JPH11195412A - Internal electrode terminal for sealed battery - Google Patents

Internal electrode terminal for sealed battery

Info

Publication number
JPH11195412A
JPH11195412A JP10000406A JP40698A JPH11195412A JP H11195412 A JPH11195412 A JP H11195412A JP 10000406 A JP10000406 A JP 10000406A JP 40698 A JP40698 A JP 40698A JP H11195412 A JPH11195412 A JP H11195412A
Authority
JP
Japan
Prior art keywords
internal electrode
electrode terminal
longitudinal wave
sealed battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10000406A
Other languages
Japanese (ja)
Inventor
Shogo Tanno
昌吾 丹野
Mitsuhiro Marumoto
光弘 丸本
Atsushi Omae
淳 御前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP10000406A priority Critical patent/JPH11195412A/en
Publication of JPH11195412A publication Critical patent/JPH11195412A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To absorb the vertical wave energy generated in ultrasonic welding and suppress the vibration of an internal electrode terminal by the vertical wave to prevent the rupture of the internal electrode terminal by providing, in the internal electrode terminal, a vertical wave absorbing part for absorbing the vertical wave generated in the ultrasonic welding of an electrode lead. SOLUTION: The internal electrode terminal 9 of an electrolyte built-in type lithium secondary battery has a three-dimensional structure consisting of a plate 91 having a through-hole 93 and a cylinder body 92 integrally fixed to the periphery of the plate body 91. The vicinity of the integrally fixed part 94 of the plate 91 and the cylinder 92 functions as a vertical wave absorbing part. The tip of a positive electrode lead 32 is ultrasonically welded onto the inner side wall of the cylinder 92. Since the ultrasonic vertical wave in the ultrasonic welding of the positive electrode lead 32 onto the inner side wall of the cylinder 92 is effectively absorbed in the fixed position 94, the plate 91 can be protected from the breakage by ultrasonic vertical wave.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は密閉型電池用の内部
電極端子に関し、特に電解液を有する各種の二次電池、
例えば電解液内蔵型リチウム二次電池用などとして好適
な内部電極端子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal electrode terminal for a sealed battery, and more particularly to various secondary batteries having an electrolyte.
For example, the present invention relates to an internal electrode terminal suitable for use in a lithium secondary battery with a built-in electrolyte.

【0002】[0002]

【従来の技術】図4は、通常の電解液内蔵型リチウム二
次電池の概念的断面図例であり、図5は、図4における
正極蓋5およびその近傍部の詳細断面図であり、図6は
図4における他の正極蓋5およびその近傍部の詳細断面
図であり、図7は図4におけるさらに他の正極蓋5の詳
細部分断面図である。図4〜図7において、1は鉄製の
電池缶、2は負極電気絶縁板、3は発電要素体、31は
発電要素体3の下部から延在する負極リード、32は発
電要素体3の上部から延在する正極リード、4はドーナ
ツ状の正極電気絶縁板、5は電池の安全構造を有する正
極蓋、6は電池缶1の上部に電池缶1と一体的に形成さ
れた外部正極蓋ケース、7は正極蓋5を外部正極蓋ケー
ス6から絶縁するための電気絶縁ガスケット、8は電池
缶1の壁に設けられ、電池缶1と正極蓋ケース6とを区
分する絞りである。
2. Description of the Related Art FIG. 4 is a conceptual cross-sectional view of a conventional lithium secondary battery with a built-in electrolyte, and FIG. 5 is a detailed cross-sectional view of a positive electrode cover 5 and its vicinity in FIG. 6 is a detailed sectional view of another positive electrode cover 5 in FIG. 4 and the vicinity thereof, and FIG. 7 is a detailed partial sectional view of still another positive electrode cover 5 in FIG. 4 to 7, 1 is an iron battery can, 2 is a negative electric insulating plate, 3 is a power generating element, 31 is a negative electrode lead extending from the lower part of the power generating element 3, and 32 is an upper part of the power generating element 3 4 is a donut-shaped positive electrical insulating plate, 5 is a positive electrode lid having a battery safety structure, and 6 is an external positive electrode lid case integrally formed with the battery can 1 on the upper part of the battery can 1. Reference numeral 7 denotes an electrically insulating gasket for insulating the positive electrode lid 5 from the external positive electrode lid case 6, and 8 denotes an aperture provided on the wall of the battery can 1 to divide the battery can 1 from the positive electrode lid case 6.

【0003】図5において、正極蓋5は、ガス抜き孔5
11を有する正極キャップ51、ドーナツ状のPTC
(positive temperature coefficient) 板52、および
弱点部531を有するラプチャー板53とからなる。正
極キャップ51とラプチャー板53との間にはガス溜め
空間512が存在する。ラプチャー板53の裏面には、
発電要素体3から正極電気絶縁板4の中心孔を経由して
延びる正極リード32の先端部が溶接されている。正極
蓋5は、外部電気絶縁ガスケット7と共に外部正極蓋ケ
ース6のかしめ力にて気密に電池缶1の上部に固定され
ている。
In FIG. 5, a positive electrode cover 5 is provided with a gas vent hole 5.
Positive electrode cap 51 having a donut-shaped PTC
(Positive temperature coefficient) It is composed of a plate 52 and a rupture plate 53 having a weak point 531. A gas storage space 512 exists between the positive electrode cap 51 and the rupture plate 53. On the back of the rupture plate 53,
The distal end of the positive electrode lead 32 extending from the power generating element body 3 through the center hole of the positive electrode electrical insulating plate 4 is welded. The positive electrode cover 5 is hermetically fixed to the upper part of the battery can 1 by the caulking force of the external positive electrode cover case 6 together with the external electric insulating gasket 7.

【0004】図6においては、正極キャップ51、ドー
ナツ状のPTC板52、およびラプチャー板53とから
なる正極蓋5は、電気絶縁ガスケット7’と共に正極蓋
ケース6’のかしめ力にて気密に保持され、さらに図示
する通り、外部電気絶縁ガスケット7と共に外部正極蓋
ケース6のかしめ力にて気密に保持されて電池缶1の上
部に固定されている。
In FIG. 6, a positive electrode cap 5 comprising a positive electrode cap 51, a donut-shaped PTC plate 52, and a rupture plate 53 is hermetically held by the caulking force of a positive electrode cover case 6 'together with an electrically insulating gasket 7'. Further, as shown in the figure, the external positive electrode cover case 6 and the external electric insulating gasket 7 are fixed to the upper portion of the battery can 1 in an airtight manner by the caulking force of the case 6.

【0005】図6に示す電解液内蔵型リチウム二次電池
の製造に際しては、正極キャップ51、PTC板52、
およびラプチャー板53とからなる正極蓋5を電気絶縁
ガスケット7’を介した状態での正極蓋ケース6’のか
しめにてそれらの部材からなるサブ・アセンブルを別工
程で組み立て、ついで該サブ・アセンブルを外部電気絶
縁ガスケット7と共に電池缶1の上部にあって外部正極
蓋ケース6となる上端部位に案内し、電気絶縁ガスケッ
ト7と共に該上端部位をかしめる。かくして、図6に示
す構造のリチウム二次電池が製造できる。
When manufacturing a lithium battery with a built-in electrolyte shown in FIG. 6, a positive electrode cap 51, a PTC plate 52,
The positive cover 5 comprising the rupture plate 53 and the rupture plate 53 is assembled by caulking the positive cover case 6 'with the electrical insulating gasket 7' interposed therebetween to assemble the sub-assemblies comprising these members in a separate process. Is guided together with the external electric insulating gasket 7 to the upper end portion of the battery can 1 which becomes the external positive electrode lid case 6, and the upper end portion is crimped together with the electric insulating gasket 7. Thus, a lithium secondary battery having the structure shown in FIG. 6 can be manufactured.

【0006】最近では、電解液内蔵型リチウム二次電池
の安全性を一層重視する立場から、電池の内圧が異常事
態により急上昇した場合、ラプチャー板53が破裂する
前にラプチャー板53と正極リード32との電気的接続
を素早く遮断させることの必要性が認識され、かかる早
期遮断を実現するための種々の改良がなされている。例
えば、ラプチャー板53の裏面に直接正極リード32を
溶接するのではなく、図7に示すようにラプチャー板5
3の略中央部を窪ませて窪み532を形成し、一方、正
極蓋ケース6’の下側部材61’を拡張して、拡張した
該下側部材61’の上面と該窪み532の裏面とをスポ
ット溶接し、且つ正極リード32は下側部材61’の裏
面に溶接するようにしている。即ち、下側部材61’
は、電池の内部電極端子として機能する。611’は、
下側部材61’に設けられた貫通孔である。サブ・アセ
ンブルをかく形成すると、電池の内圧が上昇した場合に
はその内圧は、貫通孔611’を通過してラプチャー板
53に直接作用する。このために、正極蓋ケース6’の
下側部材61’は変形せずにラプチャー板53だけが膨
らんで、上記のスポット溶接部が破断してラプチャー板
53と下側部材61’との電気的導通が、しかしてラプ
チャー板53と正極リード32との電気的導通が遮断す
る。なお正極リード32は、通常、アルミニウム製であ
り、また正極蓋ケース6’もアルミニウム製正極リード
32と溶接が容易なように通常はアルミニウム製であ
る。
Recently, from the standpoint of placing greater emphasis on the safety of a lithium secondary battery with a built-in electrolyte, when the internal pressure of the battery suddenly rises due to an abnormal situation, the rupture plate 53 and the positive electrode lead 32 are ruptured before the rupture plate 53 bursts. It has been recognized that there is a need to quickly cut off the electrical connection with the device, and various improvements have been made to realize such an early cut-off. For example, instead of welding the positive electrode lead 32 directly to the back surface of the rupture plate 53, as shown in FIG.
3 is recessed to form a recess 532, while the lower member 61 ′ of the positive electrode lid case 6 ′ is expanded to expand the upper surface of the expanded lower member 61 ′ and the back surface of the recess 532. And the positive electrode lead 32 is welded to the back surface of the lower member 61 '. That is, the lower member 61 '
Functions as an internal electrode terminal of the battery. 611 '
This is a through hole provided in the lower member 61 '. When the sub-assembly is formed as described above, when the internal pressure of the battery rises, the internal pressure acts directly on the rupture plate 53 through the through hole 611 ′. For this reason, only the rupture plate 53 expands without deforming the lower member 61 ′ of the positive electrode lid case 6 ′, and the above-mentioned spot welded portion is broken, so that the electrical connection between the rupture plate 53 and the lower member 61 ′ is made. The conduction is interrupted, and the electrical conduction between the rupture plate 53 and the positive electrode lead 32 is interrupted. The positive electrode lead 32 is usually made of aluminum, and the positive electrode lid case 6 'is also usually made of aluminum so that welding with the aluminum positive electrode lead 32 is easy.

【0007】ところで下側部材61’などの電池の内部
電極端子への電極リードの溶接は、溶接速度並びに溶接
の安定性に優れている超音波溶接が専ら採用されている
が、この超音波溶接の際には縦波が発生して内部電極端
子を振動させ、この振動により該端子がしばしば破断す
る新たな問題がある。この破断問題は、内部電極端子が
一般的に機械的強度の弱いアルミニウム製である場合は
特に顕著である。
The welding of the electrode leads to the internal electrode terminals of the battery such as the lower member 61 'is mainly performed by ultrasonic welding which is excellent in welding speed and welding stability. In this case, a longitudinal wave is generated to vibrate the internal electrode terminal, and this vibration often causes a new problem that the terminal is broken. This breaking problem is particularly remarkable when the internal electrode terminals are generally made of aluminum having low mechanical strength.

【0008】[0008]

【発明が解決しようとする課題】しかして本発明は、内
部電極端子に電極リードを超音波溶接する場合における
上記の破断問題が解決された密閉型電池用の内部電極端
子を提供することを課題とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an internal electrode terminal for a sealed battery in which the above-mentioned breakage problem when the electrode lead is ultrasonically welded to the internal electrode terminal is solved. And

【0009】[0009]

【課題を解決するための手段】本発明は、上記の課題を
解決するために、つぎの手段を有することを特徴とす
る。 (1) 内部電極端子に電極リードを超音波溶接する際に超
音波溶接時に発生する縦波による内部電極端子の破断を
防止し得る縦波吸収部位を有することを特徴とする密閉
型電池用の内部電極端子。 (2) 内部電極端子並びに電極リードが、共にアルミニウ
ム系金属からなる上記(1) 記載の密閉型電池用の内部電
極端子。 (3) アルミニウム系金属が、純度99重量%以上の純ア
ルミニウム、アルミニウムの含有量が少なくとも70重
量%の硬質アルミニウムからなる群から選ばれた少なく
とも1種である上記(2) 記載の密閉型電池用の内部電極
端子。 (4) 内部電極端子が平板体であり、縦波吸収部位が平板
体の平面中央と端縁との間で且つ該中央を取り囲むよう
に実質的に連続して設けられてなる上記(1) 〜(3) のい
ずれかに記載の密閉型電池用の内部電極端子。 (5) 縦波吸収部位が、平板体の一部を切り取って形成し
た細長部からなり、且つ該細長部は縦波の進行方向に対
して非平行である上記(1) 〜(4) のいずれかに記載の密
閉型電池用の内部電極端子。 (6) 縦波吸収部位が、縦波が進行する平面に対して少な
くとも30度の角度を有する内部電極端子部分の面を含
むものである上記(1) 〜(3) のいずれかに記載の密閉型
電池用の内部電極端子。 (7) 内部電極端子が、平板体と該平板体の周縁に一体的
に固着した筒体とからなり、平板体と筒体との一体的な
固着個所が縦波吸収部位として機能し、且つ電極リード
が筒体の壁面上で超音波溶接されてなる上記(6) 記載の
密閉型電池用の内部電極端子。 (8) 縦波吸収部位が、超音波溶接時に発生する縦波のエ
ネルギーの少なくとも50%を吸収し得るものである上
記(1) 〜(7) のいずれかに記載の密閉型電池用の内部電
極端子。 (9) 電解液内蔵型リチウム二次電池用である上記(1) 〜
(8) のいずれかに記載の密閉型電池用の内部電極端子。
The present invention is characterized by having the following means in order to solve the above-mentioned problems. (1) For a sealed battery, which has a longitudinal wave absorbing portion capable of preventing breakage of the internal electrode terminal due to longitudinal waves generated during ultrasonic welding when the electrode lead is ultrasonically welded to the internal electrode terminal. Internal electrode terminal. (2) The internal electrode terminal for a sealed battery according to the above (1), wherein both the internal electrode terminal and the electrode lead are made of an aluminum-based metal. (3) The sealed battery according to (2), wherein the aluminum-based metal is at least one selected from the group consisting of pure aluminum having a purity of 99% by weight or more and hard aluminum having an aluminum content of at least 70% by weight. Internal electrode terminals. (4) The internal electrode terminal is a flat plate, and the longitudinal wave absorbing portion is provided substantially continuously between the plane center and the edge of the flat plate and so as to surround the center (1). The internal electrode terminal for a sealed battery according to any one of (1) to (3). (5) The longitudinal wave absorbing portion is formed of an elongated portion formed by cutting out a part of the flat plate, and the elongated portion is not parallel to the traveling direction of the longitudinal wave (1)-(4) An internal electrode terminal for a sealed battery according to any one of the above. (6) The sealed type according to any one of (1) to (3), wherein the longitudinal wave absorbing portion includes a surface of the internal electrode terminal portion having an angle of at least 30 degrees with respect to a plane where the longitudinal wave travels. Internal electrode terminals for batteries. (7) The internal electrode terminal is composed of a flat plate and a tubular body integrally fixed to the periphery of the flat plate body, and the integrally fixed portion of the flat plate and the tubular body functions as a longitudinal wave absorbing portion, and The internal electrode terminal for a sealed battery according to the above (6), wherein the electrode lead is ultrasonically welded on a wall surface of the cylindrical body. (8) The interior for a sealed battery according to any one of (1) to (7) above, wherein the longitudinal wave absorbing portion is capable of absorbing at least 50% of longitudinal wave energy generated during ultrasonic welding. Electrode terminal. (9) The above (1) to (1) to
The internal electrode terminal for a sealed battery according to any one of (8) and (9).

【0010】[0010]

【作用】本発明の密閉型電池用の内部電極端子は縦波吸
収部位を有しているので、該縦波吸収部位の存在により
超音波溶接時に発生する縦波エネルギーを吸収し、しか
して内部電極端子の破断を防止する。
The internal electrode terminal for a sealed battery according to the present invention has a longitudinal wave absorbing portion, so that the presence of the longitudinal wave absorbing portion absorbs longitudinal wave energy generated at the time of ultrasonic welding. Prevents electrode terminals from breaking.

【0011】[0011]

【発明の実施の形態】本発明において、内部電極端子の
構成材料については特に制限はないが、電解液内蔵型リ
チウム二次電池の場合、超音波溶接される電極リードが
一般的にアルミニウム製であるので、それと溶接し易い
アルミニウム系金属、例えば純度99重量%以上の純ア
ルミニウム、アルミニウムの含有量が少なくとも70重
量%の硬質アルミニウムなどが好ましい。さらにアルミ
ニウム系金属のうちでも、後記する実施例において説明
する通り、アルミニウム製内部電極端子の構造によって
特に好都合のアルミニウム系金属を選択使用することが
好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the constituent materials of the internal electrode terminals are not particularly limited. In the case of a lithium secondary battery with a built-in electrolyte, the electrode leads to be ultrasonically welded are generally made of aluminum. Therefore, it is preferable to use an aluminum-based metal which is easily welded thereto, for example, pure aluminum having a purity of 99% by weight or more, and hard aluminum having an aluminum content of at least 70% by weight. Further, among the aluminum-based metals, it is preferable to select and use a particularly convenient aluminum-based metal depending on the structure of the aluminum internal electrode terminal, as described in the embodiments described later.

【0012】超音波溶接時に発生する波は、主として縦
波、即ち疎密波である。よって本発明における縦波吸収
部位は、超音波溶接時に発生する縦波のエネルギーを減
衰あるいは吸収し得る機能を有するもの、特に発生する
縦波のエネルギーの少なくとも50%、殊に少なくとも
80%吸収し得る機能を有するものが好ましい。
The waves generated during ultrasonic welding are mainly longitudinal waves, ie, compressional waves. Therefore, the longitudinal wave absorbing portion in the present invention has a function of attenuating or absorbing longitudinal wave energy generated during ultrasonic welding, and particularly absorbs at least 50%, particularly at least 80% of longitudinal wave energy generated. Those having the function of obtaining are preferred.

【0013】縦波吸収部位の構造に関しては、超音波溶
接時に発生する縦波による内部電極端子の破断を防止し
得る機能を奏し得る限り任意であってよい。内部電極端
子が平板体である場合には縦波は平板体の面に沿って進
行するので、縦波吸収部位としては、縦波の進行方向と
は非平行な方向、例えば進行方向と直角の方向や傾斜す
る方向に、例えば後記の図2〜図3の実施例におけるリ
ング状の細長部99のように、縦波の進行方向と直角の
方向に延在し縦波を受けて平板体の半径方向に柔軟に振
動し得る部分を有する構造、あるいは後記の図1の実施
例におけるように、内部電極端子として平板体と該平板
体の周縁に一体的に固着した筒体とからなる立体構造を
有するものを用いてもよい。その場合には、平板体と筒
体との一体的な固着個所が縦波吸収部位として機能す
る。したがってかかる立体構造を有する内部電極端子を
使用した場合には、電極リードは縦波による破断から保
護すべき体部(例えば上記の平板体)とは異なる体部
(例えば上記の筒体)に溶接するとよい。そうすると、
筒体の面に沿って進行する縦波は上記固着個所の縦波吸
収部位により吸収され、しかして平板体は縦波による破
断から保護される。一般に、内部電極端子が図1に示す
ような立体構造である場合、縦波が進行する平面に対し
てある角度、特に少なくとも30度の角度を有する内部
電極端子部分の面を含む部位(例えば上記した平板体と
筒体が90度の角度で曲がる図1の固着個所94付近な
ど)は縦波を吸収する作用がある。よって本発明におい
ては、かかる部位をもって縦波吸収部位としてもよい。
The structure of the longitudinal wave absorbing portion may be arbitrary as long as it has a function of preventing breakage of the internal electrode terminal due to longitudinal waves generated during ultrasonic welding. When the internal electrode terminal is a flat plate, the longitudinal wave travels along the plane of the plate, so that the longitudinal wave absorbing portion is in a direction non-parallel to the traveling direction of the longitudinal wave, for example, perpendicular to the traveling direction. In a direction or a tilting direction, for example, like a ring-shaped elongated portion 99 in the embodiment of FIGS. 2 to 3 described later, the flat plate extends in a direction perpendicular to the traveling direction of the longitudinal wave and receives the longitudinal wave. A structure having a portion which can flexibly vibrate in the radial direction, or a three-dimensional structure comprising a flat plate as an internal electrode terminal and a cylindrical body integrally fixed to the periphery of the flat plate as in the embodiment of FIG. May be used. In this case, the integral fixing portion between the flat plate and the cylinder functions as a longitudinal wave absorbing portion. Therefore, when an internal electrode terminal having such a three-dimensional structure is used, the electrode lead is welded to a body part (for example, the above-mentioned cylindrical body) different from a body part (for example, the above-mentioned flat body) to be protected from breaking due to longitudinal waves. Good to do. Then,
The longitudinal wave traveling along the surface of the cylindrical body is absorbed by the longitudinal wave absorbing portion at the fixing point, and the flat body is protected from breaking by the longitudinal wave. In general, when the internal electrode terminal has a three-dimensional structure as shown in FIG. 1, a portion including the surface of the internal electrode terminal portion having an angle with respect to a plane in which the longitudinal wave travels, particularly an angle of at least 30 degrees (for example, The flat plate and the cylindrical body bent at an angle of 90 degrees around the fixing point 94 in FIG. 1) have an action of absorbing longitudinal waves. Therefore, in the present invention, such a portion may be used as a longitudinal wave absorbing portion.

【0014】縦波吸収部位の設置位置に関しては、内部
電極端子の破断し易い個所と電極リードの溶接個所(縦
波発生源)との間が一般的であるが、内部電極端子が平
板体である場合には平板体の平面中央と端縁との間で且
つ該中央を取り囲むように実質的に連続して縦波吸収部
位を設けると多くの場合に効果がある。
The position of the longitudinal wave absorbing portion is generally between a portion where the internal electrode terminal is easily broken and a welding portion of the electrode lead (longitudinal wave generation source), but the internal electrode terminal is a flat plate. In some cases, it is effective in many cases to provide a longitudinal wave absorbing portion substantially continuously between the center and the edge of the flat body and surrounding the center.

【0015】以下、本発明を図例により詳細に説明す
る。図1は、本発明の実施例の内部電極端子を有する電
解液内蔵型リチウム二次電池の一部断面図である。図2
は、本発明の他の実施例の内部電極端子を有する電解液
内蔵型リチウム二次電池の一部断面図であり、図3は図
2の縮小平面図である。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a partial cross-sectional view of an electrolyte-containing lithium secondary battery having internal electrode terminals according to an embodiment of the present invention. FIG.
FIG. 3 is a partial cross-sectional view of an electrolyte-containing lithium secondary battery having internal electrode terminals according to another embodiment of the present invention, and FIG. 3 is a reduced plan view of FIG.

【0016】以下においては、図1〜図3を前記の図4
に示す通常の電解液内蔵型リチウム二次電池を参照しな
がら説明する。図1〜図3において、1は鉄製の電池
缶、32は発電要素体3の上部から延在する正極リー
ド、5は電池の安全構造を有する正極蓋、6は電池缶1
の上部に電池缶1と一体的に形成された外部正極蓋ケー
ス、7は正極蓋5を外部正極蓋ケース6から絶縁するた
めの外部電気絶縁ガスケット、8は電池缶1の壁に設け
られ、電池缶1と外部正極蓋ケース6とを区分する絞り
である。
In the following, FIG. 1 to FIG.
This will be described with reference to a normal electrolyte-containing lithium secondary battery shown in FIG. 1 to 3, 1 is an iron battery can, 32 is a positive electrode lead extending from the upper part of the power generating element body 3, 5 is a positive electrode lid having a battery safety structure, and 6 is a battery can 1
, An external positive cover case integrally formed with the battery can 1, an external electrically insulating gasket 7 for insulating the positive cover 5 from the external positive cover case 6, 8 provided on a wall of the battery can 1, This is an aperture that separates the battery can 1 from the external positive electrode lid case 6.

【0017】正極蓋5は、ガス抜き孔511を有する正
極キャップ51、ドーナツ状のPTC板52、および弱
点部531および窪み532を有するラプチャー板53
とが電気絶縁ガスケット7’を介して正極蓋ケース6’
のかしめにより一体的に固定されている。同図に示す通
り、正極キャップ51と正極蓋ケース6’とは一体的に
形成されている。9は本発明の実施例たるアルミニウム
製の内部電極端子、10は内部電極端子9を補強するた
めのアルミニウム製の補強板、11は電気絶縁シートで
ある。電気絶縁シート11、補強板10、および内部電
極端子9は、電気絶縁ガスケット7’のリング状突起7
1’によりラプチャー板53の裏面に保持されている。
The positive electrode cover 5 has a positive electrode cap 51 having a gas vent hole 511, a donut-shaped PTC plate 52, and a rupture plate 53 having a weak point 531 and a depression 532.
And a positive electrode lid case 6 'via an electrically insulating gasket 7'.
It is fixed integrally by swaging. As shown in the figure, the positive electrode cap 51 and the positive electrode lid case 6 'are formed integrally. Reference numeral 9 denotes an aluminum internal electrode terminal as an embodiment of the present invention, 10 denotes an aluminum reinforcing plate for reinforcing the internal electrode terminal 9, and 11 denotes an electric insulating sheet. The electric insulating sheet 11, the reinforcing plate 10, and the internal electrode terminals 9 are connected to the ring-shaped protrusions 7 of the electric insulating gasket 7 '.
1 ′ holds the back surface of the rupture plate 53.

【0018】正極蓋ケース6’の形成材料としては、高
機械的強度を有する金属材、例えば弾性係数において従
来から正極蓋ケース6’の形成材として用いられてきて
いるアルミニウムの少なくとも約1.5倍、特に少なく
とも約3倍のもの、あるいは弾性係数が15,000〜
25,000kg/mm2 程度のもの、例えばSUS
(ステンレス鋼)、炭素鋼、ニッケルなどが用いられ
る。就中、SUSが好ましい。正極キャップ51は、
鉄、SUSなどの従来周知の導電性金属材にて形成され
る。よって、正極蓋ケース6’と正極キャップ51と
は、SUSなどの高機械的強度を有する導電性金属材に
て一体的に形成することが特に好ましい。
The material for forming the positive electrode cover case 6 ′ is a metal material having high mechanical strength, for example, at least about 1.5 of aluminum which has conventionally been used as a material for forming the positive electrode cover case 6 ′ in terms of elastic modulus. Times, especially at least about 3 times, or the elastic modulus is 15,000 to
About 25,000 kg / mm 2 , for example, SUS
(Stainless steel), carbon steel, nickel, and the like. Especially, SUS is preferred. The positive electrode cap 51
It is formed of a conventionally known conductive metal material such as iron and SUS. Therefore, it is particularly preferable that the positive electrode lid case 6 ′ and the positive electrode cap 51 are integrally formed of a conductive metal material having high mechanical strength such as SUS.

【0019】図1において、内部電極端子9は貫通孔9
3を有する平板体91と平板体91の周縁に一体的に固
着した筒体92とからなる立体構造を有する。その場
合、平板体91と筒体92との一体的な固着個所94付
近が縦波吸収部位として機能し、正極リード32の先端
は、筒体92の内部側壁上に溶接されている。よって、
正極リード32を筒体92の内部側壁上に溶接する際の
超音波の縦波は固着個所94において効果的に吸収され
るので、平板体91は破壊から保護される。内部電極端
子9の平板体91は、補強板10の裏面に設置され且つ
その上面の略中央においてラプチャー板53の窪み53
2の裏面とスポット溶接されている。
In FIG. 1, an internal electrode terminal 9 has a through hole 9
3 has a three-dimensional structure composed of a flat plate 91 having a 3 and a cylindrical body 92 integrally fixed to the periphery of the flat plate 91. In that case, the vicinity of the integral fixing point 94 between the flat plate 91 and the cylinder 92 functions as a longitudinal wave absorbing portion, and the tip of the positive electrode lead 32 is welded on the inner side wall of the cylinder 92. Therefore,
The longitudinal wave of the ultrasonic wave when the positive electrode lead 32 is welded on the inner side wall of the cylindrical body 92 is effectively absorbed at the fixing point 94, so that the flat plate body 91 is protected from breaking. The flat body 91 of the internal electrode terminal 9 is provided on the back surface of the reinforcing plate 10 and substantially at the center of the upper surface thereof.
2 is spot-welded to the back surface.

【0020】図1に示す電解液内蔵型リチウム二次電池
の組み立てに際しては、正極蓋5を電池缶1の上部にあ
って外部正極蓋ケース6となる上端部位に案内し、発電
要素体3の上部から延在する正極リード32の先端を内
部電極端子9の筒体92の内部側壁上に超音波溶接し、
ついで外部電気絶縁ガスケット7を介して電池缶1の上
部端部をかしめて外部正極蓋ケース6を形成するととも
に該外部正極蓋ケース6内に正極蓋5を設置する。
When assembling the electrolyte-containing lithium secondary battery shown in FIG. 1, the positive electrode cover 5 is guided to the upper end portion of the battery can 1 which is to be the outer positive electrode cover case 6 so that the power generating element 3 The tip of the positive electrode lead 32 extending from the upper portion is ultrasonically welded onto the inner side wall of the cylindrical body 92 of the internal electrode terminal 9,
Next, the upper end of the battery can 1 is caulked via the external electrically insulating gasket 7 to form the external positive electrode lid case 6 and the positive electrode lid 5 is set in the external positive electrode lid case 6.

【0021】内部電極端子9の筒体92の内部側壁上に
正極リード32を溶接する場合には、電池缶1の外部に
適当な受圧手段(アンビル)を設置した状態で超音波溶
接機の振動子(ホーン)の部分を溶接個所にしっかり押
当てつつ溶接することが可能であるので、内部電極端子
9を形成するアルミニウムの種類を問わず、一般的に頗
る安定した超音波溶接が可能である。よってかかる際に
は、内部電極端子9の形成材としては、超音波溶接は容
易であるが機械的強度に劣る純アルミニウムよりも超音
波溶接性は純アルミニウムよりも多少劣るが機械的強度
の良好な硬質アルミニウムの方が好ましい。
When welding the positive electrode lead 32 on the inner side wall of the cylindrical body 92 of the internal electrode terminal 9, vibration of the ultrasonic welding machine is performed with a suitable pressure receiving means (anvil) installed outside the battery can 1. Since it is possible to perform welding while firmly pressing the part of the child (horn) against the welding location, extremely stable ultrasonic welding is generally possible regardless of the type of aluminum forming the internal electrode terminal 9. . Therefore, in such a case, as a material for forming the internal electrode terminal 9, ultrasonic welding is easy, but the ultrasonic weldability is somewhat inferior to pure aluminum, but mechanical strength is better than pure aluminum, which is poor in mechanical strength. Hard aluminum is more preferable.

【0022】内部電極端子9の平板体91は貫通孔93
を有し、補強板10も貫通孔101を有するので、電池
内の圧力はそれら貫通孔93、101を通過してラプチ
ャー板53に直接かかるようになっている。したがって
電池に異常が発生して電池内の圧力が上昇しても、内部
電極端子9は貫通孔93と補強板10とにより変形せ
ず、一方、ラプチャー板53は膨らむ方向に変形するの
で上記のスポット溶接が破壊して両者間の電気的導通が
効果的に遮断される。またラプチャー板53は、所定の
高圧により破裂して電池内の高圧力を正極キャップ51
に設けたガス抜き孔511から外部に逃がすので、電池
は爆発事故を回避することができる。
The flat plate 91 of the internal electrode terminal 9 has a through hole 93.
Since the reinforcing plate 10 also has the through-hole 101, the pressure in the battery passes directly through the through-holes 93 and 101 to the rupture plate 53. Therefore, even if an abnormality occurs in the battery and the pressure inside the battery rises, the internal electrode terminals 9 are not deformed by the through holes 93 and the reinforcing plate 10, while the rupture plate 53 is deformed in the expanding direction. The spot welding is broken and the electrical conduction between the two is effectively cut off. Further, the rupture plate 53 is ruptured by a predetermined high pressure, and the high pressure inside the battery is reduced by the positive electrode cap 51.
The battery escapes from the vent hole 511 provided in the battery to prevent the battery from exploding.

【0023】図2〜図3に示す電解液内蔵型リチウム二
次電池は、図1に示すそれとは内部電極端子9の構造に
おいてのみ異なり、該内部電極端子9は平板体91のみ
からなる平板状であって、正極リード32の先端は平板
体91の端縁に近い裏面に溶接されている。平板体91
は、2か所の非切り欠き部95(以下、図3参照)を残
して2か所の略半円形の切り欠き部96を有し、さらに
切り欠き部96の内側に2か所の非切り欠き部97を残
して2か所の略半円形の切り欠き部98を有する。この
結果、両切り欠き部96、98の間にリング状の細長部
99が形成されており、細長部99は2か所の非切り欠
き部95と2か所の非切り欠き部97とにより保持され
ている。該リング状の細長部99は、縦波発生源の位置
が何処であっても縦波の進行方向に対して非平行となる
ので縦波吸収部位として効果的に機能する。
The lithium secondary battery with a built-in electrolyte shown in FIGS. 2 and 3 differs from that shown in FIG. 1 only in the structure of the internal electrode terminals 9. The tip of the positive electrode lead 32 is welded to the back surface near the edge of the flat plate 91. Flat body 91
Has two substantially semicircular notches 96 except for two non-notches 95 (hereinafter, see FIG. 3), and two non-notches 96 inside the notch 96. It has two substantially semicircular notches 98 except for the notch 97. As a result, a ring-shaped elongated portion 99 is formed between the notched portions 96 and 98, and the elongated portion 99 is held by two non-cut portions 95 and two non-notched portions 97. Have been. The ring-shaped elongated portion 99 is effectively non-parallel to the traveling direction of the longitudinal wave regardless of the position of the longitudinal wave generating source, and thus effectively functions as a longitudinal wave absorbing portion.

【0024】図2〜図3に示す内部電極端子9の平板体
91の裏面に正極リード32を溶接する場合、正極蓋5
の外表面に受圧手段を設置する必要があるが、正極蓋5
の外表面の形状は複雑でしかも正極蓋5自体がやや軟構
造であるので、受圧手段による受圧効果が乏しくなって
超音波溶接機の溶接個所への押当力が不十分となる可能
性がある。かかる場合には、内部電極端子9(平板体9
1)を溶接が容易な純アルミニウムにて形成しておくと
よい。
When the positive electrode lead 32 is welded to the back surface of the flat body 91 of the internal electrode terminal 9 shown in FIGS.
It is necessary to install pressure receiving means on the outer surface of the
Since the outer surface of the electrode has a complicated shape and the positive electrode lid 5 itself has a somewhat soft structure, there is a possibility that the pressure receiving effect of the pressure receiving means is poor and the pressing force of the ultrasonic welding machine against the welding point becomes insufficient. is there. In such a case, the internal electrode terminal 9 (the flat plate 9
1) is preferably formed of pure aluminum which is easy to weld.

【0025】[0025]

【発明の効果】本発明の密閉型電池用の内部電極端子
は、それを破断することなく電極リードを超音波溶接し
得るので、各種の二次電池、就中、起電力並びに放電容
量の点で優れた性能を有する電解液内蔵型リチウム二次
電池用として特に好適である。
The internal electrode terminal for a sealed battery according to the present invention can be ultrasonically welded to an electrode lead without breaking it, so that various types of secondary batteries, in particular, electromotive force and discharge capacity can be obtained. It is particularly suitable for an electrolyte-containing lithium secondary battery having excellent performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の内部電極端子を有する電解液
内蔵型リチウム二次電池の一部断面図である。
FIG. 1 is a partial sectional view of an electrolyte-containing lithium secondary battery having internal electrode terminals according to an embodiment of the present invention.

【図2】本発明の他の実施例の内部電極端子を有する電
解液内蔵型リチウム二次電池の一部断面図である。
FIG. 2 is a partial cross-sectional view of an electrolyte-containing lithium secondary battery having internal electrode terminals according to another embodiment of the present invention.

【図3】図2の縮小平面図である。FIG. 3 is a reduced plan view of FIG. 2;

【図4】通常の電解液内蔵型リチウム二次電池の概念的
断面図例である。
FIG. 4 is a conceptual cross-sectional view of a general lithium secondary battery with a built-in electrolytic solution.

【図5】図4における正極蓋5およびその近傍部の詳細
断面図である。
FIG. 5 is a detailed cross-sectional view of a positive electrode lid 5 and its vicinity in FIG.

【図6】図4における他の正極蓋5およびその近傍部の
詳細断面図である。
FIG. 6 is a detailed cross-sectional view of another positive electrode cover 5 and its vicinity in FIG.

【図7】図4におけるさらに他の正極蓋5の詳細部分断
面図である。
FIG. 7 is a detailed partial cross-sectional view of still another positive electrode lid 5 in FIG.

【符号の説明】[Explanation of symbols]

1 電池缶 3 発電要素体 32 正極リード 5 正極蓋 53 ラプチャー板 9 内部電極端子 91 内部電極端子の平板体 92 内部電極端子の筒体 94 縦波吸収部位として機能する固着個所 99 縦波吸収部位として機能する細長部 DESCRIPTION OF SYMBOLS 1 Battery can 3 Power generation element body 32 Positive electrode lead 5 Positive electrode cover 53 Rupture plate 9 Internal electrode terminal 91 Flat body of internal electrode terminal 92 Cylindrical body of internal electrode terminal 94 Fixed part which functions as a longitudinal wave absorption part 99 As a longitudinal wave absorption part Slender part that works

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 内部電極端子に電極リードを超音波溶接
する際に超音波溶接時に発生する縦波による内部電極端
子の破断を防止し得る縦波吸収部位を有することを特徴
とする密閉型電池用の内部電極端子。
1. A sealed battery having a longitudinal wave absorbing portion capable of preventing breakage of an internal electrode terminal due to a longitudinal wave generated during ultrasonic welding when an electrode lead is ultrasonically welded to an internal electrode terminal. Internal electrode terminals.
【請求項2】 内部電極端子並びに電極リードが、共に
アルミニウム系金属からなる請求項1記載の密閉型電池
用の内部電極端子。
2. The internal electrode terminal for a sealed battery according to claim 1, wherein both the internal electrode terminal and the electrode lead are made of an aluminum-based metal.
【請求項3】 アルミニウム系金属が、純度99重量%
以上の純アルミニウム、アルミニウムの含有量が少なく
とも70重量%の硬質アルミニウムからなる群から選ば
れた少なくとも1種である請求項2記載の密閉型電池用
の内部電極端子。
3. An aluminum-based metal having a purity of 99% by weight.
3. The internal electrode terminal for a sealed battery according to claim 2, wherein the pure aluminum and the aluminum content are at least one selected from the group consisting of hard aluminum having at least 70% by weight.
【請求項4】 内部電極端子が平板体であり、縦波吸収
部位が平板体の平面中央と端縁との間で且つ該中央を取
り囲むように実質的に連続して設けられてなる請求項1
〜3のいずれかに記載の密閉型電池用の内部電極端子。
4. The internal electrode terminal is a flat plate, and the longitudinal wave absorbing portion is provided substantially continuously between the plane center and the edge of the flat plate and surrounding the center. 1
4. The internal electrode terminal for a sealed battery according to any one of claims 1 to 3.
【請求項5】 縦波吸収部位が、平板体の一部を切り取
って形成した細長部からなり、且つ該細長部は縦波の進
行方向に対して非平行である請求項1〜4のいずれかに
記載の密閉型電池用の内部電極端子。
5. The longitudinal wave absorbing portion comprises an elongated portion formed by cutting a part of a flat plate, and the elongated portion is non-parallel to a traveling direction of the longitudinal wave. An internal electrode terminal for a sealed battery according to the item (1).
【請求項6】 縦波吸収部位が、縦波が進行する平面に
対して少なくとも30度の角度を有する内部電極端子部
分の面を含むものである請求項1〜3のいずれかに記載
の密閉型電池用の内部電極端子。
6. The sealed battery according to claim 1, wherein the longitudinal wave absorbing portion includes a surface of the internal electrode terminal portion having an angle of at least 30 degrees with respect to a plane in which the longitudinal wave travels. Internal electrode terminals.
【請求項7】 内部電極端子が、平板体と該平板体の周
縁に一体的に固着した筒体とからなり、平板体と筒体と
の一体的な固着個所が縦波吸収部位として機能し、且つ
電極リードが筒体の壁面上で超音波溶接されてなる請求
項6記載の密閉型電池用の内部電極端子。
7. The internal electrode terminal comprises a flat plate and a tubular body integrally fixed to a peripheral edge of the flat plate, and a fixed portion of the flat plate and the tubular body integrally functions as a longitudinal wave absorbing portion. 7. The internal electrode terminal for a sealed battery according to claim 6, wherein the electrode lead is ultrasonically welded on a wall surface of the cylindrical body.
【請求項8】 縦波吸収部位が、超音波溶接時に発生す
る縦波のエネルギーの少なくとも50%を吸収し得るも
のである請求項1〜7のいずれかに記載の密閉型電池用
の内部電極端子。
8. The internal electrode for a sealed battery according to claim 1, wherein the longitudinal wave absorbing portion is capable of absorbing at least 50% of the energy of longitudinal waves generated during ultrasonic welding. Terminal.
【請求項9】 電解液内蔵型リチウム二次電池用である
請求項1〜8のいずれかに記載の密閉型電池用の内部電
極端子。
9. The internal electrode terminal for a sealed battery according to claim 1, wherein the internal electrode terminal is for an electrolyte-containing lithium secondary battery.
JP10000406A 1998-01-05 1998-01-05 Internal electrode terminal for sealed battery Pending JPH11195412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10000406A JPH11195412A (en) 1998-01-05 1998-01-05 Internal electrode terminal for sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10000406A JPH11195412A (en) 1998-01-05 1998-01-05 Internal electrode terminal for sealed battery

Publications (1)

Publication Number Publication Date
JPH11195412A true JPH11195412A (en) 1999-07-21

Family

ID=11472930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10000406A Pending JPH11195412A (en) 1998-01-05 1998-01-05 Internal electrode terminal for sealed battery

Country Status (1)

Country Link
JP (1) JPH11195412A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347158A (en) * 2004-06-04 2005-12-15 Nissan Motor Co Ltd Flat version battery
CN103959512A (en) * 2011-11-23 2014-07-30 丰田自动车株式会社 Secondary battery manufacturing method and secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347158A (en) * 2004-06-04 2005-12-15 Nissan Motor Co Ltd Flat version battery
CN103959512A (en) * 2011-11-23 2014-07-30 丰田自动车株式会社 Secondary battery manufacturing method and secondary battery
JPWO2013076831A1 (en) * 2011-11-23 2015-04-27 トヨタ自動車株式会社 Secondary battery manufacturing method and secondary battery
US9660247B2 (en) 2011-11-23 2017-05-23 Toyota Jidosha Kabushiki Kaisha Secondary battery manufacturing method and secondary battery
DE112011105871B4 (en) * 2011-11-23 2020-01-30 Toyota Jidosha Kabushiki Kaisha Accumulator manufacturing method and accumulator

Similar Documents

Publication Publication Date Title
JP4213846B2 (en) Sealed battery
JP5592020B2 (en) Cap assembly and secondary battery using the same
KR100502337B1 (en) Lithium secondary battery
EP2128913B1 (en) Cap assembly and secondary battery having the same
JPH08315798A (en) Sealed battery
JPH05343043A (en) Sealed battery
CN110224102B (en) Method for manufacturing battery and battery
JP4243148B2 (en) Sealed storage battery
JPH11307080A (en) Electric path breaking component for battery
JP4202539B2 (en) Manufacturing method of sealed battery
JPH07326337A (en) Chemical battery
JPH11195412A (en) Internal electrode terminal for sealed battery
JP4233830B2 (en) Flat rectangular battery
JP4596842B2 (en) Sealed battery and manufacturing method thereof
JP3346675B2 (en) Explosion-proof sealing plate for sealed batteries
JP2000235872A (en) Pressure-sensitive electric circuit breaking mechanism of battery
JP6620407B2 (en) Electricity storage element
JP2017059346A (en) Secondary battery and batty pack
JPH07105919A (en) Rectangular sealed storage battery
WO2015068353A1 (en) Stopper for sealed battery, and sealed battery
JP4610282B2 (en) Battery manufacturing method
JP2001102024A (en) Enclosed component with safety valve
JP2574427Y2 (en) Battery safety device
JPH0329883Y2 (en)
JP2000260421A (en) Pressure sensitive circuit breaking mechanism of battery