JPH11198099A - Lateral pressure cutting device - Google Patents

Lateral pressure cutting device

Info

Publication number
JPH11198099A
JPH11198099A JP10000564A JP56498A JPH11198099A JP H11198099 A JPH11198099 A JP H11198099A JP 10000564 A JP10000564 A JP 10000564A JP 56498 A JP56498 A JP 56498A JP H11198099 A JPH11198099 A JP H11198099A
Authority
JP
Japan
Prior art keywords
workpiece
distortion
streak
cutting
lateral pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10000564A
Other languages
Japanese (ja)
Inventor
Kenji Yamaguchi
憲司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10000564A priority Critical patent/JPH11198099A/en
Publication of JPH11198099A publication Critical patent/JPH11198099A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To respectively change loads of streaks in accordance with a difference of distortional quantity by furnishing a streak load variable means to vary a streak to a streak load computed for each part of a workpiece by a streak load computing means as the streak load in accordance with a position at the time of providing the streak. SOLUTION: After a distortional state of a workpiece 1 observed by a distortion checker 15 is converted to an image signal by using a CCD camera, etc., it is classified in steps on intensity levels by a distortion detecting means. Thereafter, an optimum streak load at a cutting point is selected in accordance with correlation of a notch load of step classified distortional quantity and previously collected distortional quantity by a streak load computing means, and its information data is delivered to a streak load variable means 29. It is possible to stamp a load of a streak corresponding to each distortional quantity of the workpiece 1 by this streak load variable means 29.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、工作物を側圧によ
り切断する装置であり、高品質の切断面が要求されかつ
量産に適した工作物の切断を必要とする分野に適用さ
れ、特にレンズなどのガラス光学素子をプレスにより成
形する場合に使用される工作物、例えばロッド状の長尺
ガラスを切断する工程において利用される側圧切断装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for cutting a workpiece by lateral pressure, and is applied to a field where a high-quality cut surface is required and cutting of the workpiece suitable for mass production is required. The present invention relates to a side pressure cutting device used in a step of cutting a workpiece, for example, a rod-shaped long glass, which is used when a glass optical element such as a glass optical element is formed by pressing.

【0002】[0002]

【従来の技術】従来から、非球面ガラスレンズの大量生
産に適した成形工法による非球面ガラスレンズ量産技術
が確立され、今日に至っている。このようなガラスレン
ズの成形において使用される光学素子素材は、球面研
磨、研磨ボール、あるいは研磨円柱形状のものがほとん
どである。
2. Description of the Related Art Conventionally, mass-production techniques for aspherical glass lenses by a molding method suitable for mass production of aspherical glass lenses have been established and are up to the present day. Most of optical element materials used in molding such glass lenses have a spherical polishing, a polishing ball, or a polishing cylindrical shape.

【0003】上記の円柱形状の光学素子素材の加工方法
としては、棒材を切断して、研磨、ラップ、ポリッシュ
加工することによって、両端面が鏡面となる光学素子素
材を得る従来の方法に対して、近年では、側圧による材
料破壊を利用した側圧切断法(以下、ディスキング法と
呼ぶ)が提案されている。
[0003] As a method of processing the above-mentioned cylindrical optical element material, a rod material is cut, polished, wrapped and polished to obtain an optical element material having mirror surfaces at both end surfaces. Recently, a lateral pressure cutting method (hereinafter, referred to as a disking method) utilizing material destruction by lateral pressure has been proposed.

【0004】この加工法は、加工時に切り屑や騒音を発
生せず、加工に要する時間および加工エネルギが僅少で
あり、しかも加工の際の側圧は、被加工物の大きさには
関係せず一定値であり、さらに切断面が平滑となって、
特にガラス、セラミックスでは鏡面になるなど、従来の
加工法には見られない多くの利点を持つ。
[0004] This processing method does not generate chips and noise during processing, requires little processing time and processing energy, and the lateral pressure during processing does not depend on the size of the workpiece. It is a constant value, and the cut surface becomes smoother,
In particular, glass and ceramics have many advantages not seen in conventional processing methods, such as a mirror surface.

【0005】このような側圧切断を用いた従来の側圧切
断装置の構成は、特開平7−132500号公報などに
も開示されているように、例えば図3を参照して説明す
るが、工作物1と圧力シール部材5が直接接触すること
を阻止するとともに、圧力シール部材5が破損するのを
防止するために、第1の金属部材6と第2の金属部材7
を用いたいわゆるストッパリング方式が用いられてい
る。
The structure of a conventional side pressure cutting apparatus using such side pressure cutting will be described with reference to FIG. 3, for example, as disclosed in Japanese Patent Application Laid-Open No. Hei 7-132500. The first metal member 6 and the second metal member 7 prevent the pressure seal member 5 from being in direct contact with the pressure seal member 5 and prevent the pressure seal member 5 from being damaged.
A so-called stopper ring method using the same is used.

【0006】このストッパリング方式は、棒状の工作物
1における軸方向への引張力と同工作物1における径方
向への押圧力とを、一対の圧力シール部材5を変形させ
ながら加え、複数個切断を行う方法であり、各圧力シー
ル部材5は、工作物1に直接接触しないように、各金属
部材6、7の段差部に囲まれた状態で嵌入した構造にな
っている。
In this stopper ring system, a plurality of pressure sealing members 5 are applied while deforming a pair of pressure sealing members 5 by applying a tensile force in an axial direction on a rod-shaped workpiece 1 and a pressing force in a radial direction on the workpiece 1. This is a cutting method, in which each pressure seal member 5 is fitted in a state of being surrounded by a step portion of each metal member 6, 7 so as not to directly contact the workpiece 1.

【0007】また、この側圧切断装置は、昇圧ライン1
1に接続した圧力容器10と、圧力容器10内に設けら
れた一対の金属部材6、7と、1回の切断個数分の長さ
の側圧伝達筒3の両端に設けられた一対の圧力シール部
材5間の圧力室9内に作動油18を供給する油圧ポンプ
14と、この油圧ポンプ14および増圧器13が組み込
まれる圧力発生装置12と、第2の金属部材7の一方側
に当接している保持部材8とから構成されている。
This side pressure cutting device is provided with a boosting line 1
1, a pair of metal members 6, 7 provided in the pressure container 10, and a pair of pressure seals provided at both ends of the side pressure transmission cylinder 3 having a length corresponding to one cut. A hydraulic pump 14 for supplying hydraulic oil 18 into the pressure chamber 9 between the members 5, a pressure generating device 12 in which the hydraulic pump 14 and the intensifier 13 are incorporated, and one side of the second metal member 7. And a holding member 8.

【0008】棒状の工作物1は、Rmax=3.25S以下の表
面粗さを保つように機械加工され、切断前には予め条痕
2が設けられている。この工作物1の条痕2部分は、圧
力容器10の側圧伝達筒3内の昇圧ライン11に対向す
る位置まで挿入される。圧力発生装置12から作動油1
8が昇圧ライン11を介して圧力容器10内に導入され
ると、工作物1において、その外周表面には側圧伝達筒
3を介して圧縮応力が発生し、中心部には引張応力が発
生する。工作物1の内部に発生する引張応力は加圧力に
比例して大きくなり、その引張応力が工作物1の引張強
さ以上になると、その時点で工作物1は破断して切断さ
れる。この際に側圧伝達筒3内に位置する条痕2から各
々時間差はあるものの、ほぼ同時に切断されることにな
る。また工作物1と側圧伝達筒3間には、側圧17が工
作物1の外周表面に均等に加わるように圧力媒体4が充
填されている。
The bar-shaped workpiece 1 is machined so as to maintain a surface roughness of Rmax = 3.25S or less, and a streak 2 is provided before cutting. The striations 2 of the workpiece 1 are inserted up to a position facing the boost line 11 in the side pressure transmission cylinder 3 of the pressure vessel 10. Hydraulic oil 1 from pressure generator 12
When 8 is introduced into the pressure vessel 10 via the pressure raising line 11, a compressive stress is generated on the outer peripheral surface of the workpiece 1 via the side pressure transmission tube 3, and a tensile stress is generated at the center. . The tensile stress generated inside the workpiece 1 increases in proportion to the applied pressure. When the tensile stress exceeds the tensile strength of the workpiece 1, the workpiece 1 is broken and cut at that point. At this time, although there is a time difference from the streak 2 located in the side pressure transmitting cylinder 3, they are cut almost simultaneously. The pressure medium 4 is filled between the workpiece 1 and the side pressure transmission cylinder 3 so that the lateral pressure 17 is evenly applied to the outer peripheral surface of the workpiece 1.

【0009】[0009]

【発明が解決しようとする課題】しかしながら上記のよ
うな従来の側圧切断装置では、以下のような問題点が発
生する。その問題点について説明する。
However, the conventional side pressure cutting device as described above has the following problems. The problem will be described.

【0010】ディスキング法による従来の側圧切断装置
で使用する棒状の工作物1は、本来内部歪みの無い状態
のものが望ましい。しかしながら、目視確認上何ら正常
な工作物1と変わらないものの、実際の工作物1には多
数の内部歪みが発生しており、工作物1の長さ方向の所
々に不規則に残留していることが歪み検査器で観察する
ことによって明らかになった。
The rod-shaped workpiece 1 used in the conventional lateral pressure cutting device based on the disking method is preferably originally free from internal distortion. However, although it is not different from the normal workpiece 1 in visual confirmation, a large number of internal distortions are generated in the actual workpiece 1 and irregularly remain in various places in the longitudinal direction of the workpiece 1. This was revealed by observation with a strain tester.

【0011】このように内部歪みの発生している工作物
1は、ディスキング法で切断する場合、重量精度や切断
面の面品位が著しく低下し、中には未割断部分が含まれ
るなど工作物1の切断性を大きく悪化する一要因となっ
ている。
When the workpiece 1 having the internal distortion is cut by the disking method, the weight accuracy and the surface quality of the cut surface are remarkably reduced, and the workpiece 1 includes uncut portions. This is one factor that greatly deteriorates the cutting property of the object 1.

【0012】一般に、ガラスの内部歪みは、外部から規
正する力をかけないようにしてガラス軟化点から常温ま
で焼鈍すれば、ほぼ取り除くことができるが、工作物1
が棒形状に加工された後焼鈍した場合、それまで規正さ
れていた応力が解放されるため、工作物1の仕上げ寸法
に誤差を生じる。例えば、工作物1の長さ方向には、反
りが発生したり、外径形状は、断面が楕円あるいは扁平
形状となり、ディスキング材としての使用は不可能とな
ってしまうという問題点があった。
In general, the internal strain of glass can be almost completely removed by annealing from the glass softening point to ordinary temperature without applying a force for regulating from outside.
If the workpiece is annealed after being processed into a bar shape, the stress previously regulated is released, so that an error occurs in the finished dimension of the workpiece 1. For example, there is a problem in that the workpiece 1 is warped in the length direction, or the outer diameter has an elliptical or flat cross-section, and cannot be used as a disking material. .

【0013】通常、内部歪みは厚さ1cm当たりに生ずる
光路差によって”級”で分類されている。外周面が加工
された工作物1は、内部歪みの大きいもの、即ち級の低
い工作物1は不良品としてそのまま廃棄し、なるべく内
部歪みの小さなものだけ選別するという手作業の工程を
経て使用していたため、生産性を考えるとコスト面で不
利であった。
In general, internal strain is classified into "class" by an optical path difference occurring per 1 cm in thickness. The workpiece 1 whose outer peripheral surface is machined is used through a manual process of discarding a workpiece 1 having a large internal distortion, that is, a workpiece 1 of a low grade as a defective product as it is, and selecting only a workpiece having a small internal distortion as much as possible. Was disadvantageous in terms of cost in terms of productivity.

【0014】実際にディスキング法を用いて、内部歪み
のある工作物1を歪みのないものと同じ切断条件下で切
断実験を各々実施したところ、内部歪みのある工作物1
は、切断面の重量精度や面品位が低下する上、未割断部
も発生しやすいという結果であった。この結果に対する
対策として、より大きな切断エネルギを加えて切断を試
みることが必要となる。
Actually, a cutting experiment was performed on the workpiece 1 having internal distortion under the same cutting conditions as those without distortion using the disking method.
The result is that the weight accuracy and surface quality of the cut surface are reduced, and uncut portions are also likely to occur. As a countermeasure against this result, it is necessary to try cutting by applying a larger cutting energy.

【0015】その一方で、昇圧と減圧が負荷される本工
法は、棒状の工作物1における径方向、あるいは軸方向
への伸縮を繰り返すことによって、気密性を保つために
必要な側圧伝達筒3や圧力シール部材5が劣化するとい
う問題点がある。
On the other hand, in the present construction method in which the pressure is increased and reduced, the rod-shaped workpiece 1 is repeatedly expanded and contracted in the radial direction or the axial direction, so that the side pressure transmitting cylinder 3 necessary for maintaining the airtightness is obtained. And the pressure seal member 5 deteriorates.

【0016】更に、もう一つの消耗部材として使用する
工作物1の外周面に刻印する圧子が挙げられるが、むや
みに大きい荷重を加えすぎると条痕2部を中心とした波
目状の凹凸が生じることから面品位が劣化し、また圧子
先端の欠けも起こりやすくなるという問題点もある。
Further, there is an indenter stamped on the outer peripheral surface of the workpiece 1 used as another consumable member. When an excessively large load is excessively applied, a wave-like unevenness centering on the two streaks is generated. As a result, there is a problem that the surface quality is deteriorated and the tip of the indenter is apt to be chipped.

【0017】本発明は、上記従来の切断技術における問
題点を解決するもので、ディスキング法において、内部
歪みの発生した工作物でも加熱処理など必要なく、重量
精度と面品位が従来と変わらない光学素子素材が得ら
れ、また連続切断に対して各消耗部材の寿命を最大限に
延ばしながら品質的に安定した光学素子素材を得ること
ができる側圧切断装置を提供する。
The present invention solves the above-mentioned problems in the conventional cutting technique. In the disking method, a workpiece having an internal distortion does not need to be subjected to a heat treatment or the like, and the weight accuracy and the surface quality are the same as the conventional one. Provided is a side pressure cutting device that can obtain an optical element material and can obtain a quality stable optical element material while maximizing the life of each consumable member for continuous cutting.

【0018】[0018]

【課題を解決するための手段】上記の課題を解決するた
めに本発明の側圧切断装置は、工作物の内部歪みが部分
的に測定できるような歪み検出手段を有し、さらには歪
み検出手段によって検出した歪み量に応じて調整可能な
条痕荷重演算手段、切断圧力演算手段、昇圧時間演算手
段、あるいは嵌合距離演算手段を具備し、ディスキング
法において、内部歪みの発生している工作物でも歪みの
ない工作物と同等の切断を可能とし、工作物の切断に最
適な切断過程を再現することを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a lateral pressure cutting device according to the present invention has a distortion detecting means for partially measuring the internal distortion of a workpiece, and further comprises a distortion detecting means. The tool has a striation load calculating means, a cutting pressure calculating means, a boosting time calculating means, or a fitting distance calculating means which can be adjusted according to the amount of distortion detected by the above method. It is characterized in that it enables cutting equivalent to a workpiece without distortion even on a workpiece, and reproduces an optimal cutting process for cutting a workpiece.

【0019】以上により、ディスキング法において、内
部歪みの発生した工作物でも加熱処理など必要なく、重
量精度と面品位が従来と変わらない光学素子素材が得ら
れ、また連続切断に対して各消耗部材の寿命を最大限に
延ばしながら品質的に安定した光学素子素材を得ること
ができる。
As described above, in the disking method, an optical element material having the same weight accuracy and surface quality as the conventional one can be obtained without the need for heat treatment or the like even for a workpiece in which internal distortion has occurred. An optical element material which is stable in quality while maximizing the life of the member can be obtained.

【0020】[0020]

【発明の実施の形態】本発明の請求項1に記載の側圧切
断装置は、材料への側圧による材料破壊を利用した側圧
切断法に基づいて、切断対象である工作物における外周
面にその切断位置に対応して条痕を設け、前記工作物に
側圧を加えることにより、前記工作物を前記条痕に沿っ
て応力切断する側圧切断装置において、前記工作物を、
棒状で長さ方向に不規則な歪みをもった工作物とし、こ
の工作物の前記歪みを目視可能にして撮像手段により得
られた前記歪みの情報を有する映像情報を基にして、前
記工作物の各部毎にその歪み量を割り出す歪み検出手段
と、この歪み検出手段により割り出された前記歪み量に
応じて、前記工作物の各部に対する前記条痕を設けるた
めの圧子による条痕荷重を算出する条痕荷重演算手段
と、前記条痕を設けるに際し、その位置に応じて、前記
条痕荷重として、前記条痕荷重演算手段により前記工作
物の各部毎に算出された条痕荷重に可変する条痕荷重可
変手段とを備え、前記条痕荷重可変手段で可変された条
痕荷重により前記圧子によって条痕を設けた工作物を応
力切断する構成とする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A lateral pressure cutting device according to a first aspect of the present invention is based on a lateral pressure cutting method utilizing material destruction due to lateral pressure on a material, and cuts an outer peripheral surface of a workpiece to be cut. In a side pressure cutting device that cuts the work piece along the streak by providing a streak corresponding to the position and applying a side pressure to the work piece,
The workpiece is a bar-shaped workpiece having irregular distortion in the length direction, and the workpiece is based on video information having information on the distortion obtained by imaging means by making the distortion of the workpiece visible. A strain detecting means for calculating the amount of strain for each part, and calculating a striation load by an indenter for providing the striation on each part of the workpiece according to the strain amount determined by the strain detecting means. And a streak load calculating means for performing the streak load, wherein the streak load is changed to a streak load calculated for each part of the workpiece by the streak load calculating means in accordance with a position of the streak load. A streak load varying means, wherein the indenter stress-cuts the workpiece provided with the streak by the indenter with the streak load varied by the streak load varying means.

【0021】この構成によると、工作物の内部歪み量を
割り出して、同工作物の内部歪みの分布を調べながら、
その歪み量の差に応じて条痕の荷重を各々変えることが
可能となる。
According to this configuration, the amount of internal strain of the workpiece is determined, and the distribution of the internal strain of the workpiece is examined while
The load on the streak can be changed in accordance with the difference in the amount of distortion.

【0022】請求項2に記載の側圧切断装置は、材料へ
の側圧による材料破壊を利用した側圧切断法に基づい
て、切断対象である工作物における外周面にその切断位
置に対応して条痕を設け、前記工作物に側圧を加えるこ
とにより、前記工作物を前記条痕に沿って応力切断する
側圧切断装置において、前記工作物を、棒状で長さ方向
に不規則な歪みをもった工作物とし、この工作物の前記
歪みを目視可能にして撮像手段により得られた前記歪み
の情報を有する映像情報を基にして、前記工作物の各部
毎にその歪み量を割り出す歪み検出手段と、この歪み検
出手段により割り出された前記歪み量に基づいて得た切
断位置の総歪み量に応じて、前記切断の際の側圧値を算
出する切断圧力演算手段と、前記切断の際の側圧値とし
て、前記切断圧力演算手段により算出された側圧値に可
変する切断圧力可変手段とを備え、前記切断圧力可変手
段で可変された側圧値により、前記条痕を設けた工作物
を応力切断する構成とする。
According to a second aspect of the present invention, there is provided a lateral pressure cutting apparatus, wherein a striation is formed on an outer peripheral surface of a workpiece to be cut in accordance with a cutting position based on a lateral pressure cutting method utilizing material destruction by lateral pressure on a material. A lateral pressure cutting device for applying a lateral pressure to the workpiece to cut the workpiece along the streak, wherein the workpiece is a bar-shaped workpiece having irregular distortion in the length direction. A distortion detecting means for determining the amount of distortion for each part of the workpiece based on video information having the information of the distortion obtained by the imaging means so that the distortion of the workpiece can be viewed; Cutting pressure calculating means for calculating a lateral pressure value at the time of cutting, according to a total distortion amount at a cutting position obtained based on the distortion amount determined by the distortion detecting means, and a lateral pressure value at the time of cutting As the cutting pressure acting And a cutting pressure varying means for varying the lateral pressure value calculated by means by a variable has been side pressure value in the cutting pressure varying means, a configuration in which the stress cut a workpiece provided with the striations.

【0023】この構成によると、工作物の内部歪み量を
割り出して、同工作物の内部歪みの分布を調べながら、
切断する箇所の総歪み量に応じて圧力室内の圧力を各々
調整することが可能となる。
According to this configuration, the amount of internal strain of the workpiece is determined, and the distribution of the internal strain of the workpiece is examined,
It is possible to adjust the pressure in the pressure chamber in accordance with the total amount of distortion at the cutting position.

【0024】請求項3に記載の側圧切断装置は、材料へ
の側圧による材料破壊を利用した側圧切断法に基づい
て、切断対象である工作物における外周面にその切断位
置に対応して条痕を設け、前記工作物に側圧を加えるこ
とにより、前記工作物を前記条痕に沿って応力切断する
側圧切断装置において、前記工作物を、棒状で長さ方向
に不規則な歪みをもった工作物とし、この工作物の前記
歪みを目視可能にして撮像手段により得られた前記歪み
の情報を有する映像情報を基にして、前記工作物の各部
毎にその歪み量を割り出す歪み検出手段と、この歪み検
出手段により割り出された前記歪み量に基づいて得た切
断位置の総歪み量に応じて、前記切断の際の側圧値の昇
圧時間を算出する昇圧時間演算手段と、前記切断の際の
側圧値の昇圧時間として、前記昇圧時間演算手段により
算出された側圧値の昇圧時間に可変する昇圧時間可変手
段とを備え、前記昇圧時間可変手段で可変された昇圧時
間により前記側圧値を昇圧して、前記条痕を設けた工作
物を応力切断する構成とする。
According to a third aspect of the present invention, there is provided a lateral pressure cutting device, wherein a striation corresponding to a cutting position is formed on an outer peripheral surface of a workpiece to be cut based on a lateral pressure cutting method utilizing material destruction due to lateral pressure on a material. A lateral pressure cutting device for applying a lateral pressure to the workpiece to cut the workpiece along the streak, wherein the workpiece is a bar-shaped workpiece having irregular distortion in the length direction. A distortion detecting means for determining the amount of distortion for each part of the workpiece based on video information having the information of the distortion obtained by the imaging means so that the distortion of the workpiece can be viewed; A boosting time calculating means for calculating a boosting time of a lateral pressure value at the time of cutting, according to a total strain amount at a cutting position obtained based on the strain amount determined by the strain detecting means; Of the lateral pressure value of Means for changing the side pressure value calculated by the step-up time calculating means. The workpiece provided with is stress cut.

【0025】この構成によると、工作物の内部歪み量を
割り出して、同工作物の内部歪みの分布を調べながら、
切断する箇所の総歪み量に応じて設定圧力までの昇圧時
間を変更することが可能となる。
According to this configuration, the amount of internal strain of the workpiece is determined, and while the distribution of the internal strain of the workpiece is examined,
It is possible to change the boosting time up to the set pressure according to the total distortion amount at the cutting position.

【0026】請求項4に記載の側圧切断装置は、材料へ
の側圧による材料破壊を利用した側圧切断法に基づい
て、切断対象である工作物における外周面にその切断位
置に対応して条痕を設け、前記工作物に側圧を加えるこ
とにより、前記工作物を前記条痕に沿って応力切断する
側圧切断装置において、前記工作物を、棒状で長さ方向
に不規則な歪みをもった工作物とし、この工作物への側
圧の加圧範囲を調整するために前記工作物の少なくとも
片端に配置され、前記工作物と同等の外径をもつ棒状金
属部材と、前記工作物および棒状金属部材に対して、そ
れらの外周面を覆い前記側圧を伝達する側圧伝達筒と、
前記工作物の前記歪みを目視可能にして撮像手段により
得られた前記歪みの情報を有する映像情報を基にして、
前記工作物の各部毎にその歪み量を割り出す歪み検出手
段と、この歪み検出手段により割り出された前記歪み量
に応じて、前記棒状金属部材の側圧伝達筒内への嵌合距
離を算出する嵌合距離演算手段と、前記棒状金属部材の
側圧伝達筒内への嵌合距離として、前記嵌合距離演算手
段により算出された嵌合距離となる位置に、前記棒状金
属部材を移動調整する嵌合距離調整手段とを備え、前記
嵌合距離調整手段で前記棒状金属部材を移動調整して、
前記条痕を設けた工作物を応力切断する構成とする。
According to a fourth aspect of the present invention, there is provided a lateral pressure cutting device, wherein a striation corresponding to a cutting position is formed on an outer peripheral surface of a workpiece to be cut based on a lateral pressure cutting method utilizing material destruction by lateral pressure on a material. A lateral pressure cutting device for applying a lateral pressure to the workpiece to cut the workpiece along the streak, wherein the workpiece is a bar-shaped workpiece having irregular distortion in the length direction. A bar-shaped metal member having an outer diameter equivalent to that of the workpiece, the bar-shaped metal member being arranged at at least one end of the workpiece to adjust a range of applying a lateral pressure to the workpiece, and the workpiece and the bar-shaped metal member. A lateral pressure transmission cylinder that covers the outer peripheral surfaces thereof and transmits the lateral pressure;
Based on the video information having the information of the distortion obtained by the imaging means to make the distortion of the workpiece visible,
A strain detecting means for calculating an amount of strain for each part of the workpiece; and a fitting distance of the rod-shaped metal member in the side pressure transmitting cylinder is calculated according to the strain amount determined by the strain detecting means. Fitting distance calculating means and a fitting for moving and adjusting the rod-shaped metal member to a position which is a fitting distance calculated by the fitting distance calculating means as a fitting distance of the rod-shaped metal member into the side pressure transmitting cylinder. With a matching distance adjusting means, the rod-shaped metal member is moved and adjusted by the fitting distance adjusting means,
The workpiece provided with the streak is subjected to stress cutting.

【0027】この構成によると、工作物の内部歪み量を
割り出して、同工作物の内部歪みの分布を調べながら、
切断する箇所の総歪み量に応じて棒状金属部材の規正距
離を変えることが可能となる。
According to this configuration, the amount of internal strain of the workpiece is determined, and while the distribution of the internal strain of the workpiece is examined,
It is possible to change the setting distance of the rod-shaped metal member according to the total distortion amount at the cutting position.

【0028】請求項5に記載の側圧切断装置は、材料へ
の側圧による材料破壊を利用した側圧切断法に基づい
て、切断対象である工作物における外周面にその切断位
置に対応して条痕を設け、前記工作物に側圧を加えるこ
とにより、前記工作物を前記条痕に沿って応力切断する
側圧切断装置において、前記工作物を、棒状で長さ方向
に不規則な歪みをもった工作物とし、この工作物の前記
歪みを目視可能にして撮像手段により得られた前記歪み
の情報を有する映像情報を基にして、前記工作物の各部
毎にその歪み量を割り出す歪み検出手段と、この歪み検
出手段により割り出された前記歪み量に応じて、前記工
作物の各部に対する前記条痕を設けるための圧子による
条痕荷重を算出する条痕荷重演算手段と、前記条痕を設
けるに際し、その位置に応じて、前記条痕荷重として、
前記条痕荷重演算手段により前記工作物の各部毎に算出
された条痕荷重に可変する条痕荷重可変手段と、前記歪
み検出手段により割り出された前記歪み量に基づいて得
た切断位置の総歪み量に応じて、前記切断の際の側圧値
を算出する切断圧力演算手段と、前記切断の際の側圧値
として、前記切断圧力演算手段により算出された側圧値
に可変する切断圧力可変手段とを備え、前記切断圧力可
変手段で可変された側圧値により、前記条痕荷重可変手
段で可変された条痕荷重により前記圧子によって条痕を
設けた工作物を応力切断する構成とする。
According to a fifth aspect of the present invention, there is provided a lateral pressure cutting device, wherein a striation corresponding to a cutting position is formed on an outer peripheral surface of a workpiece to be cut based on a lateral pressure cutting method utilizing material destruction due to lateral pressure on a material. A lateral pressure cutting device for applying a lateral pressure to the workpiece to cut the workpiece along the streak, wherein the workpiece is a bar-shaped workpiece having irregular distortion in the length direction. A distortion detecting means for determining the amount of distortion for each part of the workpiece based on video information having the information of the distortion obtained by the imaging means so that the distortion of the workpiece can be viewed; According to the amount of strain determined by the strain detecting means, a mark load calculating means for calculating a mark load by an indenter for forming the marks on each part of the workpiece, and providing the marks. , That much Depending on the, as the striations load,
A streak load varying unit that changes to a streak load calculated for each part of the workpiece by the streak load calculating unit, and a cutting position obtained based on the strain amount calculated by the strain detecting unit. Cutting pressure calculating means for calculating a lateral pressure value at the time of cutting in accordance with the total distortion amount; and cutting pressure variable means for varying the lateral pressure value at the time of cutting to the lateral pressure value calculated by the cutting pressure calculating means. And a structure in which a workpiece provided with a streak is stress-cut by the indenter by a streak load changed by the streak load changing means by a lateral pressure value changed by the cutting pressure changing means.

【0029】この構成によると、工作物の内部歪み量を
割り出して、同工作物の内部歪みを調べながら、その歪
み量の差によって条痕の荷重を各々変え、また圧力室内
の圧力を調整することが可能となる。
According to this configuration, the amount of internal strain of the workpiece is determined, and while checking the internal strain of the workpiece, the load of the striation is changed according to the difference in the amount of distortion, and the pressure in the pressure chamber is adjusted. It becomes possible.

【0030】請求項6に記載の側圧切断装置は、材料へ
の側圧による材料破壊を利用した側圧切断法に基づい
て、切断対象である工作物における外周面にその切断位
置に対応して条痕を設け、前記工作物に側圧を加えるこ
とにより、前記工作物を前記条痕に沿って応力切断する
側圧切断装置において、前記工作物を、棒状で長さ方向
に不規則な歪みをもった工作物とし、この工作物の前記
歪みを目視可能にして撮像手段により得られた前記歪み
の情報を有する映像情報を基にして、前記工作物の各部
毎にその歪み量を割り出す歪み検出手段と、この歪み検
出手段により割り出された前記歪み量に応じて、前記工
作物の各部に対する前記条痕を設けるための圧子による
条痕荷重を算出する条痕荷重演算手段と、前記条痕を設
けるに際し、その位置に応じて、前記条痕荷重として、
前記条痕荷重演算手段により前記工作物の各部毎に算出
された条痕荷重に可変する条痕荷重可変手段と、前記歪
み検出手段により割り出された前記歪み量に基づいて得
た切断位置の総歪み量に応じて、前記切断の際の側圧値
の昇圧時間を算出する昇圧時間演算手段と、前記切断の
際の側圧値の昇圧時間として、前記昇圧時間演算手段に
より算出された側圧値の昇圧時間に可変する昇圧時間可
変手段とを備え、前記昇圧時間可変手段で可変された昇
圧時間により前記側圧値を昇圧して、前記条痕荷重可変
手段で可変された条痕荷重により前記圧子によって条痕
を設けた工作物を応力切断する構成とする。
According to a sixth aspect of the present invention, there is provided a lateral pressure cutting device, wherein a striation corresponding to a cutting position is formed on an outer peripheral surface of a workpiece to be cut based on a lateral pressure cutting method utilizing material destruction due to lateral pressure on a material. A lateral pressure cutting device for applying a lateral pressure to the workpiece to cut the workpiece along the streak, wherein the workpiece is a bar-shaped workpiece having irregular distortion in the length direction. A distortion detecting means for determining the amount of distortion for each part of the workpiece based on video information having the information of the distortion obtained by the imaging means so that the distortion of the workpiece can be viewed; According to the amount of strain determined by the strain detecting means, a mark load calculating means for calculating a mark load by an indenter for forming the marks on each part of the workpiece, and providing the marks. , That much Depending on the, as the striations load,
A streak load varying unit that changes to a streak load calculated for each part of the workpiece by the streak load calculating unit, and a cutting position obtained based on the strain amount calculated by the strain detecting unit. In accordance with the total distortion amount, the boosting time calculating means for calculating the boosting time of the lateral pressure value at the time of cutting, and the boosting time of the lateral pressure value at the time of cutting, as the boosting time of the lateral pressure value calculated by the boosting time calculating means A pressurizing time variable means for changing the pressurizing time, the side pressure value is raised by the pressurizing time varied by the pressurizing time variable means, and The structure provided with the streak is stress cut.

【0031】この構成によると、工作物の内部歪み量を
割り出して、同工作物の内部歪みを調べながら、その歪
み量の差によって条痕2の荷重を各々変え、また設定圧
力までの昇圧時間を変えることが可能となる。
According to this configuration, the amount of internal strain of the workpiece is determined, and while examining the internal strain of the workpiece, the load on the striations 2 is changed depending on the difference in the amount of strain, and the time required to increase the pressure to the set pressure is obtained. Can be changed.

【0032】以上の構成によると、ディスキング法にお
いて、内部歪みの発生している工作物でも歪みのない工
作物と同等の切断が可能となり、工作物の切断に最適な
切断過程を再現することが可能となる。
According to the above configuration, in the disking method, even a workpiece having internal distortion can be cut as well as a workpiece without distortion, and the optimum cutting process for cutting the workpiece can be reproduced. Becomes possible.

【0033】以下、本発明の実施の形態を示す側圧切断
装置について、図面を参照しながら具体的に説明する。 (実施の形態1)図1は歪み検査器15を用いて条痕の
荷重を可変するまでの過程を示す図であり、図2は条痕
荷重可変装置を取り付け工作物1の外周面に条痕2をつ
ける方法を示す斜視図、図3は側圧切断装置の全体構成
図、図4は工作物1の外周面に条痕2を刻印する歪み量
と条痕荷重量を示す一例を表す図であり、いずれも本発
明の実施の形態1を説明するための図である。
Hereinafter, a side pressure cutting device according to an embodiment of the present invention will be specifically described with reference to the drawings. (Embodiment 1) FIG. 1 is a view showing a process of varying the load of a streak using a strain tester 15, and FIG. FIG. 3 is a perspective view showing a method of forming the mark 2, FIG. 3 is an overall configuration diagram of the lateral pressure cutting device, and FIG. 4 is a diagram showing an example of a strain amount and a mark load amount for marking the mark 2 on the outer peripheral surface of the workpiece 1. FIG. 3 is a diagram for explaining Embodiment 1 of the present invention.

【0034】この側圧切断装置は棒状の工作物1を切断
する際に使用するものである。この側圧切断装置により
工作物1を切断する際には、図2に示した通り、その切
断に先立ち、予め工作物1における外周表面の切断位置
上に位置せしめた圧子21を使用して、工作物1の切断
位置の外周表面上に容易に切断を誘起するための条痕2
を設けなければならない。この圧子21の先端形状は対
をなす任意の角度で研磨されており、また圧子21は、
荷重Wx、設定距離Lyで工作物1の鉛直方向から当接
することにより、局部的に条痕2をつける。
This side pressure cutting device is used for cutting the bar-shaped workpiece 1. When the workpiece 1 is cut by the side pressure cutting device, as shown in FIG. 2, prior to the cutting, the indenter 21 previously positioned on the cutting position on the outer peripheral surface of the workpiece 1 is used to cut the workpiece 1. Streak 2 for easily inducing cutting on the outer peripheral surface of the cutting position of object 1
Must be provided. The tip shape of the indenter 21 is polished at an arbitrary angle forming a pair.
When the workpiece 1 is brought into contact with the load Wx and the set distance Ly from the vertical direction, the streak 2 is formed locally.

【0035】図1に示した条痕2の荷重を可変する条痕
荷重可変手段29に至るまでの過程は、まず歪み検査器
15にて観測した工作物1の歪み状態をCCDカメラな
どを用いて映像信号に変換した後、歪み検出手段により
輝度レベルに段階分けしておき、次に条痕荷重演算手段
により、段階分けされた歪み量と予め収集しておいた歪
み量とのノッチ荷重の相関をもとに、切断箇所における
最適な条痕2の荷重を選択し、その情報データを条痕荷
重可変手段29に送ることによって、工作物1の個々の
歪み量に対応した条痕2の荷重を刻印することができ
る。
In the process up to the trace load varying means 29 for varying the load on the trace 2 shown in FIG. 1, first, the distortion state of the workpiece 1 observed by the distortion inspection device 15 is measured using a CCD camera or the like. After converting to a video signal, it is divided into luminance levels by the distortion detecting means, and then the notch load of the divided distortion amount and the previously collected distortion amount is calculated by the streak load calculating means. Based on the correlation, the optimum load of the streak 2 at the cutting position is selected, and the information data is sent to the streak load varying means 29, so that the streak 2 corresponding to the individual strain amount of the workpiece 1 is determined. The load can be stamped.

【0036】図3に示すように、工作物1は、圧力媒体
4を介して側圧伝達筒3に嵌入されており、工作物1と
側圧伝達筒3のクリアランスは数十μmに設定されてい
る。側圧伝達筒3の両端部には圧力シール部材5がそれ
ぞれ配置され、第1の金属部材6と第2の金属部材7に
各々嵌入されている。昇圧時の気密性を高めるため、保
持部材8が油圧ポンプ14の加圧力によって第1の金属
部材6側へ一定距離だけ移動されることによって、各圧
力シール部材5は加圧変形させられる。
As shown in FIG. 3, the work 1 is fitted into the side pressure transmission tube 3 via the pressure medium 4, and the clearance between the work 1 and the side pressure transmission tube 3 is set to several tens μm. . Pressure seal members 5 are respectively disposed at both ends of the side pressure transmission cylinder 3, and are fitted into the first metal member 6 and the second metal member 7, respectively. In order to increase the airtightness at the time of pressurization, each pressure seal member 5 is deformed under pressure by moving the holding member 8 toward the first metal member 6 by a predetermined distance by the pressure of the hydraulic pump 14.

【0037】圧力シール部材5は、棒状の工作物1の軸
方向へ抜けようとする圧力と、径方向に抜けようとする
圧力をシールするために配置されている。かかる状態に
おいて、第1の金属部材6と第2の金属部材7を介して
嵌入された一対の圧力シール部材5によって挟まれた区
間における側圧伝達筒3の外周表面および圧力容器10
の内周部がシールされて、圧力室9が形成される。そこ
で、圧力容器10の圧力室9に昇圧ライン11を介して
圧力(油圧)発生装置12から作動油18を流し込むこ
とによって、工作物1の外周表面に均等な側圧17を加
えることができる。
The pressure seal member 5 is arranged to seal the pressure of the rod-shaped workpiece 1 in the axial direction and the pressure of the rod-shaped workpiece 1 in the radial direction. In such a state, the outer peripheral surface of the side pressure transmission cylinder 3 and the pressure vessel 10 in a section sandwiched by the pair of pressure seal members 5 fitted via the first metal member 6 and the second metal member 7.
Is sealed to form a pressure chamber 9. Then, by flowing the working oil 18 from the pressure (oil pressure) generator 12 into the pressure chamber 9 of the pressure vessel 10 via the pressure raising line 11, a uniform lateral pressure 17 can be applied to the outer peripheral surface of the workpiece 1.

【0038】側圧17を負荷するための圧力発生装置1
2は、図3に示した通り、油圧ポンプ14と増圧器13
から構成され、油圧ポンプ14は、圧力容器10内の保
持部材8を保持するための力を発生させるのは勿論のこ
と、それ以外に増圧器13の原動装置としての機能を有
している。
Pressure generator 1 for applying lateral pressure 17
2 is a hydraulic pump 14 and an intensifier 13 as shown in FIG.
The hydraulic pump 14 not only generates a force for holding the holding member 8 in the pressure vessel 10 but also has a function as a prime mover of the pressure intensifier 13.

【0039】以下、実施の形態1の側圧切断装置におけ
る具体的な条件を説明する。本例の工作物1は、ヤング
率8.2×103kgf/mm2、外径約11mmの中実円筒の光学ガラ
ス棒であって、レンズ成形用として用いられる。工作物
1に切断面を指定するための条痕2は、外周表面の軸方
向に3mmの均等間隔で、条痕2を8箇所設けた。
Hereinafter, specific conditions in the side pressure cutting device according to the first embodiment will be described. The workpiece 1 of this example is a solid cylindrical optical glass rod having a Young's modulus of 8.2 × 10 3 kgf / mm 2 and an outer diameter of about 11 mm, and is used for lens molding. Eight streaks 2 for designating a cut surface on the workpiece 1 were provided at equal intervals of 3 mm in the axial direction of the outer peripheral surface.

【0040】内部歪みの発生した工作物1において、歪
みのない工作物1と同様に荷重Wx=1000g均一に条痕2
を刻印した。刻印された条痕2の長さは歪みのありなし
に関わらず、約400μmであって、8箇所全て同等の形
状である。
In the workpiece 1 in which the internal distortion has occurred, the load Wx = 1000 g and the striations 2 are uniformly distributed as in the case of the workpiece 1 having no distortion.
Was engraved. The length of the imprinted streak 2 is about 400 μm, regardless of the presence or absence of distortion, and all eight locations have the same shape.

【0041】刻印された工作物1は、中空円筒形状をし
たメタクリル樹脂製の側圧伝達筒3内に嵌入される。工
作物1と側圧伝達筒3の間に封入した圧力媒体4は、公
知の高粘度油脂を用いた。側圧伝達筒3の材料であるメ
タクリル樹脂のヤング率は、3.1kgf/mm2である。また側
圧伝達筒3の長さを約20mmとし、圧力シール部材5は、
線径1.2mmのリング状ゴムであって、第1の金属部材6
および第2の金属部材7の所定の位置にそれぞれ嵌合さ
れている。
The engraved workpiece 1 is fitted into a hollow cylinder-shaped side pressure transmission cylinder 3 made of methacrylic resin. As the pressure medium 4 sealed between the workpiece 1 and the side pressure transmission cylinder 3, a known high-viscosity oil or fat was used. The Young's modulus of the methacrylic resin that is the material of the side pressure transmission cylinder 3 is 3.1 kgf / mm 2 . Further, the length of the side pressure transmission cylinder 3 is set to about 20 mm, and the pressure seal member 5 is
A ring-shaped rubber having a wire diameter of 1.2 mm, and
And a predetermined position of the second metal member 7.

【0042】保持部材8は、油圧ポンプ14の圧力を受
けて第1の金属部材6側へ1mm程度移動して、第2の金
属圧部材に圧接することにより、各圧力シール部材5が
圧縮変形して圧力室9内の気密性を高めている。第1の
金属部材6と第2の金属部材7の材料として炭素工具鋼
を用いた。また工作物1と第1の金属部材6あるいは第
2の金属部材7における内径のクリアランス精度は、側
圧伝達筒3のクリアランス精度とほぼ同じになるよう仕
上げられている。
The holding member 8 is moved by about 1 mm toward the first metal member 6 under the pressure of the hydraulic pump 14 and pressed against the second metal pressure member, so that each pressure seal member 5 is compressed and deformed. Thus, the airtightness in the pressure chamber 9 is increased. Carbon tool steel was used as the material of the first metal member 6 and the second metal member 7. Further, the clearance accuracy of the inner diameter between the workpiece 1 and the first metal member 6 or the second metal member 7 is finished so as to be substantially the same as the clearance accuracy of the side pressure transmission cylinder 3.

【0043】上記した切断条件下において、側圧17が
P=8.5kgf/mm2、昇圧時間が5sec.、設定保持時間が3se
c.として動作させたところ、歪みのある工作物1の切断
は形状的にも問題なく全数切断するものの、歪みのある
工作物1では2個分の未割断が2箇所、切断面の不良が
1箇所発生し、良品として得られた光学素子素材は8個
中3個のみという結果であった。
Under the above cutting conditions, the lateral pressure 17 is P = 8.5 kgf / mm 2 , the boosting time is 5 sec., And the set holding time is 3 sec.
When operated as c., cutting of the distorted workpiece 1 cuts all of them without any problem in terms of shape. The result was that only one out of eight optical element materials were generated at one place and obtained as good products.

【0044】また、歪みのない工作物1に対して条痕2
の荷重Wx=1500gを同じように加えた場合、過剰な荷重
を加え過ぎた時に起こる切断面の貝殻状のキズが残って
しまう現象が発生した。結果として、光学素子素材の重
量精度と切断面の面品位は低下してしまうこととなっ
た。
In addition, with respect to the work 1 having no distortion, the streak 2
When the load Wx = 1500 g was similarly applied, a phenomenon that a shell-like scratch on the cut surface which occurs when an excessive load was applied excessively occurred occurred. As a result, the weight accuracy of the optical element material and the surface quality of the cut surface are reduced.

【0045】そこで、本実施の形態1では、上記検討で
使用したものと同じような内部歪みが生じた工作物1に
対して条痕荷重演算手段、および条痕荷重可変手段29
を用いて切断を実施した。
Therefore, in the first embodiment, the work 1 having the same internal strain as the one used in the above study is applied to the work load calculating means and the work load variable means 29.
The cutting was performed using.

【0046】条痕2の長さは設定した荷重によって異な
るものの、全体の形状はほぼ同等である。これらの条痕
2を刻印する位置の内部歪み量を測定したところ最大で
約100nm/cmであり、詳細に分析した結果、工作物1の片
端面から3mmの位置の内部歪み量は約100nm/cm、6mmの位
置では約50nm/cm、9mmの位置では約15nm/cm、12mmの位
置では約10nm/cm、15mm以上離れた位置では内部歪みは
ほとんど計測不可能であった。
Although the length of the streak 2 varies depending on the set load, the overall shape is almost the same. When the amount of internal strain at the position where these streaks 2 were stamped was measured, the maximum amount was about 100 nm / cm. As a result of detailed analysis, the amount of internal strain at a position 3 mm from one end surface of the workpiece 1 was about 100 nm / cm. At a position of cm and 6 mm, about 50 nm / cm, at a position of 9 mm, about 15 nm / cm, at a position of 12 mm, about 10 nm / cm, and at a position more than 15 mm, internal strain could hardly be measured.

【0047】また、基礎実験の検討結果から、歪み量が
約10nm/cmの時Wx=1050g、約50nm/cmの時Wx=1300g、
約100nm/cmの時Wx=1500gの荷重を加え刻印すれば、
内部歪みのない工作物1と同じ切断圧力で問題無く切断
できることが予め分かっている。
Further, from the examination results of the basic experiment, when the distortion amount is about 10 nm / cm, Wx = 1050 g, when the distortion amount is about 50 nm / cm, Wx = 1300 g,
At about 100nm / cm, apply a load of Wx = 1500g and engrave,
It is known in advance that cutting can be performed without any problem at the same cutting pressure as the workpiece 1 without internal distortion.

【0048】これらのことから、内部歪み量に対して片
端面から加えた条痕2の荷重は、1500g、1300g、1100
g、1050g、1000g、1000g、1000g、1000gの順番で刻印す
るように、条痕荷重演算手段で設定し、条痕荷重可変手
段29を用いて刻印を行った。
From these facts, the load of the streak 2 applied from one end face to the internal strain amount is 1500 g, 1300 g, 1100 g,
g, 1050 g, 1000 g, 1000 g, 1000 g, and 1000 g were set in the order of the marking load calculating means, and marking was performed using the marking load varying means 29.

【0049】かかる状態において、前記長さの異なる条
痕2の工作物1は、側圧17がP=8.5kg/mm2、昇圧時間
がT=5sec.程度として、嵌入された工作物1の全ての条
痕2を通る全ての横断面で確実に切断され、各々の重量
精度と切断面の状況は、歪みのほとんどない工作物1の
切断と変わらない結果が得られた。
In such a state, the workpieces 1 having the streaks 2 having different lengths are all set in the side pressure 17 at P = 8.5 kg / mm 2 and the pressure increasing time at T = 5 sec. The cutting was reliably performed at all the cross sections passing through the striations 2, and the weight accuracy and the condition of the cut surface were the same as those obtained by cutting the workpiece 1 with almost no distortion.

【0050】図5に、本実施の形態1の側圧切断装置に
よる切断によって得られた光学素子素材に対して、後加
工である加熱、加圧、冷却を行うことによって成形され
る光学素子22の加工過程の説明図を示す。この例の光
学素子22は、ビデオムービー用レンズの一つとして使
用され、片面が非球面、反対面が球面の両凸形状をなし
ている。さらに、成形で使用される第1の成形型23お
よび第2の成形型24の転写面は、光学素子22の各球
面の凸形状に対応するように、それぞれ所望の凹形状に
加工されており、胴型25の上下内径部に各々嵌合され
ている。成形工程を経て得られた光学素子22の転写精
度は、従来における光学素子素材を成形したときと何ら
変わることがなく、光学特性上問題のない性能であっ
た。
FIG. 5 shows an optical element 22 formed by performing heating, pressing, and cooling, which are post-processing, on the optical element material obtained by cutting with the side pressure cutting device of the first embodiment. The explanatory view of a processing process is shown. The optical element 22 of this example is used as one of the lenses for a video movie, and has a biconvex shape in which one surface is an aspheric surface and the other surface is a spherical surface. Further, the transfer surfaces of the first molding die 23 and the second molding die 24 used in the molding are each processed into a desired concave shape so as to correspond to the convex shape of each spherical surface of the optical element 22. , Are respectively fitted to the upper and lower inner diameter portions of the body mold 25. The transfer accuracy of the optical element 22 obtained through the molding step was not different from that obtained when the conventional optical element material was molded, and was a performance having no problem in optical characteristics.

【0051】なお、実施の形態1において、設定荷重の
分解能は50gとしたが、分解能が高くなれば、その分だ
け切断される光学素子素材の品質は向上する。また、工
作物1の外径や材質によって歪み量と条痕2の荷重の絶
対値は変わるものの、相関性は同じであり、条痕2の荷
重を適宣選択、設定して実施することも可能である。更
に、使用する側圧伝達筒3の材料としてはメタクリル樹
脂程度のヤング率を持つ材質を用いれば、同様の効果が
得られる。加えて歪み検査器15、CCDカメラは前記の
説明の機能を有するものであれば、他の同様の手段を採
用することもできる。
In the first embodiment, the resolution of the set load is 50 g. However, as the resolution increases, the quality of the cut optical element material improves. Although the amount of strain and the absolute value of the load on the streak 2 vary depending on the outer diameter and the material of the workpiece 1, the correlation is the same, and the load on the streak 2 can be appropriately selected and set. It is possible. Further, if a material having a Young's modulus on the order of methacrylic resin is used as the material of the side pressure transmitting cylinder 3 to be used, the same effect can be obtained. In addition, other similar means can be adopted for the distortion inspection device 15 and the CCD camera as long as they have the functions described above.

【0052】このように実施の形態1の側圧切断装置に
よれば、長さ方向に不規則に生じた工作物1の内部歪み
を検出することができ、各々の歪み量に応じて条痕2の
荷重を可変することにより、圧子21などの消耗部材の
寿命を最大限に延ばしながら品質的に安定した光学素子
素材を各々得ることが可能となる。 (実施の形態2)図6は歪み検査器15を用いて切断圧
力可変手段26により切断圧力を可変するまでの過程を
示す図、図7は側圧切断装置の全体構成図、図8は工作
物1の内部歪みの発生状態を示す図、図9は切断圧力の
変化を示す図で、いずれも本発明の実施の形態2を説明
するための各図である。なお、図2,3に基づいて説明
した部材に対応する部材には同一符号を付して詳しい説
明は省略する。
As described above, according to the lateral pressure cutting device of the first embodiment, it is possible to detect the internal distortion of the workpiece 1 that has been irregularly generated in the length direction, and to detect the streak 2 according to the amount of each distortion. , The life of consumable members such as the indenter 21 can be extended to the maximum, and optical element materials that are stable in quality can be obtained. (Embodiment 2) FIG. 6 is a view showing a process until the cutting pressure is varied by a cutting pressure varying means 26 using a distortion inspection device 15, FIG. 7 is an overall configuration diagram of a side pressure cutting device, and FIG. FIG. 9 is a diagram showing a state of occurrence of internal distortion in FIG. 1, and FIG. 9 is a diagram showing a change in cutting pressure, all of which are diagrams for explaining Embodiment 2 of the present invention. Members corresponding to those described with reference to FIGS. 2 and 3 are denoted by the same reference numerals, and detailed description is omitted.

【0053】この実施の形態2における歪み検査器15
を用いた歪み検出手段、条痕刻印工程、あるいは側圧切
断装置などの構成は、実施の形態1の側圧切断装置の構
成と基本的に同じである。異なる点は、図6,7に示し
た通り、まず条痕荷重演算手段が切断圧力演算手段に、
条痕荷重可変手段29が切断圧力可変手段26に替わ
り、圧力発生装置12の増圧器13内の側圧17を微調
する手段を有する点である。
The distortion inspection device 15 according to the second embodiment
Are basically the same as the configuration of the side pressure cutting device of the first embodiment. The difference is that, as shown in FIGS.
The difference is that the streak load varying means 29 has means for finely adjusting the side pressure 17 in the pressure intensifier 13 of the pressure generating device 12 instead of the cutting pressure varying means 26.

【0054】以下に、本実施の形態2の側圧切断装置に
おける具体的な条件を説明する。検討に使用した工作物
1は、ヤング率8.2×103kgf/mm2、かつ外径約11mmの中
実円筒の光学ガラス棒であって、実施の形態1において
使用したものと全く同様である。工作物1の外周表面に
刻印した条痕2は、一回の昇圧で切断するものと推定し
た8個分で、端面を原点として設定距離Ly=3mm毎に均
等間隔となるよう8箇所設けている。荷重Wx=1000g時
における条痕2の長さは400μmであり、全て同等の形
状である。
Hereinafter, specific conditions in the side pressure cutting device according to the second embodiment will be described. The workpiece 1 used in the study is a solid cylindrical optical glass rod having a Young's modulus of 8.2 × 10 3 kgf / mm 2 and an outer diameter of about 11 mm, which is exactly the same as that used in the first embodiment. . The streaks 2 imprinted on the outer peripheral surface of the workpiece 1 are eight pieces which are assumed to be cut by a single step-up, and are provided at eight places so that the end face is the origin and the set distance Ly is equal to every 3 mm. I have. When the load Wx = 1000 g, the length of the streak 2 is 400 μm, and all have the same shape.

【0055】かかる状態において、側圧17がP1=8.5k
gf/mm2、昇圧時間がT=5sec.、設定保持時間が3sec.と
して動作させたところ、歪みのない工作物1の切断は形
状的にも問題なく全数切断するものの、歪みの発生した
工作物1は実施の形態1で示した通り、良品として得ら
れた光学素子素材は8個中3個のみという結果であっ
た。
In this state, the lateral pressure 17 becomes P 1 = 8.5 k
gf / mm 2 , the boosting time was T = 5 sec., and the set holding time was 3 sec., the work 1 with no distortion could be cut without any problem in terms of shape, but the work with distortion occurred. As shown in Embodiment 1, the result of the object 1 was that only three out of eight optical element materials were obtained as non-defective products.

【0056】そこで、本実施の形態2では、上記検討で
使用したものと同じような内部歪みが生じた工作物1に
対して切断圧力演算手段、および切断圧力可変手段26
を用いて切断を実施した。
Therefore, in the second embodiment, the cutting pressure calculating means and the cutting pressure varying means 26 are used for the workpiece 1 in which the internal distortion similar to that used in the above study has occurred.
The cutting was performed using.

【0057】歪みのある工作物1の側面を詳細に測定し
たところ、図8に示すような状況であった。このことか
ら、工作物1の一回に切断する条痕部分28において、
内部歪み発生部27の歪みのない面積に対する面積率を
歪み検査器15を用いて割り出した。今回の歪みのある
工作物1の切断部分8箇所の歪み発生面積率は約30%で
あった。
When the side surface of the work 1 having distortion was measured in detail, the situation was as shown in FIG. From this, in the streak portion 28 cut at one time of the workpiece 1,
The area ratio of the internal distortion generating section 27 to the area where there is no distortion was determined using the distortion inspection device 15. The distortion generation area ratio of eight cut portions of the workpiece 1 having the distortion this time was about 30%.

【0058】基礎実験の結果から、歪み発生面積率が約
30%の場合には、切断圧力は従来の設定圧より1kgf/mm2
ほど増加する必要があり、また同面積率が約50%の場合
には、従来の設定圧より2kgf/mm2増加する必要があるこ
とが予め分かっている。
From the results of the basic experiments, it was found that the strain generation area ratio was about
At 30%, the cutting pressure is 1 kgf / mm 2
It is known in advance that when the area ratio is about 50%, the pressure needs to be increased by 2 kgf / mm 2 from the conventional set pressure.

【0059】これらのことから、切断する部分の総内部
歪み量に対して切断圧力を従来より1kgf/mm2増加し、側
圧17をP2=9.5kgf/mm2へと変更し他の条件は全く同じ
条件下で切断したところ、嵌入された工作物1は、その
全ての条痕2を通る横断面で確実に切断され、各々の重
量精度と切断面の状況は、歪みのない工作物1の切断と
変わらない結果が得られた。
From these facts, the cutting pressure was increased by 1 kgf / mm 2 with respect to the total internal strain of the portion to be cut, the lateral pressure 17 was changed to P 2 = 9.5 kgf / mm 2 , and the other conditions were as follows. When cut under exactly the same conditions, the fitted work 1 is reliably cut in a cross section passing through all the streaks 2, and the weight accuracy and the condition of the cut surface are determined by the work 1 without distortion. The result was the same as that of cutting.

【0060】なお、実施の形態2において、一回当たり
の切断個数が変われば切断部分の総歪み量も変わるた
め、総歪み量に対する最適な切断圧力を予め求めておく
必要がある。
In the second embodiment, if the number of cuts per time changes, the total distortion amount of the cut portion also changes. Therefore, it is necessary to find an optimum cutting pressure for the total distortion amount in advance.

【0061】このように実施の形態2の側圧切断装置に
よれば、長さ方向に不規則に生じた工作物1の内部歪み
を検出することができ、更に一回当たり切断する部分の
総内部歪み量に応じて切断圧力を可変することにより圧
力シール部材5、側圧伝達筒3、あるいは圧子21など
消耗部材の寿命を最大限に延ばしながら、品質的に安定
した光学素子素材を各々得ることが可能となる。 (実施の形態3)図10は歪み検査器15を用いて昇圧
時間可変手段31により昇圧時間を可変するまでの過程
を示す図、図11は側圧切断装置の全体構成図、図12
は昇圧時間の変化を示す図で、いずれも本発明の実施の
形態3を説明するための各図である。なお、本実施の形
態3でも実施の形態2と同様に、図2,図3に基づいて
説明した部材に対応する部材には同一符号を付して詳し
い説明は省略する。
As described above, according to the lateral pressure cutting device of the second embodiment, it is possible to detect the internal distortion of the workpiece 1 which has been irregularly generated in the longitudinal direction, and further, it is possible to detect the entire internal portion of the portion to be cut at one time. By varying the cutting pressure in accordance with the amount of distortion, it is possible to obtain optical element materials that are stable in quality while maximizing the life of consumable members such as the pressure seal member 5, the side pressure transmission cylinder 3, or the indenter 21. It becomes possible. (Embodiment 3) FIG. 10 is a view showing a process until the boosting time is varied by the boosting time varying means 31 using the strain tester 15, FIG. 11 is an overall configuration diagram of the side pressure cutting device, and FIG.
7A and 7B are diagrams showing changes in the boosting time, all of which are diagrams for explaining the third embodiment of the present invention. In the third embodiment, like the second embodiment, the members corresponding to those described with reference to FIGS. 2 and 3 are denoted by the same reference numerals, and detailed description is omitted.

【0062】この実施の形態3における歪み検査器15
を用いた歪み検出手段、条痕刻印工程、あるいは側圧切
断装置などの構成は、実施の形態1の側圧切断装置の構
成と基本的には同じである。異なる点は、図10,11
に示した通り、条痕荷重演算手段が昇圧時間演算手段
に、条痕荷重可変手段29が昇圧時間可変手段31に替
わり、圧力発生装置12の増圧器13内の側圧17を微
調する手段を有する点である。
The distortion inspection device 15 according to the third embodiment
Are basically the same as the configuration of the side pressure cutting device according to the first embodiment. The differences are shown in FIGS.
As shown in the figure, the striation load calculating means is replaced with a boosting time calculating means, and the streak load varying means 29 is replaced with a boosting time varying means 31. Is a point.

【0063】以下に、実施の形態3の側圧切断装置にお
ける具体的な条件を説明する。検討に使用した工作物1
は、実施の形態1および実施の形態2において使用した
ものと全く同様な中実円筒の光学ガラス棒で、外周表面
に刻印する条痕2の設定条件も、実施の形態2の場合と
同様に、一回の昇圧で切断するものと推定した8箇所で
ある。
The specific conditions in the side pressure cutting device according to the third embodiment will be described below. Workpiece 1 used for examination
Is a solid cylindrical optical glass rod exactly the same as that used in the first and second embodiments, and the setting conditions of the streaks 2 stamped on the outer peripheral surface are the same as those in the second embodiment. , Eight locations estimated to be cut by one pressurization.

【0064】比較するための切断は、実施の形態1およ
び実施の形態2で示した通り、側圧17がP=8.5kgf/mm
2、昇圧時間がT1=5sec.、設定保持時間が3sec.として
実施した条件で、得られた良品個数は8個中3個であっ
た。
As shown in the first and second embodiments, the cutting for comparison is performed when the lateral pressure 17 is P = 8.5 kgf / mm.
2. Under the condition that the boosting time was T 1 = 5 sec. And the set holding time was 3 sec., The number of non-defective products obtained was 3 out of 8.

【0065】そこで、本実施の形態3では、上記検討で
使用したものと同じような内部歪みが生じた工作物1に
対して、昇圧時間演算手段、および昇圧時間可変手段3
1を用いて切断を実施した。
Therefore, in the third embodiment, the work-up 1 having the internal distortion similar to that used in the above examination is applied to the work-up time calculating means and the work-up time varying means 3.
Cutting was performed using No. 1.

【0066】歪みのある工作物1を歪み検査器15を用
いて詳細に測定したところ、図8に示すような歪みが観
察され、実施の形態2に示した通り、歪み発生面積比は
約30%という割合であった。
When the workpiece 1 having distortion was measured in detail by using the distortion inspection device 15, distortion as shown in FIG. 8 was observed. As shown in the second embodiment, the distortion generation area ratio was about 30. %.

【0067】また基礎実験結果から、歪み発生面積比が
約30%の場合、昇圧時間は従来の設定時間より4sec.早い
約1sec.設定とする必要があることが予め分かってい
る。このことから昇圧時間をT2=1sec.と変更し、側圧
17がP=8.5kgf/mm2、設定保持時間が3sec.の条件とし
て、上記内部歪みのある工作物1を切断したところ、全
ての条痕2を通る横断面で確実に切断され、各々の重量
精度と切断面は、内部歪みのない工作物1と何ら変わら
ないという結果が得られた。
From the basic experiment results, it is known in advance that when the distortion generation area ratio is about 30%, the boosting time needs to be set to about 1 second, which is 4 seconds earlier than the conventional setting time. From this, the pressure raising time was changed to T 2 = 1 sec., And the side pressure 17 was P = 8.5 kgf / mm 2 , and the set holding time was 3 sec. The cross section passing through the streak 2 was surely cut, and the result that the weight accuracy and the cut surface of each were not different from the workpiece 1 having no internal distortion was obtained.

【0068】なお、実施の形態3において、一回当たり
の切断個数が変われば、切断部分の総歪み量も変わるた
め、総歪み量に対する最適な昇圧時間を予め求める必要
がある。このように実施の形態3の側圧切断装置によれ
ば、長さ方向に不規則に生じた工作物1に対して、一回
当たり切断する部分の総内部歪み量に応じて昇圧時間を
調整することにより、圧力シール部材5、側圧伝達筒
3、あるいは圧子21など消耗部材の寿命を最大限に延
ばしながら、品質的に安定した光学素子素材を各々得る
ことが可能となる。 (実施の形態4)図13は歪み検査器15を用いて図1
4に示す棒状金属部材16の側圧伝達筒3内への嵌合距
離を調整するまでの過程を示す図、図14は側圧切断装
置の全体構成図で、いずれも本発明の実施の形態4を説
明するための各図である。なお、図2,図3に基づいて
説明した部材に対応する部材には同一符号を付して詳し
い説明は省略する。
In the third embodiment, if the number of cuts at one time changes, the total distortion amount of the cut portion also changes. Therefore, it is necessary to find an optimum boosting time for the total distortion amount in advance. As described above, according to the lateral pressure cutting device of the third embodiment, the pressure-up time is adjusted according to the total internal distortion amount of the portion to be cut at one time for the workpiece 1 generated irregularly in the length direction. This makes it possible to obtain optical element materials that are stable in quality while maximizing the life of consumable members such as the pressure seal member 5, the side pressure transmission cylinder 3, and the indenter 21. (Embodiment 4) FIG.
FIG. 4 is a view showing a process until the fitting distance of the rod-shaped metal member 16 shown in FIG. 4 into the side pressure transmission cylinder 3 is adjusted. FIG. 14 is an overall configuration diagram of the side pressure cutting device. It is each figure for demonstrating. Members corresponding to those described with reference to FIGS. 2 and 3 are denoted by the same reference numerals, and detailed description is omitted.

【0069】この実施の形態4における歪み検査器15
を用いた歪み検出手段、条痕刻印工程、あるいは側圧切
断装置などの構成は、実施の形態1の側圧切断装置の構
成と基本的には同じである。異なる点は、図13,14
に示した通り、条痕荷重演算手段が嵌合距離演算手段
に、条痕荷重可変手段29が嵌合距離調整手段30に替
わり、工作物1の切断位置を規正するため使用する棒状
金属部材16を有する点である。
[0069] Strain detector 15 in the fourth embodiment
Are basically the same as the configuration of the side pressure cutting device according to the first embodiment. The differences are shown in FIGS.
As shown in the figure, the streak load calculating means is replaced by the fitting distance calculating means, and the streak load varying means 29 is replaced by the fitting distance adjusting means 30, and the rod-shaped metal member 16 used for regulating the cutting position of the workpiece 1 is used. Is the point having

【0070】以下に、本実施の形態4の側圧切断装置に
おける具体的な条件を説明する。検討に使用した工作物
1は、ヤング率1.03×104kgf/mm2、外径約7mmの中実円
筒の光学ガラス棒である。工作物1の外周表面に設けら
れた条痕2は、外周表面の軸方向に3mmの均等間隔で、
一回の昇圧で切断すると予測できる13箇所設けた。
Hereinafter, specific conditions in the lateral pressure cutting device according to the fourth embodiment will be described. The workpiece 1 used in the study is a solid cylindrical optical glass rod having a Young's modulus of 1.03 × 10 4 kgf / mm 2 and an outer diameter of about 7 mm. The streaks 2 provided on the outer peripheral surface of the workpiece 1 are spaced at equal intervals of 3 mm in the axial direction of the outer peripheral surface.
Thirteen locations were provided that could be expected to be cut off by one boost.

【0071】内部歪みの発生した工作物1において、歪
みのない工作物1と同様に荷重約Wx=1000gの荷重で条
痕2を刻印し、刻印された条痕2の長さは約350μm
で、歪みのありなしに関わらず13箇所全て同等の形状
である。
In the workpiece 1 in which internal distortion has occurred, the streak 2 is imprinted with a load of about Wx = 1000 g, similarly to the undistorted work 1, and the length of the inscribed streak 2 is about 350 μm.
Thus, all 13 locations have the same shape regardless of the presence or absence of distortion.

【0072】刻印された工作物1は、中空円筒形状をし
た長さ約40mmの側圧伝達筒3内に嵌入される。その他の
圧力シール部材5や第1の金属部材6、第2の金属部材
7は、径寸法は異なるものの、実施の形態1の場合と同
等の作用を有する。
The engraved workpiece 1 is fitted into a hollow cylinder-shaped side pressure transmission cylinder 3 having a length of about 40 mm. The other pressure seal members 5, the first metal member 6, and the second metal member 7 have the same action as in the first embodiment, though the diameters are different.

【0073】歪みの発生した工作物1に、側圧17をP
=10kgf/mm2まで上昇させて切断を試みたが、工作物1の
端面付近の切断性が特に悪く、13個中切断部が3箇所
発生し、全数切断には至らなかった。
The lateral pressure 17 is applied to the work 1 in which
= 10 kgf / mm 2 , and cutting was attempted. However, the cutting properties near the end face of the workpiece 1 were particularly poor, and three out of thirteen cutting portions were generated, and the cutting was not completed.

【0074】そこで、本実施の形態4では、上記検討で
使用したものと同じ内部歪みが生じた工作物1に対し
て、棒状金属部材16の側圧伝達筒3内への嵌合距離を
演算する嵌合距離演算手段と、その演算結果に基づいて
棒状金属部材16の前記の嵌合距離を調整する嵌合距離
調整手段30とを用いて切断を実施した。
Therefore, in the fourth embodiment, the fitting distance of the rod-shaped metal member 16 into the side pressure transmission cylinder 3 is calculated for the workpiece 1 having the same internal distortion as that used in the above examination. Cutting was performed using fitting distance calculating means and fitting distance adjusting means 30 for adjusting the fitting distance of the rod-shaped metal member 16 based on the calculation result.

【0075】棒状金属部材16は、工作物1の片端にお
互いの端面が当接するように配置され、工作物1と同等
の外径で外観も近似しているものの、脆性材料である工
作物1とは異なった性質を持った部材で、特に靭性に富
む一般的な金属を用いている。側圧伝達筒3内に設定し
た距離だけ嵌入された棒状金属部材16に対して、工作
物1と共に油圧による側圧17が負荷されると、工作物
1は条痕2が刻印された断面に沿って切断されるもの
の、棒状金属部材16は破断することはない。
The bar-shaped metal member 16 is disposed such that the end surfaces thereof abut on one end of the workpiece 1 and has an outer diameter similar to that of the workpiece 1 and an appearance similar to that of the workpiece 1, but is a brittle material. This is a member having different properties from the above, and a general metal with high toughness is used. When a lateral pressure 17 is applied to the rod-shaped metal member 16 fitted in the lateral pressure transmission cylinder 3 by a predetermined distance together with the workpiece 1 by hydraulic pressure, the workpiece 1 moves along the cross section where the streak 2 is engraved. Although cut, the rod-shaped metal member 16 does not break.

【0076】また、上記と同様の歪みのある工作物1の
内部歪み量を測定したところ、13個分の歪み発生面積
率は全体で約40%であったが、端面から6個分までの歪
み発生面積率は70%、7から13個分までの同面積率は1
0%という結果で、歪みは端面部に集中して発生している
ことが歪み検出手段によって明らかになった。このよう
に、嵌合距離演算手段は、一回当たりの切断個数が10
個以上で、その個数の半分づつの歪み発生面積率の差が
20%以上ある場合に限って作動するように設定されてい
る。
When the internal strain amount of the workpiece 1 having the same distortion as described above was measured, the area ratio of the 13 strains was about 40% in total, but the area ratio of the strain from the end face to 6 pieces was measured. The area ratio of strain occurrence is 70%, and the same area ratio from 7 to 13 is 1
As a result of 0%, it was clarified by the distortion detecting means that the distortion was concentrated on the end face. As described above, the fitting distance calculating means determines that the number of cuts
And the difference of the area ratio of the strain occurrence by half of the number
It is set to operate only when there is 20% or more.

【0077】また、基礎実験の結果から、一回に切断す
る個数を減らせば、それに伴い切断圧力を下げることが
可能で、仮に歪みのない工作物1を本来の半分である6
個分だけ切断しようとすれば、それに要する切断圧力は
約7.5kgf/mm2(その他の設定条件は13個切断時と同
じ)で十分なことが予め分かっている。
Further, based on the results of the basic experiment, if the number of pieces cut at one time is reduced, the cutting pressure can be reduced accordingly.
It has been previously known that the cutting pressure required for cutting only individual pieces is about 7.5 kgf / mm 2 (other setting conditions are the same as those for cutting 13 pieces).

【0078】これらのことから、歪みのある工作物1
を、棒状金属部材16を切断個数6個分に相当する距離
だけ側圧伝達筒3内に嵌入し、側圧17をP’=9.0kgf/
mm2に変更し、昇圧時間が5sec、設定保持時間が3sec.と
して切断したところ、嵌入された工作物1の6個分全て
が確実に切断された。次に棒状金属部材16を、切断個
数7個分に相当する距離だけ側圧伝達筒3内に嵌入し、
側圧17をP=8.0kgf/mm2へと変更し、他の条件は全く
同じ条件下で切断を試みたところ、嵌入された工作物1
の7個分全てが切断され、得られた合計13個分の光学
素子素材の重量精度と面品位は、歪みのない工作物1の
切断と何ら変わらない結果が得られた。
From these facts, the work 1 having the distortion
Is inserted into the side pressure transmission cylinder 3 by a distance corresponding to the number of cut pieces of the bar-shaped metal member 16, and the side pressure 17 is set to P ′ = 9.0 kgf /
When the pressure was changed to mm 2 and the pressurization time was set to 5 seconds and the set holding time was set to 3 seconds, cutting was performed, and all six pieces of the inserted workpiece 1 were reliably cut. Next, the rod-shaped metal member 16 is fitted into the side pressure transmission cylinder 3 by a distance corresponding to seven cut pieces,
When the lateral pressure 17 was changed to P = 8.0 kgf / mm 2 and the cutting was attempted under exactly the same conditions, the inserted work 1
Were cut, and the weight accuracy and the surface quality of the obtained 13 optical element materials were not different from the cutting of the workpiece 1 without distortion.

【0079】なお、実施の形態4において、側圧伝達筒
3よりも短い工作物1を切断する場合には、工作物1の
両端に棒状金属部材16を配置し、同工作物1を挟持す
るように嵌入することも可能である。また、2、3個分
の未切断の工作物1で、しかも各々の歪み発生面積率に
大きな差がないものであれば、再度昇圧を負荷し切断す
ることも可能である。なお、嵌合距離演算手段の設定
は、当然であるが変更することができる。
In the fourth embodiment, when cutting a workpiece 1 shorter than the side pressure transmission cylinder 3, bar-shaped metal members 16 are arranged at both ends of the workpiece 1 so that the workpiece 1 is sandwiched. It is also possible to fit in. In addition, if a few uncut workpieces 1 are used, and if there is no large difference between the respective strain generation area ratios, it is also possible to cut the workpiece by applying a boost pressure again. The setting of the fitting distance calculation means can be changed, of course.

【0080】このように実施の形態4の側圧切断装置に
よれば、歪みが長さ方向に不規則に生じた工作物1に対
して、一回当たり切断する部分の歪み発生面積率に応じ
て棒状金属部材16の側圧伝達筒3内への嵌合距離を調
整することにより、品質的に安定した光学素子素材を各
々得ることが可能となる。 (実施の形態5)図15は、歪み検査器15を用いて、
切断圧力可変手段26による切断圧力と、条痕荷重可変
手段29による工作物1への条痕2を設ける際の荷重と
を、可変するまでの過程を示す図で、本発明の実施の形
態5を説明するための図である。なお、図2,図3に基
づいて説明した部材に対応する部材には、同一符号を付
して詳しい説明は省略する。
As described above, according to the lateral pressure cutting device of the fourth embodiment, for the workpiece 1 in which the distortion is irregularly generated in the length direction, according to the distortion generation area ratio of the portion cut at one time. By adjusting the fitting distance of the rod-shaped metal member 16 into the side pressure transmission cylinder 3, it is possible to obtain optical element materials that are stable in quality. (Embodiment 5) FIG.
FIG. 14 is a diagram showing a process until the cutting pressure by the cutting pressure variable means 26 and the load at the time of providing the streak 2 on the workpiece 1 by the streak load variable means 29 are changed, and a fifth embodiment of the present invention is shown. FIG. Members corresponding to those described with reference to FIGS. 2 and 3 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0081】この実施の形態5における歪み検査器15
を用いた歪み検出手段、条痕刻印工程、側圧切断装置な
どの主要構成は、実施の形態1の側圧切断装置の構成と
基本的には同じである。異なる点は、図15に示した通
り、条痕荷重演算手段、切断圧力演算手段、条痕荷重可
変手段29、図7に示す圧力発生装置12の増圧器13
内を微調する手段に相当する切断圧力可変手段26の各
構成を同時に有する点である。
[0081] Distortion checker 15 in the fifth embodiment
The main configuration such as the strain detecting means using the, the striation stamping process, and the side pressure cutting device is basically the same as the configuration of the side pressure cutting device of the first embodiment. The difference is that, as shown in FIG. 15, the streak load calculating means, the cutting pressure calculating means, the streak load varying means 29, and the intensifier 13 of the pressure generating device 12 shown in FIG.
This is the point that each component of the cutting pressure variable means 26 corresponding to the means for finely adjusting the inside is simultaneously provided.

【0082】以下に、本実施の形態5の側圧切断装置に
おける具体的な条件を説明する。検討に使用した工作物
1は、ヤング率1.03×104kgf/mm2、外径約7mmの中実円
筒の光学ガラス棒であって、実施の形態4に記載したも
のと全く同様である。工作物1の外周表面に刻印する条
痕2も、実施の形態4と同様に3mmの均等間隔で、一回
の昇圧で切断すると予測できる個数に対応する13箇所
設けた。
Hereinafter, specific conditions in the lateral pressure cutting device according to the fifth embodiment will be described. The workpiece 1 used in the study is a solid cylindrical optical glass rod having a Young's modulus of 1.03 × 10 4 kgf / mm 2 and an outer diameter of about 7 mm, which is exactly the same as that described in the fourth embodiment. As in the fourth embodiment, 13 streaks 2 are formed on the outer peripheral surface of the workpiece 1 at regular intervals of 3 mm corresponding to the number of cuts that can be expected to be cut by one step-up.

【0083】内部歪みの発生した工作物1において、歪
みのない工作物1と同様に、荷重Wx=1000gの荷重で条
痕2を刻印し、刻印された条痕2の長さは約350μm
で、13箇所全て同等の形状である。
In the workpiece 1 in which internal distortion has occurred, similarly to the workpiece 1 having no distortion, the streak 2 is stamped with a load of Wx = 1000 g, and the length of the stamped streak 2 is about 350 μm.
And all 13 locations have the same shape.

【0084】刻印された工作物1は、中空円筒形状をし
た側圧伝達筒3の規定位置に嵌入される。歪みの発生し
た工作物1に対して、歪みのない工作物1と同様となる
側圧17としてP=8.5kgf/mm2、昇圧時間がT=5sec.、
設定保持時間が3sec.として切断を試みたが、13箇所
の全数個切断には至らなかった。
The engraved workpiece 1 is fitted into a prescribed position of the side pressure transmission cylinder 3 having a hollow cylindrical shape. For the strained workpiece 1, P = 8.5 kgf / mm 2 as the side pressure 17 which is similar to that of the undistorted workpiece 1, the pressure rise time is T = 5 sec.
Cutting was attempted with the set holding time of 3 sec., But none of the 13 cuts were cut.

【0085】これらの条痕2を刻印する位置の内部歪み
量を測定したところ、最大で約150nm/cmあり、詳細に分
析した結果、工作物1の片端面から3mmの位置の内部歪
み量は約110nm/cm、6mmの位置では約80nm/cm、9mmの位
置で約60nm/cm、12mmの位置で約40nm/cm、15mmの位置で
約20nm/cm、18mmの位置で約10nm/cm、21mm以上の位置で
は内部歪みはほとんど計測不可能であった。また、工作
物1の13個分の合計歪み発生面積率は約60%であっ
た。
When the amount of internal strain at the position where these streaks 2 were stamped was measured, the maximum amount was about 150 nm / cm. As a result of detailed analysis, the amount of internal strain at a position 3 mm from one end face of the workpiece 1 was About 110 nm / cm, about 80 nm / cm at 6 mm, about 60 nm / cm at 9 mm, about 40 nm / cm at 12 mm, about 20 nm / cm at 15 mm, about 10 nm / cm at 18 mm, At a position of 21 mm or more, the internal strain was hardly measurable. Further, the total strain generation area ratio of 13 workpieces 1 was about 60%.

【0086】また、基礎実験の結果から、工作物1の片
端面から3mmの位置の内部歪み量が約10nm/cmの時Wx=1
100g、約20nm/cmの時Wx=1200g、約40nm/cmの時Wx=1
300g、約60nm/cmの時Wx=1400g、約80nm/cmの時Wx=1
550g、約110nm/cmの時Wx=1700gの荷重を加え条痕2を
刻印すれば、内部歪みのない工作物1と同じ切断圧力で
切断できることが予め分かっている。
Also, from the results of the basic experiment, when the amount of internal strain at a position 3 mm from one end surface of the workpiece 1 is about 10 nm / cm, Wx = 1.
100g, about 20nm / cm Wx = 1200g, about 40nm / cm Wx = 1
300g, about 60nm / cm Wx = 1400g, about 80nm / cm Wx = 1
It has been found in advance that, when a load of Wx = 1700 g is applied at 550 g and about 110 nm / cm and a streak 2 is imprinted, the workpiece 1 can be cut at the same cutting pressure as the workpiece 1 having no internal distortion.

【0087】上記実験結果は側圧17が8.5kgf/mm2時の
結果で、ここで側圧17を9.5kgf/mm2に上げて検討した
結果、歪み量が約40nm/cm以下で使用する分には、条痕
2を設ける際の条痕荷重を増加する必要がないことが明
らかになった。即ち、側圧17を設定値より1kgf/mm2
くした場合、本実施の形態5で表した歪み量に対して必
要な条痕荷重は300gほど減らすことが可能となった。
The above experimental results were obtained when the lateral pressure 17 was 8.5 kgf / mm 2. As a result of examining the case where the lateral pressure 17 was increased to 9.5 kgf / mm 2 , it was found that the amount of distortion was about 40 nm / cm or less. Has revealed that it is not necessary to increase the streak load when the streak 2 is provided. That is, when the lateral pressure 17 is set to be higher than the set value by 1 kgf / mm 2 , the required streak load can be reduced by about 300 g with respect to the strain amount described in the fifth embodiment.

【0088】かかる状態において、加えた条痕荷重は、
内部歪み量に対して片端面から1400g、1250g、1100g、1
000g、以下1000gで均等荷重設定とし、側圧17は9.5kg
f/mm 2、昇圧時間は5sec.程度で、嵌入された工作物1の
全ての条痕2を通る全ての横断面で確実に切断され、各
々の重量精度と面品位は、歪みのない工作物1と変わら
ない結果が得られた。
In this state, the applied streak load is
1400g, 1250g, 1100g, 1 from one end face for internal strain
000g, below 1000g, equal load setting, lateral pressure 17 is 9.5kg
f / mm TwoThe pressurizing time is about 5 sec.
All cross-sections through all streaks 2 are reliably cut,
The weight accuracy and surface quality are the same as the undistorted workpiece 1.
No results were obtained.

【0089】なお、本実施の形態5において、工作物1
の外径や材質によって、歪み量に対する条痕荷重と切断
圧力の絶対値は変わるもののそれらの相関性は同じであ
り、切断圧力を適宣選択した後に、条痕荷重を調整する
という設定を行うことも可能である。
In the fifth embodiment, the work 1
Depending on the outer diameter and the material of the material, the absolute value of the striation load and the cutting pressure with respect to the strain amount changes, but their correlation is the same. After selecting the cutting pressure appropriately, set the adjustment of the striation load. It is also possible.

【0090】このように実施の形態5の側圧切断装置に
よれば、長さ方向に不規則に生じた工作物1の内部歪み
を検出することができ、各々の歪み量に応じて条痕2を
設ける際の荷重と切断圧力を可変することにより、圧力
シール部材5、側圧伝達筒3、あるいは圧子21などの
消耗部材の寿命を最大限に延ばしながら、品質的に安定
した光学素子素材を各々得ることが可能となる。 (実施の形態6)図16は、歪み検査器15を用いて、
条痕荷重可変手段29による条痕2を設ける際の荷重
と、昇圧時間可変手段31による昇圧時間とを可変する
までの過程を示す図で、本発明の実施の形態6を説明す
るための図である。なお、図2、図3に基づいて説明し
た部材に対応する部材には、同一符号を付して詳しい説
明は省略する。
As described above, according to the lateral pressure cutting device of the fifth embodiment, it is possible to detect the internal distortion of the workpiece 1 that has occurred irregularly in the longitudinal direction, and to detect the streak 2 according to the amount of each distortion. By changing the load and the cutting pressure at the time of providing, the life of a consumable member such as the pressure seal member 5, the side pressure transmission cylinder 3, or the indenter 21 is maximized, and the optical element material that is stable in quality is formed. It is possible to obtain. (Embodiment 6) FIG.
FIG. 9 is a diagram illustrating a process of varying the load when the streak 2 is provided by the streak load varying unit 29 and the boosting time by the boosting time varying unit 31, for explaining the sixth embodiment of the present invention. It is. Members corresponding to those described with reference to FIGS. 2 and 3 are denoted by the same reference numerals, and detailed description is omitted.

【0091】この実施の形態6における歪み検査器15
を用いた歪み検出手段、条痕荷重可変手段29、側圧切
断装置などの主要構成は、実施の形態1の側圧切断装置
の構成と基本的には同じである。異なる点は、図16に
示すように、条痕荷重演算手段、昇圧時間演算手段、条
痕荷重可変手段29、図11に示す圧力発生装置12の
増圧器13内の側圧17を微調する手段に相当する昇圧
時間可変手段31を有する点である。
[0091] Distortion checker 15 in the sixth embodiment
The main configuration such as a strain detection unit using a sword, a streak load variable unit 29, and a side pressure cutting device is basically the same as the configuration of the side pressure cutting device of the first embodiment. The difference is that, as shown in FIG. 16, the streak load calculating means, the boosting time calculating means, the streak load varying means 29, and the means for finely adjusting the side pressure 17 in the pressure intensifier 13 of the pressure generator 12 shown in FIG. The point is that it has a corresponding boost time varying means 31.

【0092】以下に、本実施の形態6の側圧切断装置に
おける具体的な条件を説明する。検討に使用した工作物
1は、実施の形態5において使用したものと全く同様な
中実円筒の光学ガラス棒で、外周表面に刻印する条痕2
の条件も、一回の昇圧で切断する個数は13箇所であ
る。
Hereinafter, specific conditions in the lateral pressure cutting device according to the sixth embodiment will be described. The workpiece 1 used for the study was a solid cylindrical optical glass rod exactly the same as that used in the fifth embodiment, and a streak 2 stamped on the outer peripheral surface.
In the condition (1), the number of cuts in one pressurization is 13 places.

【0093】内部歪みの発生した工作物1において、歪
みのない工作物1を切断した結果として13個全数切断
には至らなかった過程を実施の形態5に示してある。内
部歪みの発生した工作物1は、13個分合計の歪み発生
面積率が約60%で、実施の形態5とほぼ同じものを選ん
だ。
Embodiment 5 shows a process in which, in the workpiece 1 in which internal distortion has occurred, all the 13 pieces have not been cut as a result of cutting the workpiece 1 without distortion. As for the workpiece 1 in which the internal distortion has occurred, the same distortion generating area ratio as that of the fifth embodiment is selected, which has a total distortion generation area ratio of about 60% for 13 pieces.

【0094】基礎実験の結果から、側圧17が8.5kgf/m
m2の場合に、昇圧時間を5sec.、設定保持時間を3sec.と
して設定した時、歪み量が110nm/cmに対応するために要
する条痕2の荷重は1700gが必要となってしまうもの
の、昇圧時間を1sec.として設定した場合に、同じ歪み
量の時の必要な条痕2の荷重は、1500gで済むというこ
とが分かった。
From the results of the basic experiment, the lateral pressure 17 was 8.5 kgf / m
In the case of m 2, the boosting time 5 sec., when the set configuration retention time as 3sec., although the load of the striations 2 required for the amount of distortion corresponding to 110 nm / cm becomes necessary 1700 g, When the boosting time was set to 1 sec., It was found that the required load of the streak 2 at the same strain amount was 1500 g.

【0095】かかる状態において、内部歪み量に対して
加えた条痕2の荷重は、片端面から1500g、1350g、1200
g、1100g、以下1000gの均等荷重とし、側圧17は8.5kg
f/mm 2、昇圧時間は1sec.、設定保持時間は3sec.の切断
条件下で、嵌入された工作物1の全ての条痕2の通る横
断面で確実に切断され、各々の重量精度と面品位は、歪
みのない工作物1と変わらない結果が得られた。
In such a state, with respect to the amount of internal distortion,
The applied load of streak 2 is 1500g, 1350g, 1200 from one end face
g, 1100g, below 1000g, and lateral pressure 17 is 8.5kg
f / mm Two, Boost time is 1sec., Setting hold time is 3sec.
Under the conditions, the side through which all the streaks 2 of the inserted workpiece 1 pass
The cross section is reliably cut, and the weight accuracy and surface quality of each
The result was the same as that of the pure work 1.

【0096】なお、本実施の形態6において、工作物1
の外径や材質によって、歪み量に対する条痕荷重と切断
圧力の絶対値は変わるもののそれらの相関性は同じであ
り、昇圧時間を適宣選択した後に、条痕荷重を調整する
という設定を行うことも可能である。
In the sixth embodiment, the workpiece 1
Depending on the outer diameter and material of the material, the absolute value of the strain load and the cutting pressure with respect to the amount of strain changes, but their correlation is the same. It is also possible.

【0097】このように実施の形態6の側圧切断装置に
よれば、長さ方向に不規則に生じた工作物1の内部歪み
を検出することができ、各々の歪み量に応じて条痕2を
設ける際の荷重と昇圧時間とを変えることにより、圧力
シール部材5、側圧伝達筒3、あるいは圧子21などの
消耗部材の寿命を最大限に延ばしながら、品質的に安定
した光学素子素材を各々得ることが可能となる。
As described above, according to the lateral pressure cutting device of the sixth embodiment, it is possible to detect the internal distortion of the workpiece 1 that has occurred irregularly in the longitudinal direction, and to detect the streak 2 according to the amount of distortion. By changing the load at the time of providing the pressure and the step-up time, the life of consumable members such as the pressure seal member 5, the side pressure transmission cylinder 3, or the indenter 21 can be maximized, and the optical element materials that are stable in quality can be formed. It is possible to obtain.

【0098】[0098]

【発明の効果】以上のように、請求項1に記載の発明に
よれば、工作物の内部歪み量を割り出して、同工作物の
内部歪みの分布を調べながら、その歪み量の差に応じて
条痕の荷重を各々変えることができる。
As described above, according to the first aspect of the present invention, the amount of internal strain of a workpiece is determined, and the distribution of the internal strain of the workpiece is examined, and the distribution of the internal strain is determined according to the difference in the amount of distortion. The load of the streak can be changed.

【0099】請求項2に記載の発明によれば、工作物の
内部歪み量を割り出して、同工作物の内部歪みの分布を
調べながら、切断する箇所の総歪み量に応じて圧力室内
の圧力を各々調整することができる。
According to the second aspect of the present invention, the amount of internal strain of the workpiece is determined, and the distribution of the internal strain of the workpiece is examined, and the pressure in the pressure chamber is determined according to the total amount of strain at the cutting position. Can be adjusted respectively.

【0100】請求項3に記載の発明によれば、工作物の
内部歪み量を割り出して、同工作物の内部歪みの分布を
調べながら、切断する箇所の総歪み量に応じて設定圧力
までの昇圧時間を変更することができる。
According to the third aspect of the present invention, the amount of internal strain of the workpiece is determined, and the distribution of the internal strain of the workpiece is examined to determine the internal strain of the workpiece. The boost time can be changed.

【0101】請求項4に記載の発明によれば、工作物の
内部歪み量を割り出して、同工作物の内部歪みの分布を
調べながら、切断する箇所の総歪み量に応じて棒状金属
部材の規正距離を変えることができる。
According to the fourth aspect of the present invention, the amount of internal strain of the workpiece is determined, and the distribution of the internal strain of the workpiece is examined. The setting distance can be changed.

【0102】請求項5に記載の発明によれば、工作物の
内部歪み量を割り出して、同工作物の内部歪みを調べな
がら、その歪み量の差によって条痕の荷重を各々変え、
また圧力室内の圧力を調整することができる。
According to the fifth aspect of the present invention, the amount of internal strain of the workpiece is determined, and while checking the internal strain of the workpiece, the load of the streak is changed according to the difference in the amount of distortion.
Further, the pressure in the pressure chamber can be adjusted.

【0103】請求項6に記載の発明によれば、工作物の
内部歪み量を割り出して、同工作物の内部歪みを調べな
がら、その歪み量の差によって条痕2の荷重を各々変
え、また設定圧力までの昇圧時間を変えることができ
る。
According to the sixth aspect of the present invention, the amount of internal strain of the workpiece is determined, and while checking the internal strain of the workpiece, the load of the streak 2 is changed according to the difference in the amount of distortion. The time for raising the pressure to the set pressure can be changed.

【0104】以上により、切断の際に切り屑や騒音を伴
わず、必要以上の時間とエネルギを不要とするディスキ
ング法において、1回の側圧を加えるだけで指定された
複数個の切断が確実に行うことができ、内部歪みの発生
している工作物でも歪みのない工作物と同等の切断が可
能となり、工作物の切断に最適な切断過程を再現するこ
とができる。
As described above, in the disking method in which cutting does not involve cutting chips or noise and unnecessary time and energy are unnecessary, a plurality of specified cuttings can be reliably performed only by applying one side pressure. Thus, even a workpiece with internal distortion can be cut as well as a workpiece without distortion, and a cutting process optimal for cutting the workpiece can be reproduced.

【0105】その結果、内部歪みの発生した工作物でも
加熱処理など必要なく、重量精度と面品位が従来と変わ
らない光学素子素材が得られ、また連続切断に対して各
消耗部材の寿命を最大限に延ばしながら品質的に安定し
た光学素子素材を得ることができる。そのため、総合的
な歩留まりを向上することができる。
As a result, an optical element material having the same weight accuracy and surface quality as the conventional one can be obtained without the need for heat treatment even for a workpiece having internal distortion, and the life of each consumable member can be maximized with respect to continuous cutting. It is possible to obtain a stable optical element material while maximizing the quality. Therefore, the overall yield can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1の側圧切断装置を説明す
るための過程図
FIG. 1 is a process diagram for explaining a lateral pressure cutting device according to a first embodiment of the present invention.

【図2】同実施の形態1における条痕荷重装置の説明図FIG. 2 is an explanatory view of a striation load device according to the first embodiment.

【図3】同実施の形態1の側圧切断装置の構成図FIG. 3 is a configuration diagram of a side pressure cutting device according to the first embodiment.

【図4】同実施の形態1における歪み量と条痕荷重の相
関図
FIG. 4 is a correlation diagram between a strain amount and a streak load in Embodiment 1;

【図5】同実施の形態1における側圧切断によって得ら
れた光学素子素材を用いて光学素子を製造する工程過程
の説明図
FIG. 5 is an explanatory diagram of a process of manufacturing an optical element using the optical element material obtained by the lateral pressure cutting according to the first embodiment.

【図6】本発明の実施の形態2の側圧切断装置を説明す
るための過程図
FIG. 6 is a process diagram illustrating a lateral pressure cutting device according to a second embodiment of the present invention.

【図7】同実施の形態2の側圧切断装置の構成図FIG. 7 is a configuration diagram of a side pressure cutting device according to the second embodiment.

【図8】同実施の形態2における歪み検査器で検出した
工作物の歪み発生状態を示す図
FIG. 8 is a diagram showing a state of occurrence of distortion of the workpiece detected by the distortion inspection device according to the second embodiment.

【図9】同実施の形態2における切断圧力の動的挙動図FIG. 9 is a dynamic behavior diagram of a cutting pressure in the second embodiment.

【図10】本発明の実施の形態3の側圧切断装置を説明
するための過程図
FIG. 10 is a process diagram for explaining a lateral pressure cutting device according to a third embodiment of the present invention.

【図11】同実施の形態3の側圧切断装置の構成図FIG. 11 is a configuration diagram of a side pressure cutting device according to the third embodiment.

【図12】同実施の形態3における昇圧時間の動的挙動
FIG. 12 is a dynamic behavior diagram of a boosting time in Embodiment 3;

【図13】本発明の実施の形態4の側圧切断装置を説明
するための過程図
FIG. 13 is a process diagram illustrating a lateral pressure cutting device according to a fourth embodiment of the present invention.

【図14】同実施の形態4の側圧切断装置の構成図FIG. 14 is a configuration diagram of a side pressure cutting device according to the fourth embodiment.

【図15】本発明の実施の形態5の側圧切断装置を説明
するための過程図
FIG. 15 is a process diagram illustrating a lateral pressure cutting device according to a fifth embodiment of the present invention.

【図16】本発明の実施の形態6の側圧切断装置を説明
するための過程図
FIG. 16 is a process diagram illustrating a lateral pressure cutting device according to a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 工作物 2 条痕 3 側圧伝達筒 4 圧力媒体 5 圧力シール部材 6 第1の金属部材 7 第2の金属部材 8 保持部材 9 圧力室 10 圧力容器 11 昇圧ライン 12 圧力発生装置 13 増圧器 14 油圧ポンプ 15 歪み検査器 16 棒状金属部材 17 側圧 18 作動油 21 圧子 22 光学素子 23 第1の成形型 24 第2の成形型 25 胴型 26 切断圧力可変手段 27 内部歪み発生部 28 一回に切断する条痕部分 29 条痕荷重可変手段 30 嵌合距離調整手段 31 昇圧時間可変手段 REFERENCE SIGNS LIST 1 workpiece 2 streak 3 side pressure transmission cylinder 4 pressure medium 5 pressure seal member 6 first metal member 7 second metal member 8 holding member 9 pressure chamber 10 pressure vessel 11 boost line 12 pressure generator 13 intensifier 14 hydraulic pressure Pump 15 Distortion inspector 16 Rod-shaped metal member 17 Side pressure 18 Hydraulic oil 21 Indenter 22 Optical element 23 First molding die 24 Second molding die 25 Body die 26 Cutting pressure variable means 27 Internal distortion generating part 28 Cut at one time Streak portion 29 Streak load varying means 30 Fitting distance adjusting means 31 Step-up time varying means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 材料への側圧による材料破壊を利用した
側圧切断法に基づいて、切断対象である工作物における
外周面にその切断位置に対応して条痕を設け、前記工作
物に側圧を加えることにより、前記工作物を前記条痕に
沿って応力切断する側圧切断装置において、前記工作物
を、棒状で長さ方向に不規則な歪みをもった工作物と
し、この工作物の前記歪みを目視可能にして撮像手段に
より得られた前記歪みの情報を有する映像情報を基にし
て、前記工作物の各部毎にその歪み量を割り出す歪み検
出手段と、この歪み検出手段により割り出された前記歪
み量に応じて、前記工作物の各部に対する前記条痕を設
けるための圧子による条痕荷重を算出する条痕荷重演算
手段と、前記条痕を設けるに際し、その位置に応じて、
前記条痕荷重として、前記条痕荷重演算手段により前記
工作物の各部毎に算出された条痕荷重に可変する条痕荷
重可変手段とを備え、前記条痕荷重可変手段で可変され
た条痕荷重により前記圧子によって条痕を設けた工作物
を応力切断することを特徴とした側圧切断装置。
According to a lateral pressure cutting method utilizing material destruction due to lateral pressure on a material, a streak is provided on an outer peripheral surface of a workpiece to be cut in accordance with the cutting position, and a lateral pressure is applied to the workpiece. In addition, in the lateral pressure cutting device that cuts the workpiece along the streak, the workpiece is a bar-shaped workpiece having irregular distortion in a length direction, and the distortion of the workpiece is reduced. Based on the video information having the information on the distortion obtained by the imaging means by making it possible to visually check the amount of distortion for each part of the workpiece, and the distortion detected by the distortion detection means. According to the amount of strain, a mark load calculating means for calculating a mark load by an indenter for providing the marks on each part of the workpiece, and in providing the marks, according to the position thereof,
A streak load varying unit that changes the streak load to a streak load calculated for each part of the workpiece by the streak load calculating unit, wherein the streak changed by the streak load variable unit A side pressure cutting device characterized in that a workpiece provided with a streak is stress-cut by the indenter by a load.
【請求項2】 材料への側圧による材料破壊を利用した
側圧切断法に基づいて、切断対象である工作物における
外周面にその切断位置に対応して条痕を設け、前記工作
物に側圧を加えることにより、前記工作物を前記条痕に
沿って応力切断する側圧切断装置において、前記工作物
を、棒状で長さ方向に不規則な歪みをもった工作物と
し、この工作物の前記歪みを目視可能にして撮像手段に
より得られた前記歪みの情報を有する映像情報を基にし
て、前記工作物の各部毎にその歪み量を割り出す歪み検
出手段と、この歪み検出手段により割り出された前記歪
み量に基づいて得た切断位置の総歪み量に応じて、前記
切断の際の側圧値を算出する切断圧力演算手段と、前記
切断の際の側圧値として、前記切断圧力演算手段により
算出された側圧値に可変する切断圧力可変手段とを備
え、前記切断圧力可変手段で可変された側圧値により、
前記条痕を設けた工作物を応力切断することを特徴とし
た側圧切断装置。
2. A striation is provided on an outer peripheral surface of a workpiece to be cut in accordance with a cutting position based on a lateral pressure cutting method utilizing material destruction due to lateral pressure on a material, and a lateral pressure is applied to the workpiece. In addition, in the lateral pressure cutting device that cuts the workpiece along the streak, the workpiece is a bar-shaped workpiece having irregular distortion in a length direction, and the distortion of the workpiece is reduced. Based on the video information having the information on the distortion obtained by the imaging means by making it possible to visually check the amount of distortion for each part of the workpiece, and the distortion detected by the distortion detection means. In accordance with the total distortion amount at the cutting position obtained based on the distortion amount, a cutting pressure calculating means for calculating a lateral pressure value at the time of the cutting, and as the lateral pressure value at the time of the cutting, calculated by the cutting pressure calculating means. To the specified lateral pressure value With a cutting pressure variable means that changes, by the side pressure value changed by the cutting pressure variable means,
A side pressure cutting device, wherein the workpiece provided with the streak is stress-cut.
【請求項3】 材料への側圧による材料破壊を利用した
側圧切断法に基づいて、切断対象である工作物における
外周面にその切断位置に対応して条痕を設け、前記工作
物に側圧を加えることにより、前記工作物を前記条痕に
沿って応力切断する側圧切断装置において、前記工作物
を、棒状で長さ方向に不規則な歪みをもった工作物と
し、この工作物の前記歪みを目視可能にして撮像手段に
より得られた前記歪みの情報を有する映像情報を基にし
て、前記工作物の各部毎にその歪み量を割り出す歪み検
出手段と、この歪み検出手段により割り出された前記歪
み量に基づいて得た切断位置の総歪み量に応じて、前記
切断の際の側圧値の昇圧時間を算出する昇圧時間演算手
段と、前記切断の際の側圧値の昇圧時間として、前記昇
圧時間演算手段により算出された側圧値の昇圧時間に可
変する昇圧時間可変手段とを備え、前記昇圧時間可変手
段で可変された昇圧時間により前記側圧値を昇圧して、
前記条痕を設けた工作物を応力切断することを特徴とし
た側圧切断装置。
3. A striation is provided on an outer peripheral surface of a workpiece to be cut in accordance with a cutting position based on a lateral pressure cutting method utilizing material destruction due to lateral pressure on a material, and a lateral pressure is applied to the workpiece. In addition, in the lateral pressure cutting device that cuts the workpiece along the streak, the workpiece is a bar-shaped workpiece having irregular distortion in a length direction, and the distortion of the workpiece is reduced. Based on the video information having the information on the distortion obtained by the imaging means by making it possible to visually check the amount of distortion for each part of the workpiece, and the distortion detected by the distortion detection means. According to a total distortion amount of the cutting position obtained based on the distortion amount, a boosting time calculating means for calculating a boosting time of the lateral pressure value at the time of the cutting, and as a boosting time of the lateral pressure value at the time of the cutting, By the boost time calculation means Comprising a boosting time varying means that varies the boosting time of the calculated lateral pressure value, boosting the lateral pressure value by the boosting time varied by the boosting time variable means,
A side pressure cutting device, wherein the workpiece provided with the streak is stress-cut.
【請求項4】 材料への側圧による材料破壊を利用した
側圧切断法に基づいて、切断対象である工作物における
外周面にその切断位置に対応して条痕を設け、前記工作
物に側圧を加えることにより、前記工作物を前記条痕に
沿って応力切断する側圧切断装置において、前記工作物
を、棒状で長さ方向に不規則な歪みをもった工作物と
し、この工作物への側圧の加圧範囲を調整するために前
記工作物の少なくとも片端に配置され、前記工作物と同
等の外径をもつ棒状金属部材と、前記工作物および棒状
金属部材に対して、それらの外周面を覆い前記側圧を伝
達する側圧伝達筒と、前記工作物の前記歪みを目視可能
にして撮像手段により得られた前記歪みの情報を有する
映像情報を基にして、前記工作物の各部毎にその歪み量
を割り出す歪み検出手段と、この歪み検出手段により割
り出された前記歪み量に応じて、前記棒状金属部材の側
圧伝達筒内への嵌合距離を算出する嵌合距離演算手段
と、前記棒状金属部材の側圧伝達筒内への嵌合距離とし
て、前記嵌合距離演算手段により算出された嵌合距離と
なる位置に、前記棒状金属部材を移動調整する嵌合距離
調整手段とを備え、前記嵌合距離調整手段で前記棒状金
属部材を移動調整して、前記条痕を設けた工作物を応力
切断することを特徴とした側圧切断装置。
4. Based on a lateral pressure cutting method utilizing material destruction due to lateral pressure on a material, a streak is provided on an outer peripheral surface of a workpiece to be cut in accordance with the cutting position, and a lateral pressure is applied to the workpiece. In addition, in the lateral pressure cutting device for performing stress cutting of the workpiece along the streak, the workpiece is a bar-shaped workpiece having irregular distortion in a length direction, and the lateral pressure is applied to the workpiece. A rod-shaped metal member having an outer diameter equivalent to that of the workpiece, which is disposed at least at one end of the workpiece to adjust the pressing range of the workpiece and the workpiece and the rod-shaped metal member, the outer peripheral surfaces thereof are A side pressure transmitting cylinder for transmitting the side pressure, and the distortion of each part of the workpiece based on video information having information on the distortion obtained by an imaging unit by making the distortion of the workpiece visible. Strain detector to determine the amount A step, fitting distance calculating means for calculating a fitting distance of the rod-shaped metal member into the side pressure transmitting cylinder in accordance with the amount of distortion determined by the distortion detecting means, and lateral pressure transmission of the rod-shaped metal member. A fitting distance adjusting means for moving and adjusting the rod-shaped metal member at a position corresponding to the fitting distance calculated by the fitting distance calculating means as a fitting distance into the cylinder; Wherein the bar-shaped metal member is moved and adjusted so as to stress-cut the workpiece provided with the streak.
【請求項5】 材料への側圧による材料破壊を利用した
側圧切断法に基づいて、切断対象である工作物における
外周面にその切断位置に対応して条痕を設け、前記工作
物に側圧を加えることにより、前記工作物を前記条痕に
沿って応力切断する側圧切断装置において、前記工作物
を、棒状で長さ方向に不規則な歪みをもった工作物と
し、この工作物の前記歪みを目視可能にして撮像手段に
より得られた前記歪みの情報を有する映像情報を基にし
て、前記工作物の各部毎にその歪み量を割り出す歪み検
出手段と、この歪み検出手段により割り出された前記歪
み量に応じて、前記工作物の各部に対する前記条痕を設
けるための圧子による条痕荷重を算出する条痕荷重演算
手段と、前記条痕を設けるに際し、その位置に応じて、
前記条痕荷重として、前記条痕荷重演算手段により前記
工作物の各部毎に算出された条痕荷重に可変する条痕荷
重可変手段と、前記歪み検出手段により割り出された前
記歪み量に基づいて得た切断位置の総歪み量に応じて、
前記切断の際の側圧値を算出する切断圧力演算手段と、
前記切断の際の側圧値として、前記切断圧力演算手段に
より算出された側圧値に可変する切断圧力可変手段とを
備え、前記切断圧力可変手段で可変された側圧値によ
り、前記条痕荷重可変手段で可変された条痕荷重により
前記圧子によって条痕を設けた工作物を応力切断するこ
とを特徴とした側圧切断装置。
5. A streak corresponding to a cutting position is provided on an outer peripheral surface of a workpiece to be cut based on a lateral pressure cutting method utilizing material destruction due to a lateral pressure on a material, and the lateral pressure is applied to the workpiece. In addition, in the lateral pressure cutting device that cuts the workpiece along the streak, the workpiece is a bar-shaped workpiece having irregular distortion in a length direction, and the distortion of the workpiece is reduced. Based on the video information having the information on the distortion obtained by the imaging means by making it possible to visually check the amount of distortion for each part of the workpiece, and the distortion detected by the distortion detection means. According to the amount of strain, a mark load calculating means for calculating a mark load by an indenter for providing the marks on each part of the workpiece, and in providing the marks, according to the position thereof,
As the streak load, based on the streak load variable means that is changed to the streak load calculated for each part of the workpiece by the streak load calculation means, and the strain amount calculated by the strain detection means Depending on the total distortion amount of the cutting position obtained by
Cutting pressure calculating means for calculating the lateral pressure value at the time of cutting,
A cutting pressure varying means that varies to a lateral pressure value calculated by the cutting pressure calculating means as the lateral pressure value at the time of cutting, wherein the lateral pressure value varied by the cutting pressure varying means, A side pressure cutting device characterized in that a workpiece provided with a streak is stress-cut by the indenter by a streak load changed in (1).
【請求項6】 材料への側圧による材料破壊を利用した
側圧切断法に基づいて、切断対象である工作物における
外周面にその切断位置に対応して条痕を設け、前記工作
物に側圧を加えることにより、前記工作物を前記条痕に
沿って応力切断する側圧切断装置において、前記工作物
を、棒状で長さ方向に不規則な歪みをもった工作物と
し、この工作物の前記歪みを目視可能にして撮像手段に
より得られた前記歪みの情報を有する映像情報を基にし
て、前記工作物の各部毎にその歪み量を割り出す歪み検
出手段と、この歪み検出手段により割り出された前記歪
み量に応じて、前記工作物の各部に対する前記条痕を設
けるための圧子による条痕荷重を算出する条痕荷重演算
手段と、前記条痕を設けるに際し、その位置に応じて、
前記条痕荷重として、前記条痕荷重演算手段により前記
工作物の各部毎に算出された条痕荷重に可変する条痕荷
重可変手段と、前記歪み検出手段により割り出された前
記歪み量に基づいて得た切断位置の総歪み量に応じて、
前記切断の際の側圧値の昇圧時間を算出する昇圧時間演
算手段と、前記切断の際の側圧値の昇圧時間として、前
記昇圧時間演算手段により算出された側圧値の昇圧時間
に可変する昇圧時間可変手段とを備え、前記昇圧時間可
変手段で可変された昇圧時間により前記側圧値を昇圧し
て、前記条痕荷重可変手段で可変された条痕荷重により
前記圧子によって条痕を設けた工作物を応力切断するこ
とを特徴とした側圧切断装置。
6. A streak corresponding to a cutting position is provided on an outer peripheral surface of a workpiece to be cut based on a lateral pressure cutting method utilizing material destruction due to a lateral pressure on a material, and the lateral pressure is applied to the workpiece. In addition, in the lateral pressure cutting device that cuts the workpiece along the streak, the workpiece is a bar-shaped workpiece having irregular distortion in a length direction, and the distortion of the workpiece is reduced. Based on the video information having the information on the distortion obtained by the imaging means by making it possible to visually check the amount of distortion for each part of the workpiece, and the distortion detected by the distortion detection means. According to the amount of strain, a mark load calculating means for calculating a mark load by an indenter for providing the marks on each part of the workpiece, and in providing the marks, according to the position thereof,
As the streak load, based on the streak load variable means that is changed to the streak load calculated for each part of the workpiece by the streak load calculation means, and the strain amount calculated by the strain detection means Depending on the total distortion amount of the cutting position obtained by
A boosting time calculating means for calculating a boosting time of the lateral pressure value at the time of cutting; and a boosting time variable as a boosting time of the lateral pressure value calculated by the boosting time calculating means as a boosting time of the lateral pressure value at the time of cutting. A workpiece provided with a variable means, wherein the lateral pressure value is increased by the pressure increasing time varied by the pressure increasing time varying means, and a striation is provided by the indenter by the striation load varied by the striation load varying means. Side pressure cutting device, characterized in that the pressure cutting is performed by stress cutting.
JP10000564A 1998-01-06 1998-01-06 Lateral pressure cutting device Pending JPH11198099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10000564A JPH11198099A (en) 1998-01-06 1998-01-06 Lateral pressure cutting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10000564A JPH11198099A (en) 1998-01-06 1998-01-06 Lateral pressure cutting device

Publications (1)

Publication Number Publication Date
JPH11198099A true JPH11198099A (en) 1999-07-27

Family

ID=11477225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10000564A Pending JPH11198099A (en) 1998-01-06 1998-01-06 Lateral pressure cutting device

Country Status (1)

Country Link
JP (1) JPH11198099A (en)

Similar Documents

Publication Publication Date Title
EP0509487B1 (en) Method of producing a coated optical fiber
EP3939713B1 (en) Stretch flange crack evaluation method, metal sheet selection method, press die design method, component shape design method, and pressed component manufacturing method
FR2524002A1 (en) METHOD FOR MANUFACTURING STABILIZER LAMPS AND OIL DRILLING STABILIZERS
Hassan et al. A novel process on friction aided deep drawing using tapered blank holder divided into four segments
JPH11198099A (en) Lateral pressure cutting device
CN109187187A (en) A method of metal material solid State Welding performance is quantitatively evaluated
JP2013103238A (en) Method of evaluating surface machining crack susceptibility and device therefor
CN1771099A (en) Device and method for calibrating a planishing roller device by means of an instrumented bar
JP2012076129A (en) Method for manufacturing metallic double wall pipe
CN113281135B (en) High-flux cross-scale statistical characterization method for microscopic mechanical properties of metal
GB2263978A (en) Quench-hardening testing method and apparatus.
Hirasaka et al. Effects of the surface micro-geometry of steel sheets on galling behavior
KR100481127B1 (en) Estimating testing apparatus for hydroforming of tube
JP3333115B2 (en) Large diameter ring forging equipment
JP3233026B2 (en) Cutting method of glass by lateral pressure
Wang et al. A novel method for ball forming by cross wedge rolling
US5642159A (en) Method for tensioning ID saw blades and an apparatus for monitoring tensioning of an ID saw blades
JPH1142599A (en) Side pressure cutter device
JP6344526B2 (en) Metal endless belt, metal endless belt manufacturing method and repair method, and mold
EP0084989A2 (en) Method of creating plane standard flaws inside a metal piece and reference part for non destructive testing made according to this method
US4369074A (en) Method of producing bellows from metal alloys
JPH10245239A (en) Device for cutting with side pressure
CN113514332B (en) Raw material detection method for cutting crack resistance of drawing wire bar
EP4134578A1 (en) Steel pipe for pressure piping
Killmann et al. Use of elastomers as pressure media for fatigue testing of cold forging tools