JPH11194422A - Camera stabilizer - Google Patents
Camera stabilizerInfo
- Publication number
- JPH11194422A JPH11194422A JP72198A JP72198A JPH11194422A JP H11194422 A JPH11194422 A JP H11194422A JP 72198 A JP72198 A JP 72198A JP 72198 A JP72198 A JP 72198A JP H11194422 A JPH11194422 A JP H11194422A
- Authority
- JP
- Japan
- Prior art keywords
- range
- angle
- camera
- axis direction
- gimbal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Accessories Of Cameras (AREA)
- Adjustment Of Camera Lenses (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、カメラスタビラ
イザに関し、特に画像回転補償における特異点回避技術
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a camera stabilizer, and more particularly to a technique for avoiding singularities in image rotation compensation.
【0002】[0002]
【従来の技術】ヘリコプタ等に搭載されるカメラスタビ
ライザは図3に示すように、航空機の鉛直軸、ロール軸
及びピッチ軸とそれぞれ対応するAZ軸(azimat
h軸)、RL軸(roll軸)及びEL軸(eleva
tion軸)が存在する。前記3軸を制御することによ
り実現するカメラスタビライザ1の機能として、カメラ
の空間安定化を図る機能、つまりカメラを向けた方向に
維持する機能(カメラを傾けたら傾けたままを維持する
機能)と、画像が地球の水平を維持するように画像の回
転を補償する機能とがある。2. Description of the Related Art As shown in FIG. 3, a camera stabilizer mounted on a helicopter or the like has an AZ axis (azimat) corresponding to a vertical axis, a roll axis and a pitch axis of an aircraft.
h axis), RL axis (roll axis), and EL axis (eleva)
(tion axis). The functions of the camera stabilizer 1 realized by controlling the three axes include a function of stabilizing the space of the camera, that is, a function of maintaining the camera in the direction in which the camera is directed (a function of maintaining the camera in a tilted state). And the ability to compensate for image rotation so that the image maintains the earth's level.
【0003】後者の機能を実現するために、図4に示す
ようにカメラスタビライザ1には、各軸方向の3個のジ
ャイロと3個の加速度計を備えたバーチカルジャイロ
(水平基準ジャイロ)が、カメラ3と共にジンバル機構
(簡単にジンバルとも言う)4に取付けられている。バ
ーチカルジャイロ2で検出したカメラ3(ジンバル4)
の水平からの傾斜角、即ちRL軸方向角度(ロール角と
も言う)θRL(t)(tは時間)がサーボアンプ5に入
力される。サーボアンプ5はジンバル4を−θRL(t)
だけRL軸方向に回転させる。このときの−θRL(t)
をRL軸方向制御角と言い、φRLで表す。即ち、 φRL=−θRL(t) ・・・(1) このように、カメラ3(ジンバル4)のRL軸方向角度
(ロール角)θRL(t)がゼロとなるように、つまり水
平となるようにジンバル4のモータ4aを制御するので
ある。In order to realize the latter function, as shown in FIG. 4, the camera stabilizer 1 includes a vertical gyro (horizontal reference gyro) having three gyros in each axial direction and three accelerometers. Attached to a gimbal mechanism (simply called a gimbal) 4 together with the camera 3. Camera 3 detected by vertical gyro 2 (gimbal 4)
RL axis direction angle (also referred to as roll angle) θ RL (t) (t is time) is input to the servo amplifier 5. Servo amplifier 5 sets gimbal 4 to -θ RL (t)
Only in the direction of the RL axis. At this time, -θ RL (t)
Is called an RL axis direction control angle, and is represented by φRL . That is, φ RL = −θ RL (t) (1) Thus, the RL axis direction angle (roll angle) θ RL (t) of the camera 3 (gimbal 4) becomes zero, that is, horizontal The motor 4a of the gimbal 4 is controlled so that
【0004】なおバーチカルジャイロ2はカメラ3の空
間安定化を図るためのジャイロと共用化が図られてい
る。カメラスタビライザ1は図6Aに示すように例えば
ヘリコプタ6に固定されるため、もし画像回転補償機能
をオフにすれば、カメラ3の画像7は図6Bに示すよう
にヘリコプタ6の動き(傾き)に追従する。しかし、画
像回転補償機能をオンにすれば、上述したようにバーチ
カルジャイロ2の検出したロール角θRL(t)が常にゼ
ロになるようにサーボアンプ5はジンバル4に対してR
L軸方向の回転を与え画像(カメラ)を水平に保つこと
ができる。The vertical gyro 2 is shared with a gyro for stabilizing the space of the camera 3. Since the camera stabilizer 1 is fixed to the helicopter 6, for example, as shown in FIG. 6A, if the image rotation compensation function is turned off, the image 7 of the camera 3 will be moved (tilted) by the helicopter 6 as shown in FIG. 6B. Follow. However, when the image rotation compensation function is turned on, the servo amplifier 5 controls the gimbal 4 so that the roll angle θ RL (t) detected by the vertical gyro 2 is always zero as described above.
By giving a rotation in the L-axis direction, the image (camera) can be kept horizontal.
【0005】次に、画像回転補償機能をオンにした状態
で図5に示すようにカメラ3の向きを水平方向から下向
きに変化させる過程を考える。つまり、EL軸方向に下
向きの回転を与える場合である。カメラ3が真下方向に
近付くと画像の水平が定義できなくなってしまう。これ
は丁度、普通のカメラで真下(地面)を見た時に水平が
分からなくなるのと同じである。このような訳でθEL=
−90°の点を特異点と言う。特異点では画像回転補償
機能は正常に動作できなくなり、画像が頻繁に180°
近く回転したりして見るにたえない画面となる。Next, a process of changing the direction of the camera 3 from a horizontal direction to a downward direction as shown in FIG. 5 with the image rotation compensation function turned on will be considered. That is, this is a case where a downward rotation is given in the EL axis direction. When the camera 3 approaches right below, the horizontal of the image cannot be defined. This is exactly the same as losing the level when you look directly below (the ground) with an ordinary camera. Thus, θ EL =
The point at −90 ° is called a singular point. At a singular point, the image rotation compensation function cannot operate normally, and the image
The screen turns so close to seeing.
【0006】そのため従来のカメラスタビライザ1で
は、サーボアンプ5は、図5においてEL軸方向角度θ
ELが;−60°>θEL>−120°になると、画像
(従ってカメラ)が水平を保つためのジンバルに対する
RL軸方向の回転駆動を止め、ジンバルに付属のポテン
ショメータよりジンバルのRL軸方向の現在の回転角J
M RL(t)を検出し、JMRL(t)だけジンバルを逆回
転させて(このときの−JMRL(t)もまたRL軸方向
制御角と言う)、ジンバルのポテンショメータで検出さ
れるRL軸方向回転角度を0°に保持する。即ち、 φRL=−JMRL(t) ・・・(2) 従って、EL軸方向角度θELがθEL≧−60°からθEL
<−60°になると、画像は、図7Aの水平を保持した
画像から図7Bのようなヘリコプタの傾きと同じ傾きを
持った画像へと急に変化することになる。[0006] Therefore, the conventional camera stabilizer 1
In FIG. 5, the servo amplifier 5 detects the angle θ in the EL axis direction.
ELBut −60 °> θEL> -120 ° when the image
(Hence the camera) against the gimbal to keep it level
Stop the rotation drive in the RL axis direction and use the potentiometer attached to the gimbal.
The current rotation angle J of the gimbal in the RL axis direction from the shometer
M RL(T) is detected and JMRLReverse the gimbal by (t)
Turn over (-JM at this timeRL(T) is also in the RL axis direction
Control angle), detected by the gimbal potentiometer
The rotation angle in the RL axis direction is maintained at 0 °. That is, φRL= -JMRL(T) (2) Therefore, the EL axis direction angle θELIs θEL≧ −60 ° to θEL
<60 °, the image held the horizontal of FIG. 7A
From the image, the same inclination as that of the helicopter as shown in Fig. 7B
It will suddenly change to the image you have.
【0007】なお従来例では、図5のEL軸方向角度θ
ELが;30°≧θEL≧−60°及び;−180°≦
θEL≦−120°が画像回転補償範囲であり、;−6
0°<θEL<−120°を特異点回避範囲と呼んでい
る。In the conventional example, the angle θ in the EL axis direction shown in FIG.
EL is; 30 ° ≧ θ EL ≧ −60 ° and; −180 ° ≦
θ EL ≦ −120 ° is the image rotation compensation range;
0 ° <θ EL <−120 ° is called a singularity avoidance range.
【0008】[0008]
【発明が解決しようとする課題】上述のように、従来の
カメラスタビライザではEL軸方向角度θELが−60°
より小さくなるとき、或いは−120°より大きくなる
とき、画像が水平状態の画像からヘリコプタの傾きと同
じだけ傾いた画像へと急に変化し、特にヘリコプタの傾
き(ロール角)が大きいときには、制御の切換え点(θ
EL=−60°または−120°)での画像の不連続性が
大きくなり、画像を見ている者に著しい違和感を与える
ことになり好ましくない。この発明はこのような制御切
換え点での画像の不連続による違和感を和らげるよう
に、サーボアンプにおける制御を改善することを目的と
している。As described above, the conventional camera stabilizer has an EL axis direction angle θ EL of −60 °.
When the angle becomes smaller or becomes larger than -120 °, the image suddenly changes from an image in a horizontal state to an image tilted by the same angle as that of the helicopter. Especially when the tilt (roll angle) of the helicopter is large, control is performed. Switching point (θ
(EL = −60 ° or −120 °), the discontinuity of the image becomes large, and a person looking at the image unfavorably feels strange. SUMMARY OF THE INVENTION It is an object of the present invention to improve control in a servo amplifier so as to reduce a sense of discomfort due to discontinuity of an image at such a control switching point.
【0009】[0009]
【課題を解決するための手段】(1)請求項1の発明で
は、画像回転補償範囲と特異点回避範囲との間に、RL
軸方向制御角φRLを、重み係数a,b(a+b=1)を
用いて、 φRL=−a×θRL(t)−b×JMRL(t) ・・・(3) に設定する制御折衷範囲を設ける。According to the first aspect of the present invention, RL is set between the image rotation compensation range and the singularity avoidance range.
The axial control angle φ RL is set to φ RL = −a × θ RL (t) −b × JM RL (t) (3) using the weighting coefficients a and b (a + b = 1). A control compromise range is provided.
【0010】(2)請求項2の発明では、前記(1)に
おいて、カメラのEL軸方向角度θ ELが、α≦θEL≦β
(α=30°±20°、β=−60°±20°)を画像
回転補償範囲とし、θEL≒−90°を特異点回避範囲と
し、β<θEL<−90°を制御折衷範囲とする。 (3)請求項3の発明では、前記(2)において、重み
係数aを a=(−90−θEL)/(−90−β) ・・・(5) に設定する。(2) According to the second aspect of the invention, (1)
The EL axis angle θ of the camera ELIs α ≦ θEL≤β
(Α = 30 ° ± 20 °, β = −60 ° ± 20 °)
Rotation compensation range, θEL≒ -90 ° is the singularity avoidance range
And β <θEL<-90 ° is a control compromise range. (3) In the invention according to claim 3, in (2), the weight
The coefficient a is calculated as follows: a = (− 90−θ)EL) / (− 90−β) (5)
【0011】(4)請求項4の発明では、前記請求項
(1)において、カメラのEL軸方向角度θELがα≦θ
EL≦β(α=30°±20°、β=−60°±10°)
の範囲を画像回転補償範囲とし、γ≦θEL≦δ(γ=−
80°±5°,δ=−100°±5°)の範囲を特異点
回避範囲とし、β<θEL<γの範囲を制御折衷範囲とす
る。[0011] (4) In the invention of claim 4, in claim (1), EL-axis angle theta EL cameras alpha ≦ theta
EL ≦ β (α = 30 ° ± 20 °, β = −60 ° ± 10 °)
Is the image rotation compensation range, and γ ≦ θ EL ≦ δ (γ = −
A range of 80 ° ± 5 °, δ = −100 ° ± 5 °) is defined as a singularity avoidance range, and a range of β <θ EL <γ is defined as a control compromise range.
【0012】(5)請求項5の発明では、前記(4)に
おいて、重み係数aを a=(γ−θEL)/(γ−β) ・・・(11) に設定する。 (6)請求項6の発明では、前記(4)において、EL
軸方向角度θELが、ε≧θEL≧−180°(ε=−12
0°±10°)の範囲を第2の画像回転補償範囲とし、
δ<θEL<εの範囲を第2の制御折衷範囲とする。(5) In the invention of claim 5, in the above (4), the weighting factor a is set to a = (γ−θ EL ) / (γ−β) (11) (6) In the invention according to claim 6, in the above (4), the EL
Axial angle theta EL is, ε ≧ θ EL ≧ -180 ° (ε = -12
0 ° ± 10 °) as a second image rotation compensation range,
The range of δ <θ EL <ε is defined as the second control compromise range.
【0013】(7)請求項7の発明では、前記(6)に
おいて、第2の制御折衷範囲における重み係数aを a=(δ−θEL)/(δ−ε) ・・・(14) に設定する。(7) In the invention of claim 7, in the above (6), the weighting coefficient a in the second control compromise range is a = (δ−θ EL ) / (δ−ε) (14) Set to.
【0014】[0014]
【発明の実施の形態】(実施例1)従来の技術では、バ
ーチカルジャイロ2の検出したEL軸方向角度が、;
30°≧θEL≧−60°ではサーボアンプ5のジンバル
4に対するRL軸方向制御角φRLは φRL=−θRL(t) ・・・(1) であった。(1)式のθRL(t)はバーチカルジャイロ
の検出したRL軸方向角度である。一方、;−60°
<θEL<−120°では、RL軸方向制御角は φRL=−JMRL(t) ・・・(2) であった。(2)式のJMRL(t)はジンバルのポテン
ショメータが検出したRL軸方向のジンバルの現在の回
転角である。また、;−180°≦θEL≦−120°
では、φRLとして(1)式を用いていた。DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) In the prior art, the vertical gyro 2 detects the angle in the EL axis direction;
When 30 ° ≧ θ EL ≧ −60 °, the RL axis direction control angle φ RL of the servo amplifier 5 with respect to the gimbal 4 was φ RL = −θ RL (t) (1). Θ RL (t) in equation (1) is the RL axis direction angle detected by the vertical gyro. On the other hand; -60 °
When <θ EL <−120 °, the control angle in the RL axis direction was φ RL = −JM RL (t) (2). JM RL (t) in equation (2) is the current rotation angle of the gimbal in the RL axis direction detected by the gimbal potentiometer. Also; -180 ° ≦ θ EL ≦ −120 °
Then, equation (1) was used as φ RL .
【0015】この発明の実施例1では;α≧θEL≧β
(α=30°±20°,β=−60°±20°)ではR
L軸方向制御角φRLとして従来の(1)式を用いる。 ;θEL≒−90°では、φRLとして従来の(2)式を
用いる。 ;−180°≦θEL≦γ(γ=−120°±20°)
では、φRLとして再たび従来の(1)式を用いる。In the first embodiment of the present invention: α ≧ θ EL ≧ β
(Α = 30 ° ± 20 °, β = −60 ° ± 20 °)
The conventional equation (1) is used as the L-axis direction control angle φ RL . For θ EL ≒ −90 °, the conventional equation (2) is used as φ RL . ; -180 ° ≦ EL ≦ γ (γ = −120 ° ± 20 °)
Then, the conventional equation (1) is used again as φ RL .
【0016】;β>θEL>−90°では、(1)式と
(2)式にそれぞれウエイトを付けて、両者の和をとっ
た式を用いる。即ち、 φRL=−a1×θRL(t)−b1×JMRL(t) ・・・(3) a1,b1は重み係数で、 a1+b1=1 (b1=1−a1) ・・・(4) とする。a1として、例えば a1=(−90−θEL)/(−90−β) ・・・(5) を用いる。即ち(−90−θEL)が(−90−β)の例
えば90%を占めていれば(θELがβに近く、−90°
から遠い例)、φRLは−θRL(t)の90%(a1=
0.9)と、−JMRL(t)の10%(b1=0.1)
の合計とする。このようにすると、におけるRL軸方
向制御角φRLはとの場合の(1)式及び(2)式と
の連続性が得られ、急激な画像の変化が生じない。When β> θ EL > −90 °, weights are added to equations (1) and (2), and the sum of the two is used. That is, φ RL = −a1 × θ RL (t) −b1 × JM RL (t) (3) a1 and b1 are weighting coefficients, and a1 + b1 = 1 (b1 = 1−a1) (4) ). For example, a1 = (− 90−θ EL ) / (− 90−β) (5) is used as a1. That is, if (−90−θ EL ) occupies 90% of (−90−β), for example, (θ EL is close to β and −90 °
RL is 90% of -θ RL (t) (a1 =
0.9) and 10% of -JM RL (t) (b1 = 0.1)
And the sum of By doing so, the RL axis direction control angle φ RL atに お け る is obtained as continuity with the expressions (1) and (2), and no abrupt image change occurs.
【0017】;−90°>θEL>γ(γ=120°±
20°)では φRL=−a2×θRL(t)−b2×JMRL(t) ・・・(6) を用いる。ここでa2,b2は重み係数で、 a2+b2=1 (b2=1−a2) ・・・(7) とする。a2として例えば a2=(−90−θEL)/(−90−γ) ・・・(8) を用いれば、φRLはとの場合との連続性が保たれ
る。-90 °> θ EL > γ (γ = 120 ° ±
20 °), φ RL = −a2 × θ RL (t) −b2 × JM RL (t) (6) is used. Here, a2 and b2 are weighting coefficients, and a2 + b2 = 1 (b2 = 1-a2) (7) If, for example, a2 = (− 90−θ EL ) / (− 90−γ) (8) is used, the continuity of φ RL with the case of φ2 is maintained.
【0018】,の画像回転補償範囲では図2Aに示
すように水平な画像が得られ、の特異点回転範囲で
は、図2Cに示すように、ヘリコプターの傾きと同じ傾
きをもつ画像が得られ、,では、水平線がAとBの
間の傾きをもつ画像が得られる。 (実施例2)実施例1では特異点回避範囲をθEL≒−9
0°に限定したが、実施例2では、;γ<θEL<δ
(γ=−80°±5°、δ=−100°±5°)の範囲
を特異点回避範囲としている。従って、RL軸方向制御
角φRLは(2)式となる。In the image rotation compensation range, a horizontal image is obtained as shown in FIG. 2A, and in the singular point rotation range, an image having the same inclination as that of the helicopter is obtained as shown in FIG. 2C. ,, An image having a horizontal line having an inclination between A and B is obtained. (Embodiment 2) In Embodiment 1, the singularity avoidance range is set to θ EL ≒ -9.
Although limited to 0 °, in Example 2, γ <θ EL <δ
(Γ = −80 ° ± 5 °, δ = −100 ° ± 5 °) is defined as a singularity avoidance range. Therefore, the control angle φ RL in the RL axis direction is given by equation (2).
【0019】;α≧θEL≧β(α=30°±20°;
β=−60°±10°)及び;ε≧θEL≧−180°
(ε=−120°±10°)は画像回転補償範囲であ
り、φ RLとして(1)式を用いる。;β>θEL>γ
(β=−60°±10°,γ=−80°±5°)ではφ
RLはとの値を折衷して、 φRL=−a3×φRL(t)−b3×JMRL(t) ・・・(9) a3+b3=1(b3=1−a3) ・・・(10) a3=(γ−θEL)/(γ−β) ・・・(11) とすると、φRLは及びの場合との連続性が得られ
る。Α ≧ θEL≧ β (α = 30 ° ± 20 °;
β = −60 ° ± 10 °); and ε ≧ θEL≧ -180 °
(Ε = -120 ° ± 10 °) is the image rotation compensation range.
And φ RLEquation (1) is used. Β> θEL> Γ
(Β = −60 ° ± 10 °, γ = −80 ° ± 5 °)
RLCompromises the value ofRL= −a3 × φRL(T) -b3 × JMRL(T) (9) a3 + b3 = 1 (b3 = 1−a3) (10) a3 = (γ−θ)EL) / (Γ−β) (11)RLAnd continuity with
You.
【0020】また、;δ≦θEL≦ε(δ=−100°
±5°,ε=−120°±10°)では、φRLはと
の値を折衷して φRL=−a4×θRL(t)−b4×JMRL(t) ・・・(12) a4+b4=1(b4=1−a4) ・・・(13) a4=(δ−θEL)/(δ−ε) ・・・(14) を用いれば、φRLはとの場合との連続性が得られ
る。Δ ≦ θ EL ≦ ε (δ = −100 °)
(± 5 °, ε = −120 ° ± 10 °), φ RL is a compromise between the values of φ RL = −a4 × θ RL (t) −b4 × JM RL (t) (12) a4 + b4 = 1 (b4 = 1−a4) (13) If a4 = (δ−θ EL ) / (δ−ε) (14), φ RL is continuity with Is obtained.
【0021】[0021]
【発明の効果】以上述べたように、この発明では、,
の画像回転補償範囲と、の特異点回避範囲との間
に、RL軸方向制御角φRLを及びと連続性を保ちな
がらとを折衷した値に設定するの制御折衷範囲
と、及びと連続性を保ちながらとを折衷した値
に設定するの制御折衷範囲を設けるようにしたので、
カメラのEL軸方向角度θELの制御切換点(図1Aの
β、−90°、γや図1Bのβ,γ、δ,ε)におい
て、従来のような画像の急激な変化は生じない。従っ
て、画像の不連続による違和感はない。As described above, according to the present invention,
Between the image rotation compensation range and the singularity avoidance range, and the control compromise range of setting the RL axis direction control angle φ RL to a value that compromises between and and maintaining continuity. Because the control compromise range of setting the compromise between the values of
At the control switching point (β, −90 °, γ in FIG. 1A and β, γ, δ, ε in FIG. 1B) of the control switching point of the EL axis direction angle θ EL of the camera, there is no sharp change of the image as in the related art. Therefore, there is no sense of incongruity due to discontinuity of images.
【図1】この発明のカメラスタビライザにおける画像回
転補償範囲と、特異点回避範囲と、制御折衷範囲とを示
す図。FIG. 1 is a diagram showing an image rotation compensation range, a singularity avoidance range, and a control compromise range in a camera stabilizer of the present invention.
【図2】図1の各範囲における画像の水平線の傾きを示
す図。FIG. 2 is a diagram showing the inclination of a horizontal line of an image in each range of FIG. 1;
【図3】A,B及びCはそれぞれカメラスタビライザの
外観を示す平面図、正面図及び右側面図。FIGS. 3A, 3B, and 3C are a plan view, a front view, and a right side view, respectively, showing the appearance of a camera stabilizer;
【図4】カメラスタビライザの画像回転補償機能を説明
するためのブロック図。FIG. 4 is a block diagram for explaining an image rotation compensation function of the camera stabilizer.
【図5】従来のカメラスタビライザにおける画像回転補
償範囲と特異点回避範囲を示す図。FIG. 5 is a diagram showing an image rotation compensation range and a singularity avoidance range in a conventional camera stabilizer.
【図6】Aはヘリコプタに搭載されたカメラスタビライ
ザの姿勢を示す正面図、B及びCはそれぞれカメラスタ
ビライザの画像回転補償機能をオンまたはオフにした場
合の画像の一例を示す図。6A is a front view showing a posture of a camera stabilizer mounted on a helicopter, and FIGS. 6B and 6C are diagrams showing an example of an image when an image rotation compensation function of the camera stabilizer is turned on or off, respectively.
【図7】A及びBはそれぞれ従来のカメラスタビライザ
の画像回転補償範囲(θEL≧−60°)及び特異点回避
範囲(θEL<−60°)における画像の例を示す図。FIGS. 7A and 7B are diagrams illustrating examples of images in a conventional camera stabilizer in an image rotation compensation range (θ EL ≧ −60 °) and a singularity avoidance range (θ EL <−60 °), respectively.
Claims (7)
L(ロール)軸及びEL(エレベーション)軸と、 カメラと水平基準ジャイロとを搭載したジンバルと、 画像回転補償機能をオンにしたとき、前記水平基準ジャ
イロの検出した前記カメラのEL軸方向角度θEL(t)
(tは時間)が画像回転補償範囲にあるとき、前記ジン
バルに与えるRL軸方向制御角φRLを、前記水平基準ジ
ャイロの検出した前記カメラのRL軸方向角度θ
RL(t)を用いて、 φRL(t)=−θRL(t) ・・・(1) とし、これによりカメラのRL軸方向角度θRL(t)が
ゼロとなるように前記ジンバル機構を制御し、EL軸方
向角度θEL(t)が特異点回避範囲(−90°またはそ
の付近)にあるとき、前記RL軸方向制御角φRLを、前
記ジンバルに内蔵されたポテンションメータにより検出
されたRL軸方向のジンバルの現在の回転角JM
RL(t)を用いて、 φRL(t)=−JMRL(t) ・・・(2) に設定して、前記ポテンションメータで検出される前記
ジンバルのRL軸方向の回転角をゼロに保持するサーボ
アンプと、を備えたカメラスタビライザにおいて、 前記画像回転補償範囲と前記特異点回避範囲との間に、
前記RL軸方向制御角φRLを、重み係数a,b(a+b
=1)を用いて、 φRL=−a×θRL(t)−b×JMRL(t) ・・・(3) に設定する制御折衷範囲を設けたことを特徴とするカメ
ラスタビライザ。An AZ (azimuth) axis orthogonal to each other, R
A gimbal equipped with an L (roll) axis and an EL (elevation) axis, a camera and a horizontal reference gyro, and an EL axis angle of the camera detected by the horizontal reference gyro when the image rotation compensation function is turned on. θ EL (t)
When (t is time) is within the image rotation compensation range, the RL axis direction control angle φ RL given to the gimbal is changed to the RL axis direction angle θ of the camera detected by the horizontal reference gyro.
Using RL (t), φ RL (t) = − θ RL (t) (1), whereby the gimbal mechanism is arranged so that the RL axis direction angle θ RL (t) of the camera becomes zero. When the EL axis direction angle θ EL (t) is within the singularity avoidance range (−90 ° or near), the RL axis direction control angle φ RL is determined by a potentiometer built in the gimbal. The detected current rotation angle JM of the gimbal in the RL axis direction
Using RL (t), φ RL (t) = − JM RL (t) (2) and setting the rotation angle of the gimbal in the RL axis direction detected by the potentiometer to zero. A servo amplifier comprising: a camera amplifier comprising:
The RL axis direction control angle φ RL is calculated by using weighting coefficients a and b (a + b
= 1), and a control compromise range is provided for setting φ RL = −a × θ RL (t) −b × JM RL (t) (3).
方向角度θELが、α≦θEL≦β(α=30°±20°、
β=−60°±20°)の範囲を前記画像回転補償範囲
とし、θEL≒−90°を前記特異点回避範囲とし、β<
θEL<−90°を前記制御折衷範囲とすることを特徴と
するカメラスタビライザ。2. The camera according to claim 1, wherein the angle θ EL in the EL axis direction of the camera is α ≦ θ EL ≦ β (α = 30 ° ± 20 °,
β = −60 ° ± 20 °) as the image rotation compensation range, θ EL ≒ −90 ° as the singularity avoidance range, and β <
A camera stabilizer characterized in that θ EL <−90 ° is the control compromise range.
方向角度θELがα≦θEL≦β(α=30°±20°、β
=−60°±10°)の範囲を前記画像回転補償範囲と
し、γ≦θEL≦δ(γ=−80°±5°,δ=−100
±5°)の範囲を前記特異点回避範囲とし、β<θEL<
γの範囲を前記制御折衷範囲とすることを特徴とするカ
メラスタビライザ。4. The method of claim 1, EL-axis angle theta EL of the camera α ≦ θ EL ≦ β (α = 30 ° ± 20 °, β
= −60 ° ± 10 °) as the image rotation compensation range, and γ ≦ θ EL ≦ δ (γ = −80 ° ± 5 °, δ = −100).
± 5 °) as the singularity avoidance range, and β <θ EL <
A camera stabilizer, wherein a range of γ is the control compromise range.
θELが、ε≧θEL≧−180°(ε=−120°±10
°)の範囲を第2の画像回転補償範囲とし、δ<θEL<
εの範囲を第2の制御折衷範囲とすることを特徴とする
カメラスタビライザ。6. The method of claim 4, wherein the EL-axis angle theta EL is, ε ≧ θ EL ≧ -180 ° (ε = -120 ° ± 10
°) is defined as a second image rotation compensation range, and δ <θ EL <
A camera stabilizer, wherein a range of ε is set as a second control compromise range.
範囲における前記重み係数aを a=(δ−θEL)/(δ−ε) ・・・(14) に設定することを特徴とするカメラスタビライザ。7. The method according to claim 6, wherein the weighting coefficient a in the second control compromise range is set to a = (δ−θ EL ) / (δ−ε) (14). Camera stabilizer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP72198A JP4033537B2 (en) | 1998-01-06 | 1998-01-06 | Camera stabilizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP72198A JP4033537B2 (en) | 1998-01-06 | 1998-01-06 | Camera stabilizer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11194422A true JPH11194422A (en) | 1999-07-21 |
JP4033537B2 JP4033537B2 (en) | 2008-01-16 |
Family
ID=11481624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP72198A Expired - Fee Related JP4033537B2 (en) | 1998-01-06 | 1998-01-06 | Camera stabilizer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4033537B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009141557A (en) * | 2007-12-05 | 2009-06-25 | Japan Aviation Electronics Industry Ltd | Camera stabilizer |
-
1998
- 1998-01-06 JP JP72198A patent/JP4033537B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009141557A (en) * | 2007-12-05 | 2009-06-25 | Japan Aviation Electronics Industry Ltd | Camera stabilizer |
Also Published As
Publication number | Publication date |
---|---|
JP4033537B2 (en) | 2008-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10642130B2 (en) | Motorized monopod jib for cameras | |
JP4328551B2 (en) | Imaging posture control device | |
US20100328431A1 (en) | Rendering method and apparatus using sensor in portable terminal | |
US7893959B2 (en) | Video display system for correcting the position and size of mask images | |
US5963248A (en) | Automatic tracking/image sensing device | |
JPH08317429A (en) | Stereoscopic electronic zoom device and stereoscopic picture quality controller | |
WO1999052021A2 (en) | Continuous spacecraft attitude control that avoids cmg array singularities | |
JP2017196913A (en) | Image display device | |
JP2023089098A (en) | Imaging support device, imaging support system, imaging system, imaging support method, and program | |
JPH11194422A (en) | Camera stabilizer | |
CN117881944A (en) | Super camera with shared mirror | |
JP4284496B2 (en) | Space stabilizer | |
EP0834761B1 (en) | Image stabilizing apparatus | |
JP3877599B2 (en) | Video camera system | |
JPH07202541A (en) | Three-axis control antenna system | |
JP4423371B2 (en) | Space stabilizer | |
JP3420298B2 (en) | Camera attitude control device | |
KR20190143172A (en) | Pan-tilt-gimbal integrated system and control method thereof | |
WO2021035749A1 (en) | Method and device for optimizing three-dimensional reconstruction model, and movable platform | |
JPH10253349A (en) | Visual axis-directing apparatus | |
TWI780877B (en) | Self-adaptive display device | |
JP2877264B2 (en) | Aircraft cockpit | |
JP7556685B2 (en) | Gimbal device and camera system equipped with same | |
JP2546299Y2 (en) | Optical camera gimbal controller | |
JP2022128906A (en) | Display control unit, display unit, and image display control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041118 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20051104 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070612 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071016 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071023 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111102 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111102 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131102 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |