metallic iron. In the process of being reduced to slag, the produced slag is in a molten state, melts and separates from the metallic iron in a short time, and can be efficiently separated from the metallic iron that collects in the metallic iron outer shell and forms the outer shell.

【0014】この間に生じる加熱還元反応は下記に示す
通りであり、 FeOx +xC→Fe+xCO (1) FeOx +(x/2)C→Fe+(x/2)CO2 (2) Y=y1 +y2 (3) 但し、Y:還元に必要な炭素の化学等量(mol) y1 :(1)式の反応に必要な炭素量(mol) y2 :(2)式の反応に必要な炭素量(mol) 成形体を製造する際の酸化鉄に対する炭材還元剤の配合
量が、上記(3)式で示される理論等量以上となるよう
に両者の配合比率を調整することによって、加熱還元反
応を効率よく進めることが可能となる。
The heat reduction reaction occurring during this period is as follows: FeOx + xC → Fe + xCO (1) FeOx + (x / 2) C → Fe + (x / 2) CO 2 (2) Y = y 1 + y 2 (3) where, Y: chemical equivalent of carbon required for reduction (mol) y 1 : carbon amount required for reaction of formula (1) (mol) y 2 : carbon amount required for reaction of formula (2) (Mol) By reducing the amount of the carbonaceous material reducing agent with respect to the iron oxide at the time of producing the molded body, the compounding ratio of the two is adjusted so as to be equal to or more than the theoretical equivalent amount represented by the above formula (3), whereby the heat reduction is performed. The reaction can proceed efficiently.

【0015】このように本発明では、加熱還元の初期過
程で成形体外周側に金属鉄外皮を形成し、この外皮で囲
まれた内部でさらに還元反応を進めることによって、還
元効率を飛躍的に高めることができる。さらに好ましく
は、加熱還元の最高到達温度を生成する金属鉄外皮の溶
融温度未満で、かつ生成スラグの溶融温度以上に設定す
る。その理由は、最高到達温度が金属鉄外皮の溶融温度
以上になると、還元される金属鉄は直ちに溶融して互い
に融着し、前述のような金属鉄外皮が成形されなくな
り、その後の還元反応が効率よく進行しなくなるからで
ある。
As described above, in the present invention, in the initial stage of the heat reduction, the metal iron shell is formed on the outer peripheral side of the molded body, and the reduction reaction is further advanced in the inside surrounded by the shell, thereby greatly reducing the reduction efficiency. Can be enhanced. More preferably, the temperature is set to be lower than the melting temperature of the metallic iron shell that generates the highest attainment temperature of the heat reduction and higher than the melting temperature of the generated slag. The reason is that when the maximum temperature reaches or exceeds the melting temperature of the metallic iron skin, the reduced metallic iron immediately melts and fuses with each other, and the metallic iron skin as described above is no longer formed, and the subsequent reduction reaction proceeds. This is because it does not proceed efficiently.

【0016】その後、加熱還元の進行により還元剤であ
る炭材の炭素が還元された金属鉄に浸炭し、金属鉄の融
点がさがり、還元反応の末期ないしは後半期では、原料
の一部は溶融し、液相還元により酸化鉄の最終還元が進
行していることも考えられる。また、炭材からの浸炭に
より金属鉄の融点をさげ、金属鉄外皮の一部もしくは全
部を溶融させて、溶融状態の生成スラグと溶融分離する
ことによって、品位の高い金属鉄を得ることができる。
Thereafter, the carbon of the carbonaceous material as a reducing agent is carburized into the reduced metallic iron due to the progress of the heat reduction, and the melting point of the metallic iron decreases, and at the end or the latter half of the reduction reaction, part of the raw material is melted. However, it is also conceivable that the final reduction of iron oxide is progressing by liquid phase reduction. In addition, by lowering the melting point of metallic iron by carburizing from carbonaceous material, melting part or all of the metallic iron outer skin, and melting and separating it from the generated slag in a molten state, it is possible to obtain high-grade metallic iron. .

【0017】[0017]

【実施例1】表1に示す鉄鉱石、石炭(炭材)、バイン
ダー(ベントナイト)、および脈石成分である CaO、Si
O2、Al2O3 の含有比率を調整するCaSiO3試薬を表2に示
す配合割合で混合し、直径17mmのペレット(炭材内装酸
化鉄成形体)を製造した。なお、CaSiO3試薬の配合量は
外挿で、このときの塩基度(CaO/SiO2)は、それぞれ0.0
5、0.26、0.40、0.49である。これらのペレットを炉内
で1400℃の温度で加熱還元し、その時の還元・溶融挙動
を観察した。なお、図1に生成スラグ(CaO-SiO2-Al2O3
系スラグ)の組成とその融点との関係を示す。表3に加
熱還元後の還元鉄の分析値とペレットの融け落ち時間を
示す。また、図2にペレットの塩基度とペレットの融け
落ち時間との関係を示す。ここでペレットの融け落ちと
は、ペレットが元の形状を保つことができなくなり、全
体が溶融しながら形状が変化することを言う。
Example 1 Iron ore, coal (carbonaceous material), binder (bentonite), and gangue components CaO and Si shown in Table 1
CaSiO 3 reagents for adjusting the content ratio of O 2 and Al 2 O 3 were mixed at the compounding ratio shown in Table 2 to produce pellets (carbon material-containing iron oxide molded product) having a diameter of 17 mm. The amount of the CaSiO 3 reagent was extrapolated, and the basicity (CaO / SiO 2 ) at this time was 0.0
5, 0.26, 0.40 and 0.49. These pellets were heated and reduced in a furnace at a temperature of 1400 ° C, and the reduction and melting behavior at that time was observed. FIG. 1 shows the generated slag (CaO—SiO 2 —Al 2 O 3
2 shows the relationship between the composition of the base slag) and its melting point. Table 3 shows the analysis values of reduced iron after heat reduction and the melting time of pellets. FIG. 2 shows the relationship between the basicity of the pellet and the melting time of the pellet. Here, the melt-down of the pellet means that the pellet cannot maintain its original shape and changes its shape while melting as a whole.

【0018】表3に示すように、本発明による金属鉄の
製造方法は、金属鉄と脈石成分からなる生成スラグとを
溶融分離するため、金属鉄中に残存する脈石成分である
CaO、SiO2、Al2O3 の量は極めて少ない。また、脈石成
分の含有比率を調整しなくとも加熱還元過程で長時間を
掛ければ、金属鉄と生成スラグとを溶融分離することは
できるが、本発明のように、生成スラグの融点をさげる
ことによって、炭材からの浸炭による金属鉄の融点の低
下と相まって、金属鉄と生成スラグとの溶融分離が促進
され、生成スラグの融点の低下とともにペレットの融け
落ち時間も短縮されていることがわかる。
As shown in Table 3, in the method for producing metallic iron according to the present invention, the gangue component remaining in the metallic iron is melt-separated from the metallic slag formed of the gangue component.
The amounts of CaO, SiO 2 and Al 2 O 3 are extremely small. Further, if it takes a long time in the heat reduction process without adjusting the content ratio of the gangue component, it is possible to melt and separate the metallic iron and the generated slag, but as in the present invention, lower the melting point of the generated slag. This, coupled with the lowering of the melting point of metallic iron due to carburization from the carbonaceous material, promotes the melting and separation of metallic iron and the generated slag, and also reduces the melting time of the generated slag and shortens the burn-out time of pellets. Recognize.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【実施例2】酸化鉄原料である鉄鉱石A〜Eおよびダス
トAの化学成分を表4に示す。表4に示す酸化鉄原料72
質量%、表1に示す石炭27質量%、表1に示すバインダ
ー1.0 質量%を混合し、直径17mmのペレットを製造し
た。各酸化鉄原料の配合割合は、鉄鉱石A:44.0 質量
%、鉄鉱石B:9.0質量%、鉄鉱石C:10.0 質量%、鉄鉱
石D:20.0 質量%、鉄鉱石E:10.0 質量%、ダストA:
7.0質量%である。なお、原料の塩基度(CaO/SiO2)は0.4
0である。このペレットを炉内で1400℃の温度で加熱還
元し、その時の還元・溶融挙動を観察した。表6に加熱
還元後の還元鉄の分析値とペレットの融け落ち時間を示
す。
Example 2 Table 4 shows the chemical components of iron ores A to E and dust A, which are iron oxide raw materials. Iron oxide raw material 72 shown in Table 4
By mass, 27% by mass of coal shown in Table 1 and 1.0% by mass of binder shown in Table 1 were mixed to produce pellets having a diameter of 17 mm. The mixing ratio of each iron oxide raw material is as follows: iron ore A: 44.0% by mass, iron ore B: 9.0% by mass, iron ore C: 10.0% by mass, iron ore D: 20.0% by mass, iron ore E: 10.0% by mass, dust A:
7.0% by mass. The basicity (CaO / SiO 2 ) of the raw material is 0.4
It is 0. The pellets were reduced by heating in a furnace at a temperature of 1400 ° C., and the reduction and melting behavior at that time was observed. Table 6 shows the analysis values of reduced iron after heat reduction and the melting time of pellets.

【0023】脈石成分の異なる1種以上の酸化鉄原料を
配合して、加熱還元過程で脈石成分からなる生成スラグ
の融点を1400℃以下になるように調整することによっ
て、表6に示すように、ペレットの融け落ち時間を短縮
することができる。このように、脈石成分の異なる酸化
鉄原料を1種以上配合し、脈石成分の含有比率を調整し
て生成スラグの融点をさげることによって、炭材からの
浸炭による金属鉄の融点の低下と相まって、金属鉄と生
成スラグとの溶融分離が促進され、生成スラグの融点の
低下とともにペレットの融け落ち時間も短縮されている
ことがわかる。また、金属鉄中に残存する脈石成分であ
る CaO、SiO2、Al2O3 の量は極めて少ない。なお、表6
の単一原料の例は、実施例1の表3に示すCaSiO3を配合
しないときのものである。すなわち、表1に示した鉄鉱
石のみを用いたペレットの加熱還元過程におけるもの
で、このときの塩基度(CaO/SiO2)は0.05である。
Table 6 shows the results obtained by blending one or more iron oxide raw materials having different gangue components and adjusting the melting point of the slag formed of the gangue components to 1400 ° C. or less in the heating and reducing process. As described above, the time required for the pellets to melt down can be reduced. As described above, by mixing one or more iron oxide raw materials having different gangue components and adjusting the content ratio of the gangue components to lower the melting point of the generated slag, the melting point of metallic iron is reduced by carburization from the carbonaceous material. Together with this, it is understood that the melting and separation of the metallic iron and the formed slag is promoted, and the melting time of the formed slag is reduced and the time required for the pellet to melt down is also shortened. Further, the amount of gangue components CaO, SiO 2 and Al 2 O 3 remaining in the metallic iron is extremely small. Table 6
Is a case where CaSiO 3 shown in Table 3 of Example 1 is not blended. That is, in the heat reduction process of the pellets using only the iron ore shown in Table 1, the basicity (CaO / SiO 2 ) at this time is 0.05.

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【表5】 [Table 5]

【0026】[0026]

【表6】 [Table 6]

【0027】[0027]

【発明の効果】以上述べたところから明らかなように、
本発明によれば、炭材内装酸化鉄成形体の原料に含まれ
る CaO、SiO2、Al2O3 の含有比率を調整することで、こ
れらの脈石成分からなる生成スラグの融点をさげている
ため、炭材からの浸炭による金属鉄の融点の低下と相ま
って、短時間で金属鉄とスラグとを溶融分離し、品位の
高い金属鉄を低い操業コストで得ることができる。
As is apparent from the above description,
According to the present invention, by adjusting the content ratio of CaO, SiO 2 and Al 2 O 3 contained in the raw material of the carbonaceous material-containing iron oxide molded body, the melting point of the slag formed from these gangue components is reduced. Therefore, in combination with the lowering of the melting point of metallic iron due to carburization from carbonaceous material, metallic iron and slag can be melted and separated in a short time, and high-quality metallic iron can be obtained at low operating costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】生成スラグ(CaO-SiO2-Al2O3系スラグ)の組成
とその融点との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the composition of a formed slag (CaO—SiO 2 —Al 2 O 3 based slag) and its melting point.

【図2】ペレットの塩基度とペレットの融け落ち時間と
の関係を示す図である。
FIG. 2 is a graph showing the relationship between the basicity of a pellet and the time required for the pellet to melt off.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 城内 章治 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Shoji Shirouchi 1 Kanazawacho, Kakogawa City, Hyogo Prefecture Kobe Steel Works Kakogawa Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭材内装酸化鉄成形体を加熱還元して金
属鉄を製造する方法において、原料中の CaO、SiO2、Al
2O3 の含有比率を調整することにより、これらの脈石成
分からなる生成スラグの融点をさげ、金属鉄とスラグと
を溶融分離することを特徴とする金属鉄の製造方法。
1. A method for producing metallic iron by heating and reducing a carbonaceous material-containing iron oxide formed body, wherein CaO, SiO 2 , Al
A method for producing metallic iron, characterized by lowering the melting point of slag formed from these gangue components by adjusting the content ratio of 2 O 3 and melting and separating metallic iron and slag.
【請求項2】 上記、原料中の CaO、SiO2、Al2O3 の含
有比率が、これらの脈石成分からなる生成スラグの融点
を1400℃以下とする含有比率である請求項1記載の金属
鉄の製造方法。
2. The method according to claim 1, wherein the content of CaO, SiO 2 , and Al 2 O 3 in the raw material is such that the melting point of the slag formed of these gangue components is 1400 ° C. or less. Production method of metallic iron.
【請求項3】 上記、原料中の CaO、SiO2、Al2O3 の含
有比率を1種または2種以上の酸化鉄原料の配合によっ
て調整する請求項1記載の金属鉄の製造方法。
3. The method for producing metallic iron according to claim 1, wherein the content ratio of CaO, SiO 2 , and Al 2 O 3 in the raw material is adjusted by mixing one or more iron oxide raw materials.
【請求項4】 上記、原料中の CaO、SiO2、Al2O3 の含
有比率を生石灰等の含CaO 原料および/またはCaSiO3
配合によって調整する請求項1記載の金属鉄の製造方
法。
4. The method for producing metallic iron according to claim 1, wherein the content ratio of CaO, SiO 2 , and Al 2 O 3 in the raw material is adjusted by blending CaO-containing raw material such as quicklime and / or CaSiO 3 .
JP00314598A 1998-01-09 1998-01-09 Manufacturing method of metallic iron Expired - Fee Related JP3848453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00314598A JP3848453B2 (en) 1998-01-09 1998-01-09 Manufacturing method of metallic iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00314598A JP3848453B2 (en) 1998-01-09 1998-01-09 Manufacturing method of metallic iron

Publications (2)

Publication Number Publication Date
JPH11199911A true JPH11199911A (en) 1999-07-27
JP3848453B2 JP3848453B2 (en) 2006-11-22

Family

ID=11549196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00314598A Expired - Fee Related JP3848453B2 (en) 1998-01-09 1998-01-09 Manufacturing method of metallic iron

Country Status (1)

Country Link
JP (1) JP3848453B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191736A (en) * 2006-01-17 2007-08-02 Kobe Steel Ltd Method for producing metallic iron
WO2014129282A1 (en) * 2013-02-20 2014-08-28 株式会社神戸製鋼所 Method for manufacturing reduced iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191736A (en) * 2006-01-17 2007-08-02 Kobe Steel Ltd Method for producing metallic iron
WO2014129282A1 (en) * 2013-02-20 2014-08-28 株式会社神戸製鋼所 Method for manufacturing reduced iron

Also Published As

Publication number Publication date
JP3848453B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
AU744754B2 (en) Method of making iron and steel
AU6016801A (en) Process for manufacturing molten metal iron
JP4540488B2 (en) Desulfurization method of ferronickel
US4985075A (en) Method for manufacturing chromium-bearing pig iron
US3947267A (en) Process for making stainless steel
US2549994A (en) Production of ferromanganese
JP3845893B2 (en) Metal iron manufacturing method
JP3848453B2 (en) Manufacturing method of metallic iron
US5698009A (en) Method for agglomerating pre-reduced hot iron ore particles to produce ingot iron
JP3509072B2 (en) Iron and steel making
JP2009079257A (en) Method for producing molten steel
Dmitriev et al. Making sinter from concentrate of low-grade manganese ore for use in the production of ferrosilicomanganese
JP3844873B2 (en) Metal iron manufacturing method
JP7393570B1 (en) Ferronickel alloy and its manufacturing method
JP7403024B1 (en) Ferronickel alloy and its manufacturing method
WO1989008609A2 (en) Production of silicon carbide, manganese carbide and ferrous alloys
JP4661077B2 (en) Method for producing sintered ore
JP4415690B2 (en) Method for producing sintered ore
JPH07252518A (en) Method for raising temperature of molten steel and temperature raising agent
JPH0159327B2 (en)
JP3395573B2 (en) Method for producing and using sinter
JP2969249B2 (en) Blast furnace operation method
JPS62167809A (en) Production of molten chromium iron
JP2558990B2 (en) Method for producing low phosphorus molten metal
JPH0776382B2 (en) Method for producing chrome sinter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060825

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees