JPH11194526A - Elerctrophotographic image forming method - Google Patents

Elerctrophotographic image forming method

Info

Publication number
JPH11194526A
JPH11194526A JP36756797A JP36756797A JPH11194526A JP H11194526 A JPH11194526 A JP H11194526A JP 36756797 A JP36756797 A JP 36756797A JP 36756797 A JP36756797 A JP 36756797A JP H11194526 A JPH11194526 A JP H11194526A
Authority
JP
Japan
Prior art keywords
particles
metal particles
image forming
treated metal
forming method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36756797A
Other languages
Japanese (ja)
Other versions
JP3477063B2 (en
Inventor
Hisashi Koudaka
寿 向高
Yuji Kamiyama
雄二 神山
Masaki Ishii
正記 石井
Yoshio Ozawa
義夫 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP36756797A priority Critical patent/JP3477063B2/en
Publication of JPH11194526A publication Critical patent/JPH11194526A/en
Application granted granted Critical
Publication of JP3477063B2 publication Critical patent/JP3477063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To print and form a conductor pattern on a green sheet with high precision, and form the conductor pattern having excellent conductiveness after baking and having high reliability by using an insulation surface-treated metal particle having both a high metal particle ratio and a high insulation property, and by making electrostatic charge uniform by the high insulation property. SOLUTION: In this image forming method, used is a developer comprising an insulation surface-treated metal particle in which the surface of a metal particle is covered to be insulated with a thermoplastic insulating material, and of which mean particle size is within the range of 2-20 μm, and carrier particles having 40-120 μm of mean particle size. The surface-treated metal particle is charged by the carrier particle, and an electrostatic latent image formed on a photosensitive member by electrophotography is contact-developed to form a clear image comprising the surface-treated metal particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属粒を表面処理
して絶縁化した絶縁化表面処理金属粒子を用いる電子写
真画像形成方法に関し、この画像形成方法はセラミック
グリーンシート上の導体パターン形成などに用いられ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic image forming method using insulated surface-treated metal particles in which metal particles are surface-treated and insulated, and the image forming method includes forming a conductive pattern on a ceramic green sheet. Used for

【0002】[0002]

【従来の技術】従来、セラミック製の積層コンデンサ等
の電極等の導体パターンの形成においては、シリカ・ア
ルミナ等のセラミック粉末と有機結合剤とからなる薄い
グリーンシート上に、銅、タングステン等の金属粒のペ
ーストをスクリーン印刷によりパターン状に形成し、こ
れを焼成することにより電極パターンを形成していた。
しかしながら、この方式ではメッシュ状の網から構成さ
れるスクリーンを用いるため、耐久後のスクリーンだれ
による印刷精度の低下、各パターンごとにスクリーンを
作成するための材料ロス、また、メッシュに付着する材
料ロスを生じるという問題があった。
2. Description of the Related Art Conventionally, in forming a conductor pattern such as an electrode of a ceramic multilayer capacitor or the like, a metal such as copper or tungsten is coated on a thin green sheet composed of a ceramic powder such as silica / alumina and an organic binder. The particle paste was formed into a pattern by screen printing and fired to form an electrode pattern.
However, in this method, a screen composed of a mesh-like mesh is used, so that the printing accuracy is reduced due to dripping of the screen after durability, the material loss for creating a screen for each pattern, and the material loss adhering to the mesh. There was a problem that would occur.

【0003】上記欠点を解決するために、特開昭59−
189617号公報、同59−202682号公報、同
60−137886号公報、同60−160690号公
報等においては、電子写真法により導体粒子の電極パタ
ーンを形成し、これを焼成することが記載されている。
具体的には、例えばタングステン粉末とスチレンアクリ
ル樹脂とを混練して粉砕、分級し10〜20μmの印刷
用粒子(トナー)を得、これをキャリアと混合した現像
剤を用いて、電子写真法により電極パターンを形成して
いる。しかしこれらの方式における印刷用粒子は抵抗が
低く電荷がリークしやすいため、電子写真装置において
高精度のパターンの再現、しいては確実な導通路の作成
が困難であった。
In order to solve the above-mentioned drawbacks, Japanese Patent Laid-Open Publication No.
JP-A-189617, JP-A-59-202682, JP-A-60-137886, and JP-A-60-160690 describe that an electrode pattern of conductive particles is formed by electrophotography, and the electrode is fired. I have.
Specifically, for example, a tungsten powder and a styrene acrylic resin are kneaded, pulverized and classified to obtain 10 to 20 μm printing particles (toner). An electrode pattern is formed. However, since the printing particles in these systems have low resistance and easily leak electric charges, it has been difficult to reproduce a pattern with high precision in an electrophotographic apparatus, and to form a reliable conduction path.

【0004】[0004]

【発明が解決しようとする課題】上記従来の印刷用粒子
は、粒子の構成が高抵抗粒子を形成するには至っておら
ず、帯電が不均一となる。すなわち、焼成後に導通路を
形成するに十分な金属粉を粒子中に配合すると相対的に
樹脂量が減少して、粒子表面に露出する金属粉量が増加
して粒子が低抵抗化する。一方、樹脂量を増加して高抵
抗化を図ると、金属粒子が減少し本来の目的である導通
路の作成が困難となる。したがって、従来の印刷用粒子
を用いた方式では、帯電粒子として制御する電子写真法
では画像形成が困難である。そこで、本発明は、従来の
電子写真法を用いたシステムに比べより高精度・高信頼
性の導体パターンを形成することを目的とする。
The above-mentioned conventional printing particles have a particle structure that does not lead to the formation of high-resistance particles, resulting in non-uniform charging. That is, if sufficient metal powder for forming a conductive path is added to the particles after firing, the amount of resin relatively decreases, the amount of metal powder exposed on the particle surface increases, and the particles have low resistance. On the other hand, when the resistance is increased by increasing the amount of the resin, the number of metal particles is reduced, and it is difficult to form a conductive path, which is the original purpose. Therefore, in the conventional method using printing particles, it is difficult to form an image by an electrophotographic method in which the particles are controlled as charged particles. Therefore, an object of the present invention is to form a conductor pattern with higher precision and higher reliability than a conventional system using electrophotography.

【0005】[0005]

【課題を解決するための手段】本発明の電子写真画像形
成方法は、金属粒の表面が熱可塑性絶縁物により被覆さ
れて絶縁化され、平均粒径が2〜20μmの範囲にある
絶縁化表面処理金属粒子と、平均粒径40〜120μm
のキャリア粒子とからなる現像剤を用い、キャリア粒子
により絶縁化表面処理金属粒子に帯電付与し、電子写真
法により感光体上に形成された静電潜像を接触現像し、
絶縁化表面処理金属粒子からな顕像を形成することを特
徴とする。本発明で用いられる絶縁化表面処理金属粒子
は、大量の金属粒を内包することができ、しかも表面が
しっかりと熱可塑性樹脂により被覆されているので粒子
としては絶縁体で、安定に均一帯電され電荷のリークも
ない。したがって電子写真法の現像剤におけるトナーと
して好適に利用でき、特にセラミックグリーンシートに
対する導体パターンの印刷に好適である。
According to the electrophotographic image forming method of the present invention, the surface of a metal particle is coated with a thermoplastic insulating material to be insulated, and the insulated surface having an average particle size in a range of 2 to 20 μm is provided. Treated metal particles, average particle size 40 to 120 μm
Using a developer consisting of carrier particles, the carrier particles charge the insulated surface-treated metal particles, and the electrostatic latent image formed on the photoreceptor by electrophotography is contact-developed,
It is characterized in that a visible image is formed from the insulated surface-treated metal particles. The insulated surface-treated metal particles used in the present invention can contain a large amount of metal particles, and since the surface is firmly covered with a thermoplastic resin, the particles are an insulator, and are stably and uniformly charged. There is no charge leakage. Therefore, it can be suitably used as a toner in a developer for electrophotography, and is particularly suitable for printing a conductor pattern on a ceramic green sheet.

【0006】[0006]

【発明の実施の形態】本発明で用いられる絶縁化表面処
理金属粒子は、金属粒の表面を熱可塑性絶縁物で被覆し
てなる。金属粒としては、任意のものを使用しうるが、
セラミックグリーンシートへの導体パターン印刷を想定
した場合は、銅、タングステン、ニッケル、銀などが用
いられる。金属の選択は、焼成温度等の条件から決定さ
れ、例えばグリーンシートに用いる無機材料がシリカで
ある場合には導電金属として銅が適し、アルミナである
場合はタングステンが適する。熱可塑性絶縁物としては
各種合成樹脂が用いられる。セラミックグリーンシート
への導体パターン印刷を想定した場合は、セラミックグ
リーンシートの焼成時に消失することが必要であり、ポ
リエチレン等のポリオレフィン樹脂が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The insulated surface-treated metal particles used in the present invention are obtained by coating the surfaces of metal particles with a thermoplastic insulator. As the metal particles, any one can be used,
When a conductor pattern is to be printed on a ceramic green sheet, copper, tungsten, nickel, silver, or the like is used. The selection of the metal is determined by conditions such as the firing temperature. For example, when the inorganic material used for the green sheet is silica, copper is suitable as the conductive metal, and when the inorganic material is alumina, tungsten is suitable. Various synthetic resins are used as the thermoplastic insulator. When a conductor pattern is to be printed on a ceramic green sheet, it is necessary to eliminate the ceramic green sheet during firing, and a polyolefin resin such as polyethylene is preferable.

【0007】金属粒の表面を被覆する方法は特に限定さ
れないが、金属粒の表面が実質上露出することなく完全
に被覆することが望ましく、しかもこれを少量の熱可塑
性絶縁物で実現しうる方法が好ましい。この方法として
は例えば、金属粒の表面で直接モノマーを重合して熱可
塑性樹脂層を形成する方法がある。具体的には、例え
ば、金属粒の表面に触媒を吸着させ、エチレンガス等を
供給してこのモノマーガスを直接金属粒の表面で重合さ
せてポリエチレン樹脂被膜を形成する。この方法は、キ
ャリア粒子の製造方法としてではあるが、特開平2−1
87770号公報、同2−187771号公報等に詳記
され、本発明の絶縁化表面処理金属粒子の製造にそのま
ま応用することができる。
The method of coating the surface of the metal particles is not particularly limited, but it is desirable to completely cover the surface of the metal particles without substantially exposing the surface, and moreover, a method capable of realizing this with a small amount of thermoplastic insulating material. Is preferred. As this method, for example, there is a method in which a monomer is polymerized directly on the surface of a metal particle to form a thermoplastic resin layer. Specifically, for example, a catalyst is adsorbed on the surface of the metal particle, ethylene gas or the like is supplied, and the monomer gas is polymerized directly on the surface of the metal particle to form a polyethylene resin film. Although this method is a method for producing carrier particles, Japanese Patent Application Laid-Open No.
It is described in detail in JP-A-87770, JP-A-2-187777, and the like, and can be directly applied to the production of the insulated surface-treated metal particles of the present invention.

【0008】本発明で絶縁化表面処理金属粒子の平均粒
径は2〜20μm、好ましくは3〜10μmである。こ
の平均粒径が大きすぎても小さすぎても、静電気的な制
御が困難となり、地カブリ等が発生して画像レベルが低
下する。また、平均粒径が大きい場合は、細かいパター
ン印字ができない。本発明で用いられる絶縁化表面処理
金属粒子は、トナーとしてキャリアと混合され電子写真
現像剤として用いられる。電子写真法においてはトナー
は主に静電気力により制御されるため、安定して均一に
帯電することが要求される。そこで、本発明の絶縁化表
面処理金属粒子は、絶縁体であることが要求され粒子の
抵抗値が1012Ω・cm以上であることが好ましく、さ
らに好ましくは1013Ω・cm以上とする。粒子抵抗値
が1012Ω未満では地カブリの発生、転写不良が発生し
やすい。また、絶縁性を増すためには絶縁物の総量を増
すことが考えられるが、増加させ過ぎると焼成後の導体
物量が減少して、導体パターンの導通が得られにくくな
る。一般にパターン上の導通路の厚みは15μm以上必
要であり、金属と絶縁物の比重差、転写後のシート上の
粒子の充填率、電子写真技術でコントロールできる粒子
量等を考慮すると、本発明の絶縁化表面処理金属粒子中
に占める絶縁物の量は20重量%以下が好ましく、より
好ましくは15重量%以下である。また、焼成後のパタ
ーン厚みを15μm以上確保するためには、現像後に形
成される絶縁化表面処理金属粒子(トナー粒子)の層厚
が20〜50μmが好適であり、好ましくは25〜50
μmである。なお、この層厚が厚すぎると滲み等の不都
合が発生する。
In the present invention, the average particle size of the insulated surface-treated metal particles is 2 to 20 μm, preferably 3 to 10 μm. If the average particle size is too large or too small, it is difficult to control electrostaticity, and ground fog or the like occurs, and the image level is reduced. When the average particle size is large, fine pattern printing cannot be performed. The insulated surface-treated metal particles used in the present invention are mixed with a carrier as a toner and used as an electrophotographic developer. In the electrophotographic method, the toner is controlled mainly by an electrostatic force, so that it is required to stably and uniformly charge the toner. Therefore, the insulated surface-treated metal particles of the present invention are required to be insulators, and the resistance value of the particles is preferably 10 12 Ω · cm or more, more preferably 10 13 Ω · cm or more. If the particle resistance value is less than 10 12 Ω, fogging of the ground and poor transfer tend to occur. In order to increase the insulating property, it is conceivable to increase the total amount of the insulator. However, if the amount is excessively increased, the amount of the conductor after firing decreases, and it becomes difficult to obtain conduction of the conductor pattern. In general, the thickness of the conductive path on the pattern is required to be 15 μm or more, and considering the specific gravity difference between the metal and the insulator, the filling rate of particles on the sheet after transfer, the amount of particles that can be controlled by electrophotography, etc. The amount of the insulator in the insulated surface-treated metal particles is preferably 20% by weight or less, more preferably 15% by weight or less. In order to ensure a pattern thickness of 15 μm or more after firing, the layer thickness of the insulated surface-treated metal particles (toner particles) formed after development is preferably 20 to 50 μm, and more preferably 25 to 50 μm.
μm. If the layer thickness is too large, problems such as bleeding occur.

【0009】本発明の絶縁化表面処理金属粒子(トナー
粒子)はキャリアと混合して現像剤とされ、二成分現像
法による電子写真印刷方式が適用される。この場合、キ
ャリアの粒子径は40〜120μmが好ましく、より好
ましくは40〜100μmである。キャリアの粒径が小
さくなりすぎるとキャリアまで現像してしまい、一方、
大きくなりすぎると粒子の帯電が減少して地カブリを発
生する。キャリアとしては、鉄粉キャリア、フェライト
系キャリアなどが用いられる。現像剤中における本発明
の絶縁化表面処理金属粒子の含有率は2〜20重量%が
好ましく、より好ましくは3〜10重量%である。この
含有率が2重量%未満ではキャリアまでが現像され、一
方、20重量%を超えると地カブリが発生する。
The insulated surface-treated metal particles (toner particles) of the present invention are mixed with a carrier to form a developer, and an electrophotographic printing method using a two-component developing method is applied. In this case, the particle size of the carrier is preferably from 40 to 120 μm, more preferably from 40 to 100 μm. If the particle size of the carrier is too small, the carrier will be developed, while
If it is too large, the charge of the particles will decrease, and fog will occur. As the carrier, an iron powder carrier, a ferrite carrier or the like is used. The content of the insulated surface-treated metal particles of the present invention in the developer is preferably from 2 to 20% by weight, more preferably from 3 to 10% by weight. If this content is less than 2% by weight, the carrier is developed, while if it exceeds 20% by weight, background fog occurs.

【0010】図1は、本発明で用いられる電子写真装置
を示し、一般的な装置と変わるところは無い。すなわ
ち、アモルファスシリコン系等のドラム状の感光体11
の周辺には、帯電部材13、画像信号露光部材15、現
像部材17、転写部材19、クリーニングブレード2
1、全面露光部材23が配設されている。耐刷性に優れ
るアモルファスシリコン系感光体を用いることにより、
メンテナンスが容易となり、材料ロスの少ない装置が提
供される。本発明では、現像部材17中に、本発明の絶
縁化表面処理金属粒子をトナーとして含む現像剤が供給
される。帯電部材13により暗下に全面均一帯電された
感光体11には、画像信号露光部材15により導体パタ
ーンの静電潜像が形成され、これが現像部材17により
接触現像されて絶縁化表面処理金属粒子よりなるトナー
像(顕像)が感光体11に表面に形成される。ドラム状
の感光体11の回転速度と、現像部材17の現像スリー
ブとの回転速度との線速度は1.0〜5.0、好ましく
は1.5〜5.0とする。現像スリーブの回転速度が低
すぎると現像量が不足し、一方、大きすぎると滲み等が
発生する。
FIG. 1 shows an electrophotographic apparatus used in the present invention, which is not different from a general apparatus. That is, a drum-shaped photoconductor 11 such as an amorphous silicon
Around the charging member 13, the image signal exposure member 15, the developing member 17, the transfer member 19, the cleaning blade 2
1. An overall exposure member 23 is provided. By using an amorphous silicon-based photoreceptor with excellent printing durability,
Maintenance is facilitated, and an apparatus with less material loss is provided. In the present invention, a developer containing the insulating surface-treated metal particles of the present invention as a toner is supplied to the developing member 17. An electrostatic latent image of a conductor pattern is formed by the image signal exposure member 15 on the photoreceptor 11 uniformly charged in the dark by the charging member 13, and the electrostatic latent image is developed by contact with the developing member 17 to form Is formed on the surface of the photoconductor 11. The linear speed between the rotation speed of the drum-shaped photoreceptor 11 and the rotation speed of the developing member 17 with respect to the developing sleeve is 1.0 to 5.0, preferably 1.5 to 5.0. If the rotation speed of the developing sleeve is too low, the amount of development is insufficient, while if it is too high, bleeding or the like occurs.

【0011】ついで、感光体11と転写部材19との間
に、シリカ、アルミナ等のセラミック粉末と有機性結合
剤とからなる薄いシート(グリーンシート)が供給さ
れ、このセラミックグリーンシート上にトナー像が転写
される。本発明では、トナーとして用いる絶縁化表面処
理金属粒子が高抵抗で、安定に均一帯電させることがで
きるので、現像プロセス、転写プロセスでの制御が容易
であり、高精度のパターンをグリーンシート上に印刷、
形成することができる。なお図1の感光体11周辺の部
材は、各種変更が可能であり、例えば帯電部材13とし
てはコロナ帯電装置に替えて導電ブラシや導電ローラな
どを用いることができる。
Next, a thin sheet (green sheet) composed of a ceramic powder such as silica or alumina and an organic binder is supplied between the photoreceptor 11 and the transfer member 19, and a toner image is formed on the ceramic green sheet. Is transferred. In the present invention, since the insulated surface-treated metal particles used as the toner have high resistance and can be stably and uniformly charged, the control in the development process and the transfer process is easy, and a high-precision pattern is formed on the green sheet. printing,
Can be formed. The members around the photoconductor 11 in FIG. 1 can be variously changed. For example, a conductive brush or a conductive roller can be used as the charging member 13 instead of the corona charging device.

【0012】パターンが形成されたグリーンシートは、
適宜の温度、例えば800℃以上に加熱して焼成し、絶
縁物を消失させて導体パターンを得る。本発明の絶縁化
表面処理金属粒子は、高抵抗値を有し均一帯電が可能で
あるにもかかわらず、金属粒が占める部分が多いので、
焼成後には導通が良好で信頼性の高い導体パターンを得
ることができる。なお、絶縁化表面処理金属粒子の絶縁
物が熱可塑性であることを利用して、グリーンシート上
にパターンを形成してから焼成するまでの間、適度な熱
(例えば200℃以下)を加えて仮定着を行なうことも
でき、あるいは粘着剤をグリーンシート上のパターンの
上に噴霧して仮固定することもできる。
The green sheet on which the pattern is formed is
Heating to an appropriate temperature, for example, 800 ° C. or more, and sintering, the insulator is eliminated to obtain a conductor pattern. Although the insulated surface-treated metal particles of the present invention have a high resistance value and can be uniformly charged, since there are many portions occupied by the metal particles,
After firing, a conductive pattern with good conduction and high reliability can be obtained. In addition, utilizing the fact that the insulator of the insulated surface-treated metal particles is thermoplastic, a suitable amount of heat (for example, 200 ° C. or less) is applied during the period from forming the pattern on the green sheet to firing. It is also possible to make a provisional attachment, or to temporarily fix the adhesive by spraying it onto the pattern on the green sheet.

【0013】[0013]

【発明の効果】本発明の電子写真画像形成方法によれ
ば、大きな金属粒比率と高い絶縁性の双方を兼ね備えた
絶縁化表面処理金属粒子を用いることにより、高い絶縁
性によって均一な帯電が可能となることにより大きな精
度で導体パターンをグリーンシート上に印刷、形成で
き、焼成後には良好な導通を有し信頼性の高い導体パタ
ーンを形成できる。
According to the electrophotographic image forming method of the present invention, uniform charge can be achieved by high insulating properties by using insulating surface-treated metal particles having both a large metal particle ratio and high insulating properties. Thus, a conductor pattern can be printed and formed on the green sheet with great precision, and a highly reliable conductor pattern having good conduction after firing can be formed.

【0014】[0014]

【実施例】図1に示した電子写真画像形成装置を用い、
セラミックグリーンシート上に導体パターンを印刷し
た。ここで感光体としては、感光層膜厚25μmのアモ
ルファスシリコン感光体を用いた。トナーとして用いる
絶縁化表面処理金属粒子としては、銅粉上でエチレンモ
ノマーを直接重合し、重量比が6重量%の量のポリエチ
レン系樹脂で銅粉を被覆した平均粒径6μmの粒子にシ
リカを外添したトナー粒子(金属粒子)を用いた。平均
粒径70μmのフェライト粒子からなるキャリアに、上
記トナー粒子(金属粒子)を含有率8重量%で配合して
現像剤とし、導体パターンの画像形成を行なった。画像
形成条件は以下の通りに設定した。 感光体帯電電位:350V 露 光 後 電 位:15V 現 像 電 位:120V 感光体ドラム線速:60mm/sec 現 像 線 速:120mm/sec 現像スリーブ回転数(感光体ドラム回転数に対する線速
比:2.0倍
DESCRIPTION OF THE PREFERRED EMBODIMENTS Using the electrophotographic image forming apparatus shown in FIG.
A conductor pattern was printed on the ceramic green sheet. Here, an amorphous silicon photosensitive member having a photosensitive layer thickness of 25 μm was used as the photosensitive member. As the insulated surface-treated metal particles used as the toner, an ethylene monomer is directly polymerized on copper powder, and silica is applied to particles having an average particle diameter of 6 μm coated with copper powder with a polyethylene resin having a weight ratio of 6% by weight. Externally added toner particles (metal particles) were used. A toner consisting of ferrite particles having an average particle diameter of 70 μm was mixed with the toner particles (metal particles) at a content of 8% by weight to form a developer, and an image of a conductor pattern was formed. Image forming conditions were set as follows. Photoconductor charge potential: 350 V After exposure Potential: 15 V Current image potential: 120 V Photoconductor drum linear speed: 60 mm / sec Current image linear speed: 120 mm / sec Developing sleeve rotation speed (linear speed ratio to photoconductor drum rotation speed) : 2.0 times

【0015】電子写真法により、形成した導体パターン
をシリカを主成分とするグリーンシート上に形成した
後、これを900℃、1時間、還元雰囲気中で焼結して
セラミック基板上に銅からなる導体パターンを形成し
た。以上の条件でベースとして以下の実験を行ない、各
条件パラメータの影響を確認した。 (1)キャリア粒径 キャリア粒径を30〜130μmの間で変化させて画像
形成を行ない画像特性を評価し、その結果を表1に示し
た。40〜120μm、特に40〜100μmで良好な
パターンが形成されることが判る。 (2)現像剤中の金属粒子(トナー粒子)含有率 現像剤中における金属粒子(トナー粒子)含有率を1〜
23重量%の範囲で変化させて画像特性を評価し、その
結果を表2に示した。金属粒子含有率が2〜20重量%
で良好なパターンが形成された。
After the formed conductor pattern is formed on a green sheet containing silica as a main component by electrophotography, it is sintered at 900 ° C. for 1 hour in a reducing atmosphere to form a copper on a ceramic substrate. A conductor pattern was formed. Under the above conditions, the following experiment was performed as a base, and the influence of each condition parameter was confirmed. (1) Carrier Particle Size Image formation was performed by changing the carrier particle size between 30 and 130 μm, and the image characteristics were evaluated. The results are shown in Table 1. It can be seen that a good pattern is formed at 40 to 120 μm, especially at 40 to 100 μm. (2) Content of Metal Particles (Toner Particles) in Developer The content of metal particles (toner particles) in the developer is 1 to
The image characteristics were evaluated by changing the range of 23% by weight, and the results are shown in Table 2. Metal particle content of 2 to 20% by weight
And a good pattern was formed.

【0016】(3)金属粒子の抵抗値 金属粒上に形成されるポリエチレン系樹脂層の厚さを調
整して絶縁化表面処理金属粒子(トナー粒子)の抵抗を
変化させて画像特性を評価し、その結果を表3に示し
た。1012Ω以上の抵抗値とすることにより、優れたパ
ターン画像が形成されることが判る。 (4)金属粒子中の絶縁物の含有率 金属粒上に形成されるポリエチレン系樹脂量を調整した
絶縁化表面処理金属粒子(トナー粒子)に含まれる絶縁
物量を制御し、焼成後に形成される導体パターンの比抵
抗を測定し、その結果を表4に示した。絶縁物含有率を
20重量%以下とすることにより、安定した焼成後の導
通が得られることが判る。
(3) Resistance Value of Metal Particles The thickness of the polyethylene resin layer formed on the metal particles is adjusted to change the resistance of the insulated surface-treated metal particles (toner particles) to evaluate image characteristics. Table 3 shows the results. It can be seen that an excellent pattern image is formed by setting the resistance to 10 12 Ω or more. (4) Content of insulator in metal particles The amount of insulator contained in insulated surface-treated metal particles (toner particles) in which the amount of polyethylene resin formed on metal particles is adjusted is controlled and formed after firing. The specific resistance of the conductor pattern was measured, and the results are shown in Table 4. It can be seen that by setting the insulator content to 20% by weight or less, stable conduction after firing can be obtained.

【0017】(5)現像スリーブ回転数 現像スリーブの感光体ドラムに対する回転数を変化さ
せ、種々の厚さトナー像(現像後厚み)を形成し、焼成
後のパターン厚みおよびパターン比抵抗を評価し、その
結果を表5に示した。現像スリーブの回転数が、感光体
ドラムの回転数に対する線速比で1.0〜5.0倍の範
囲で良好なパターンを得た。このとき、現像剤の現像後
膜厚が20〜50μmであり、これを焼成すると厚さ1
5〜38μmのパターンが形成され、安定した導通を得
た。
(5) Number of rotations of developing sleeve The number of rotations of the developing sleeve with respect to the photosensitive drum was changed to form toner images of various thicknesses (thickness after development), and the pattern thickness and pattern specific resistance after firing were evaluated. Table 5 shows the results. A good pattern was obtained when the rotation speed of the developing sleeve was in the range of 1.0 to 5.0 times the linear speed ratio with respect to the rotation speed of the photosensitive drum. At this time, the film thickness of the developer after development is 20 to 50 μm.
A pattern of 5 to 38 μm was formed, and stable conduction was obtained.

【0018】[0018]

【表1】 表1:キャリア粒径と画像特性との関係 キャリア粒径(μm) 画像特性 30 キャリア現像発生 40 ○ 50 ○ 70 ○ 100 ○ 110 ○〜△ 120 ○〜△ 130 カブリ発生/かすれ(はき目)発生 Table 1: Relationship between carrier particle size and image characteristics Carrier particle size (μm) Image characteristics 30 Carrier development occurs 40 50 50 70 70 100 100 110 △ to 120 120 △ to △ 130 Fog occurrence / fading ( Occurrence)

【0019】[0019]

【表2】 表2:現像剤中における金属粒子の含有率と画像特性との関係 金属粒子含有率(%) 画像特性 1 キャリア現像発生 2 ○ 3 ○ 6 ○ 15 ○ 20 ○ 23 地カブリ発生 Table 2: Relationship between content of metal particles in developer and image characteristics Metal particle content (%) Image characteristics 1 Carrier development 2 ○ 3 ○ 6 ○ 15 ○ 20 ○ 23 Ground fog occurrence

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 表4:金属粒子中の絶縁物含有率 絶縁物含有率(%) パターン比抵抗(Ω・cm) 4 3.0×10-6(導通あり) 6 2.4×10-6(導通あり) 8 1.7×10-6(導通あり) 15 3.4×10-6(導通あり) 20 1.7×10-4(導通あり) 25 3.0×106 (導通なし) Table 4: Insulator content in metal particles Insulator content (%) Pattern specific resistance (Ω · cm) 4 3.0 × 10 −6 (with conduction) 6 2.4 × 10 −6 (With conduction) 8 1.7 × 10 −6 (with conduction) 15 3.4 × 10 −6 (with conduction) 20 1.7 × 10 −4 (with conduction) 25 3.0 × 10 6 (without conduction) )

【0022】[0022]

【表5】 表5:現像スリーブ回転数における現像量とパターン厚み・比抵抗 現像スリーブ 現像後厚み パターン厚み パターン比 回転数(倍) (μm) (μm) 抵抗(Ω・cm) 0.8 16.5 11.0 3.0×10-2(導通なし) 1.0 20.8 15.5 1.7×10-5(導通あり) 1.5 26.4 21.1 2.0×10-6(導通あり) 2.0 29.0 24.2 2.4×10-6(導通あり) 3.0 35.5 28.4 3.4×10-6(導通あり) 5.0 50.0 38.0 5.0×10-6(導通あり) 5.5 52.0 39.2(カブリ発生) 5.0×10-6(導通あり) [Table 5] Table 5: Development Amount and Pattern Thickness / Resistivity at Development Sleeve Rotation Developing Sleeve Thickness after Development Pattern Thickness Pattern Specific Rotation (times) (μm) (μm) Resistance (Ω · cm) 0.8 16.5 11.0 3.0 × 10 -2 (without conduction) 1.0 20.8 15.5 1.7 × 10 -5 (with conduction) 1.5 26.4 21.1 2.0 × 10 -6 (with conduction) 2.0 29.0 24.2 2.4 × 10 -6 (with conduction) 3.0 35.5 28.4 3.4 × 10 -6 (with conduction) 5.0 50.0 38.0 5.0 × 10 -6 (with conduction) 5.5 52.0 39.2 (fog generation) 5.0 × 10 -6 (with conduction)

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いられる電子写真画像形成装置を示
す構成図である。
FIG. 1 is a configuration diagram illustrating an electrophotographic image forming apparatus used in the present invention.

【符号の説明】[Explanation of symbols]

11 感光体 13 帯電部材 15 画像信号露光部材 17 現像部材 19 転写部材 21 クリーニングブレード 23 全面露光部材 Reference Signs List 11 photoconductor 13 charging member 15 image signal exposure member 17 developing member 19 transfer member 21 cleaning blade 23 entire surface exposure member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小沢 義夫 東京都世田谷区玉川台2丁目14番9号 京 セラ株式会社東京用賀事業所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yoshio Ozawa 2-14-9 Tamagawadai, Setagaya-ku, Tokyo Kyocera Corporation Tokyo Yoga Office

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 金属粒の表面が熱可塑性絶縁物により被
覆されて絶縁化され、平均粒径が2〜20μmの範囲に
ある絶縁化表面処理金属粒子と、平均粒径40〜120
μmのキャリア粒子とからなる現像剤を用い、キャリア
粒子により絶縁化表面処理金属粒子に帯電付与し、電子
写真法により感光体上に形成された静電潜像を接触現像
し、絶縁化表面処理金属粒子からな顕像を形成すること
を特徴とする電子写真画像形成方法。
An insulating surface-treated metal particle having a metal particle surface coated with a thermoplastic insulator to be insulated and having an average particle size in a range of 2 to 20 μm;
Insulating surface-treated metal particles are charged by the carrier particles using a developer consisting of μm carrier particles, and the electrostatic latent image formed on the photoreceptor is contact-developed by electrophotography, resulting in insulating surface treatment. An electrophotographic image forming method comprising forming a visible image from metal particles.
【請求項2】 絶縁化表面処理金属粒子中に占める熱可
塑性絶縁物の量が20重量%以下であり、該粒子の抵抗
値が1012Ω・cm以上である請求項1に記載の電子写
真画像形成方法。
2. The electrophotograph according to claim 1, wherein the amount of the thermoplastic insulator in the insulated surface-treated metal particles is 20% by weight or less, and the resistance value of the particles is 10 12 Ω · cm or more. Image forming method.
【請求項3】 金属粒として、銅、タングステン、ニッ
ケルまたは銀を用いる請求項1または2に記載の電子写
真画像形成方法。
3. The electrophotographic image forming method according to claim 1, wherein copper, tungsten, nickel or silver is used as the metal particles.
【請求項4】 金属粒の表面で直接モノマーを重合し
て、熱可塑性絶縁物からなる被覆を金属粒の表面に形成
して被覆した絶縁化表面処理金属粒子を用いる請求項1
〜3のいずれか一項に記載の電子写真画像形成方法。
4. Insulated surface-treated metal particles obtained by polymerizing a monomer directly on the surface of a metal particle to form a coating made of a thermoplastic insulating material on the surface of the metal particle.
An electrophotographic image forming method according to any one of claims 1 to 3.
【請求項5】 感光体として、アモルファスシリコン系
感光体を用いる請求項1〜4のいずれか一項に記載の電
子写真画像形成方法。
5. The electrophotographic image forming method according to claim 1, wherein an amorphous silicon photoconductor is used as the photoconductor.
【請求項6】 前記絶縁化表面処理金属粒子から形成さ
れる顕像の層厚が20〜50μmである請求項1〜5の
いずれか一項に記載の電子写真画像形成方法。
6. The electrophotographic image forming method according to claim 1, wherein a layer thickness of a visible image formed from the insulated surface-treated metal particles is 20 to 50 μm.
【請求項7】 前記感光体として回転する感光体ドラム
を用い、また、現像手段としてキャリアを磁気的に保持
して回転する現像スリーブを用い、感光体ドラムの回転
速度に対する現像スリーブの回転速度の線速比を1.0
〜5.0に設定して現像する請求項1〜6のいずれか一
項に記載の電子写真画像形成方法。
7. A rotating photosensitive drum is used as the photosensitive member, and a developing sleeve rotating while holding a carrier magnetically is used as a developing means, wherein a rotating speed of the developing sleeve with respect to a rotating speed of the photosensitive drum is used. Linear speed ratio of 1.0
The electrophotographic image forming method according to any one of claims 1 to 6, wherein the development is performed at a setting of from 5.0 to 5.0.
【請求項8】 前記請求項1〜7のいずれか一項で形成
された絶縁化表面処理金属粒子からなる顕像を、セラミ
ックグリーンシート上に転写した後に焼成し、セラミッ
ク基板上に導体パターンを形成することを特徴とするセ
ラミック基板上の導体パターンの形成方法。
8. A conductive pattern formed on a ceramic green sheet after transferring a visible image formed of the insulated surface-treated metal particles formed in any one of claims 1 to 7 onto a ceramic green sheet. A method for forming a conductive pattern on a ceramic substrate, comprising: forming a conductive pattern on a ceramic substrate;
JP36756797A 1997-12-28 1997-12-28 Electrophotographic image forming method Expired - Fee Related JP3477063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36756797A JP3477063B2 (en) 1997-12-28 1997-12-28 Electrophotographic image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36756797A JP3477063B2 (en) 1997-12-28 1997-12-28 Electrophotographic image forming method

Publications (2)

Publication Number Publication Date
JPH11194526A true JPH11194526A (en) 1999-07-21
JP3477063B2 JP3477063B2 (en) 2003-12-10

Family

ID=18489635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36756797A Expired - Fee Related JP3477063B2 (en) 1997-12-28 1997-12-28 Electrophotographic image forming method

Country Status (1)

Country Link
JP (1) JP3477063B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156967A (en) * 2015-02-25 2016-09-01 富士ゼロックス株式会社 Electrostatic charge image developer, developer cartridge, process cartridge, image forming apparatus, and image forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156967A (en) * 2015-02-25 2016-09-01 富士ゼロックス株式会社 Electrostatic charge image developer, developer cartridge, process cartridge, image forming apparatus, and image forming method

Also Published As

Publication number Publication date
JP3477063B2 (en) 2003-12-10

Similar Documents

Publication Publication Date Title
EP0010375B1 (en) Electrostatographic processing system
US2914403A (en) Electrostatic printing
US2976144A (en) Electrophotography
US2892973A (en) Apparatus for imparting electrostatic charges in electrophotography
US3271146A (en) Xeroprinting with photoconductors exhibiting charge-storage asymmetry
JPS5913027B2 (en) Fukushimai Fukushiyahouhou
JP3604573B2 (en) Dry development method for metal toner
US3772010A (en) Electrophotographic apparatus and method for imagewise charge generation and transfer
JP4543490B2 (en) Circuit pattern forming method and wiring board formed thereby
JPH11194526A (en) Elerctrophotographic image forming method
JP4207241B2 (en) Chargeable powder for circuit formation and multilayer wiring board using the same
JPH11193402A (en) Insulating surface-treated metal grain
JP4134372B2 (en) Chargeable powder for circuit formation, circuit pattern forming method using the same, and multilayer wiring board formed thereby
US3794418A (en) Imaging system
JPH11177213A (en) Method and apparatus for manufacturing printed wiring board
JP4356181B2 (en) Wet developer for circuit formation and circuit formation method using this developer
JPH11195863A (en) Formation of conductor pattern
JPS5940597A (en) Method of producing printed wired circuit board
JPH11233365A (en) Electrophotography developer toner, the electrophotography developer and method for forming conductor pattern
JPS59150493A (en) Method of forming circuit pattern of circuit board
JP3512620B2 (en) Method of forming conductor pattern
JPS6311958A (en) Carrier for electrophotography
JPH11307911A (en) Conductive pattern forming method
JP2001284770A (en) Circuit-patten formation method and wiring board formed thereby
JPH11298118A (en) Method for forming circuit pattern and multilayer wiring bard formed thereby

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070926

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees